
J. R. Soc. Interface (2010) 7, 1181–1193
*Author for c

doi:10.1098/rsif.2009.0523
Published online 17 February 2010

Received 30 N
Accepted 27 J
Analytical methods for quantifying
environmental connectivity for the

control and surveillance of infectious
disease spread

Justin Remais1,*, Adam Akullian2, Lu Ding3 and Edmund Seto2

1Department of Environmental Health, Rollins School of Public Health, Emory University,
1518 Clifton Road NE, Atlanta, GA 30322, USA

2Center for Occupational and Environmental Health, School of Public Health, University
of California, 50 University Hall, Berkeley, CA 94720-7360, USA

3Institute of Parasitic Disease, Sichuan Center for Disease Control and Prevention,
Chengdu, Sichuan 610041, China

The sustained transmission and spread of environmentally mediated infectious diseases is
governed in part by the dispersal of parasites, disease vectors and intermediate hosts between
sites of transmission. Functional geospatial models can be used to quantify and predict the
degree to which environmental features facilitate or limit connectivity between target popu-
lations, yet typical models are limited in their geographical and analytical approach,
providing simplistic, global measures of connectivity and lacking methods to assess the epide-
miological implications of fine-scale heterogeneous landscapes. Here, functional spatial
models are applied to problems of surveillance and control of the parasitic blood fluke Schis-
tosoma japonicum and its intermediate snail host Oncomelania haupensis in western China.
We advance functional connectivity methods by providing an analytical framework to (i)
identify nodes of transmission where the degree of connectedness to other villages, and
thus the potential for disease spread, is higher than is estimated using Euclidean distance
alone and (ii) (re)organize transmission sites into disease surveillance units based on
second-order relationships among nodes using non-Euclidean distance measures, termed
effective geographical distance (EGD). Functional environmental models are parametrized
using ecological information on the target organisms, and pair-wise distributions of inter-
node EGD are estimated. A Monte Carlo rank product analysis is presented to identify
nearby nodes under alternative distance models. Nodes are then iteratively embedded into
EGD space and clustered using a k-means algorithm to group villages into ecologically mean-
ingful surveillance groups. A consensus clustering approach is taken to derive the most stable
cluster structure. The results indicate that novel relationships between nodes are revealed
when non-Euclidean, ecologically determined distance measures are used to quantify connec-
tivity in heterogeneous landscapes. These connections are not evident when analysing nodes
in Euclidean space, and thus surveillance and control activities planned using Euclidean dis-
tance measures may be suboptimal. The methods developed here provide a quantitative
framework for assessing the effectiveness of ecologically grounded surveillance systems and
of control and prevention strategies for environmentally mediated diseases.

Keywords: geospatial connectivity; environmental transport; infectious disease
spread; Schistosoma japonicum; network epidemiology; graph theory
1. INTRODUCTION

Infectious disease transmission involves connections
between susceptible and infected hosts—connections
which, in the case of pathogens with environmental
stages or those carried by vectors and intermediate
hosts, are strongly mediated by the intervening environ-
mental features between hosts. These features can
regulate disease transmission, where, for example,
orrespondence ( justin.remais@emory.edu).
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rivers mediate the spread of rabies (Smith et al. 2002),
or animal or human hosts migrating across hetero-
geneous landscapes govern the onset of diseases such
as measles or foot-and-mouth disease (Ferguson et al.
2001; Grenfell et al. 2001).

Generally, strong linkages between subpopulations
result in strong synchrony in transmission among sub-
populations, and persistence, establishment and other
effects are known to be modified by network connec-
tivity (Adler 1993; Hess 1996; Ruxton & Rohani 1999;
This journal is q 2010 The Royal Society
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Bjornstad 2001; Koopman et al. 2002). Important prac-
tical implications for interventions emerge from these
studies, where, for example, focusing antihelminthic
treatment on highly infected villages may be inefficient
when compared with a regional approach involving
careful exploration of network topology to identify key
nodes that contribute to downstream infection and
targeting those (Gurarie & Seto 2008).

This raises an important opportunity for public
health decision-making. If disease persistence and estab-
lishment, and intervention optimization, are dependent
on connectivity in a system, and that connectivity is
strongly environmentally determined, then environ-
mental datasets have the potential to inform public
health decisions such as where to focus surveillance
efforts, or identifying clusters of related transmission
loci. This is especially true for changing environments,
where phenomena such as climate change can effectively
bring some hosts (or vectors) closer to (and push some
further from) vectors (or hosts) than they have been his-
torically, a context where environmental data may be
crucial (Sutherst 2004).

Metapopulation models are commonly used to con-
ceptualize the role of connectivity in infectious disease
systems (Hanski 2001), and the popularity of these
approaches has led to calls for rigorous quantification
of host, vector and parasite migration between patches
(Ferguson et al. 2001; Hanski 2001). Both graph and
spatial network models are limited in their applications
to systems with complex responses to environmental
heterogeneity. For instance, typical graph network
models applied to directly transmitted diseases are con-
structed such that only certain pairs of nodes are
connected (Keeling & Eames 2005). Yet, in the context
of environmentally mediated diseases at the community
scale, where distant transport of vectors or free-living
stages is possible, there is rarely a definitive basis for
excluding edges between node pairs altogether.
Methods that account for the strength of connections
(rather than treating edges as either present or
absent; Keeling 1999) and connection asymmetries
(instead of simple symmetric linkages between nodes;
Jeger et al. 2007) are needed for organisms with disper-
sive environmental stages subject to directional
environmental flows. In those rare cases where the
strength of interaction between nodes has been evalu-
ated, graph theory measures of network properties
(degree distribution, triples, etc. which ignore edge
weights) are ineffective (Brooks et al. 2008), and edge
weights are often dropped prior to analysis (Urban &
Keitt 2001; Brooks et al. 2008).

Spatial network models used to simulate spread
across continuous space have similar limitations. They
are typically based on radially symmetric, monotoni-
cally decreasing functions of distance that define a
spatial sphere of influence (e.g. an exponential kernel)
assuming spatial homogeneity and isotropy (Reluga
et al. 2006; Brooks et al. 2008; Parham et al. 2008).
Where directional forces (anisotropy) have been con-
sidered for spatial point processes, they have been
applied as a constant force across the spatial domain
(Soubeyrand et al. 2008). Such models are of limited
value when transmission processes exhibit variable,
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directional dispersal rates mediated by heterogeneous
landscape features, as in the case of waterborne- or
habitat-mediated, vector-borne transmission.

New analytical tools are thus needed that account for
complex environmental heterogeneity, network asym-
metries and stochastic dispersal modes, while
providing measures of local and global network proper-
ties. These methods are especially desirable for disease
agents with free-living stages, where the geometry and
magnitude of connections between patches are highly
sensitive to environmental factors, including land
cover and hydrology (Gurarie & Seto 2008). Here, we
provide a rigorous approach for just such a system,
focusing on human schistosomes, which exhibit mul-
tiple free-living stages as well as transmission by
intermediate hosts, and are thus model organisms for
exploring the influence of environmental resistance to
(or facilitation of) disease spread through hetero-
geneous landscapes. The re-emerging schistosomiasis
context in Sichuan, China, offers a prime example of
where decision-making tools for response and
surveillance are badly needed.

In China, schistosomiasis re-emergence is defined as
the incidence of new cases of infection where there
had been previous attainment of transmission control
criteria (prevalence of human and cattle infections
less than 1%, no new infections in children less than
12 years old and in cattle less than 2 years old, no
acute human cases and snail habitat reduced by 98%
from pre-control levels; Liang et al. 2006). New acute
cases over the last decade in Sichuan have signalled
re-emergence of the disease and have triggered investi-
gations by local disease control agencies as to whether
these cases were the result of local transmission or
importation. Infection examinations of potential
human and cattle hosts were carried out throughout
the geographical region, yet at the time, no systematic
method was available to inform the selection of villages
to include in surveys.

Environmental or social distances that define the
degree of connection (or disconnection) between popu-
lations, hosts, vectors and pathogens can be useful in
this context, and methods for estimating these distance
metrics are greatly needed. Euclidean distance is clearly
a good candidate for fulfilling this role; it is simple
to estimate, easy to interpret and supported by well-
developed statistical methods. Yet, there is evidence
that Euclidean metrics alone fail to measure epidemiolo-
gical distance when environmental pathways lie on
heterogeneous landscapes (Ferguson et al. 2001; Grenfell
et al. 2001). What is more, simple Euclidean distance
may not sufficiently represent social distances that
mediate transmission processes (Miller & Wentz 2003).

We present methods for estimating and analysing the
influence of environmental or social distances that
define the degree of connection (or disconnection)
between hosts, vectors and pathogens. We make use
of simple environmental models in this study in order
to emphasize methods that convert model output into
public health decision-making tools. A technique is
presented for prioritizing treatment or surveillance
in neighbour nodes when responding to an acute case,
as is a method for re-clustering nodes, based on
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Figure 1. Diagrammatic model of connected village nodes
where land cover and hydrology-dependent diffusion of the
parasite and intermediate host is estimated on the paths
between nodes.
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connectivity information, to form new spatial units of
surveillance or coordination. We apply these
approaches to Schistosoma japonicum, the parasite
that causes schistosomiasis in East and Southeast
Asia. The larval stages are fully aquatic, as are the
juvenile stages of the intermediate host, thus hydrology
plays a major role in determining ease of larval and
snail host dispersal between villages. Adult intermedi-
ate hosts are amphibious, and their dispersal is
determined by a set of terrestrial land cover, soil moist-
ure and other environmental parameters. Key
environmental determinants of schistosome infection
in western China have been identified (Spear et al.
2004; Remais et al. 2007), including dispersive flows
such as hydrology and snail movement that modify
S. japonicum transmission along paths between villages
in rural Sichuan Province, China, illustrated diagram-
matically in figure 1. Parasites enter the environment
as eggs that hatch in water into a free-swimming mira-
cidium that seeks a specific species of snail,
Oncomelania hupensis, to infect. The snails are amphi-
bious and largely inhabit the margins of irrigation
canals where they are subject to advective transport
as well as active dispersal. Asexual reproduction of the
parasite within the snail produces cercariae, another
free-swimming aquatic stage with a lifespan of the
order of a day. These larvae penetrate the intact skin
of a definitive host (human or other mammal) and
mature into adult worms. Eggs are excreted in faeces,
which find their way into the environment in the
absence of basic sanitation, through alternative mam-
malian hosts, or through the use of human waste as
fertilizer, and begin the cycle again. We present
methods that, accounting for connectivity, can be
used to plan surveillance efforts or identify clusters
of environmentally related loci in the context of
S. japonicum transmission.
2. MATERIAL AND METHODS

2.1. Study sites

The study was conducted in 32 villages (figure 2) within
three counties in the Chuanbei region of Sichuan
Province, People’s Republic of China (1048290 E,
J. R. Soc. Interface (2010)
318060 N). Schistosoma japonicum has re-emerged in
this region in areas that had previously attained trans-
mission control according to Chinese Ministry of Health
guidelines (Liang et al. 2006). The villages lie on the
mountainous areas surrounding the city of Deyang.
The region is characterized by a subtropical climate
with an annual average temperature of 178C and
annual rainfall greater than 1100 mm. The landscape
is dominated by intense, irrigated agricultural cultiva-
tion, especially rice, corn, peanuts and vegetables. Use
of human waste, termed nightsoil, for crop fertilization
is pervasive in this region, leading to the release of
parasitic ova into the environment and sustaining schis-
tosomiasis transmission. Villages were selected from a
related study on social–environmental factors associ-
ated with re-emergence (defined elsewhere; Liang
et al. 2006). The villages were not selected at random,
but focus was first placed on villages with data on
the presence of schistosomiasis infection in snails,
acute human cases or infected children (less than 12
years old) since control status was attained in each
county. These villages were paired with villages in
the same township (an administrative unit of organiz-
ation, approx. 3 km2) for which historical data
existed, but infections had not been found. The exten-
sive human and intermediate host data, and protocols
for their collection, used as a basis for these classifi-
cations, are described in detail elsewhere (Liang et al.
2006).
2.2. Functional environmental models

Functional environmental models quantify the degree
to which the intervening landscape facilitates or
impedes the movement of a focal organism between geo-
graphically defined nodes (Hansson 1991). The
approach has been widely applied in conservation
biology and landscape ecology as a means to identify
paths that support gene flow between populations of
organisms that require high-quality habitat linkages
(Macdonald & Johnson 2001). Indeed, a common out-
come of these studies is that distances defined by
functional environmental models better explain
observed dispersal, population dynamics or genetic
differentiation than Euclidean distance, reinforcing the
need for improved geographical measures of ecological
connectivity to predict rates and likelihoods of spread
(Michels et al. 2001; Adriaensen et al. 2003; Stevens
et al. 2006; Epps et al. 2007).

The functional connectivity approach models the dis-
persal of a focal organism across a habitat matrix by
calculating a weighted or ‘effective’ geographical dis-
tance (EGD) between each pair of nodes. Ecologically
relevant resistance values are defined on each cell in
the matrix, which is then parsed using an algorithm
that sums the effective distance experienced while
moving from source to destination node. Most func-
tional connectivity studies summarize the EGD
between a pair of nodes by taking the single minimum
resistance path, assuming the cost of this path to be
the most informative measure of node connectivity.
Clearly, the distribution of EGDs (along all possible
paths) between a pair of nodes provides a more
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Figure 2. Map of study region with inset table showing 32 participating villages across three counties in Sichuan Province,
People’s Republic of China. Filled circle, study villages; solid line, river.

1184 Analytical methods for connectivity J. Remais et al.
complete representation of the diversity of connectivity
modes (Boone & Hunter 1996; Schippers et al. 1996),
including those that pass through contiguous corridors,
fragmented habitat patches and indirect paths
(Theobald 2006). EGD distributions are estimated for
S. japonicum and O. hupensis using a series of environ-
mental resistance models parametrized with ecological,
experimental and behavioural data.
2.3. Model development

Functional models rely on experimental data, literature
sources and expert opinion on the habitat requirements,
relative mobility and dispersal characteristics of an
J. R. Soc. Interface (2010)
organism of interest. Each functional model can be
viewed as a hypothesis that asserts that a specific set
of landscape features governs dispersal. Ultimately,
these models must be confronted by objective data
(observed dispersal from mark–recapture experiments,
multilocus genotype data, etc.), which we discuss
further below. Here, we focus on relatively simple func-
tional models in order to emphasize the methods we
have developed for analysing functional model output
in the presence of uncertainty in such data. Oncomelania
hupensis snails have an affinity for perennially wet
environments, and S. japonicum larvae are fully aquatic
(Fan et al. 1998; Xu et al. 2000). Thus, we define at each
cell a property that influences snail or larval dispersal,
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based on literature data indicating the varying resist-
ance of hydrological classes that impede, have no
effect on or facilitate dispersal, as outlined below. We
limit the scope of this paper to three very simple func-
tional models in order to focus on the methodological
advances presented below; models can of course be
extended to include additional land cover and feature
data, as well as anisotropy.
2.3.1. Euclidean (null model). The Euclidean model
gives equal resistance to all cells, thus generating
straight line distances between points.
2.3.2. Overland distance. The overland distance resist-
ance model is a Euclidean distance model corrected
for the distance travelled when moving over sloped
topography.
2.3.3. Watershed. The watershed model considers the
distance along flow paths to streams, where the cost
of movement through a given cell increases with dis-
tance from the closest stream cell. This model
represents the hypothesis that the position in the water-
shed in relation to the nearest stream cell will determine
the likelihood that a dispersing snail or larval stage will
encounter a stream corridor. Watershed boundaries,
being the furthest from streams, were considered bar-
riers to dispersal and are thus assigned the highest
resistance values. Snails or larvae originating from vil-
lages in higher reaches of a watershed were assumed
to be less likely to encounter a stream during active dis-
persal or passive transport, such as during a rain event,
in line with observed associations between O. hupensis
and S. japonicum and waterways (Xu et al. 2000; Li &
Fu 2006). Following other work (Chardon et al. 2003;
Driezen et al. 2007), the resistance value of a cell, Ci,j,
was defined by an exponential function of distance
from the nearest stream cell, Ci;j ¼ edm;n , where d is
J. R. Soc. Interface (2010)
overland distance from (m, n), the location of the near-
est stream pixel, to (i, j).
2.4. Cost distributions

For each environmental model, the distribution of EGD
values between each pair of the 32 villages (n ¼ 496
possible pairs) was generated using an iterative walk
procedure, with path EGD values recorded, for conven-
ience, at points along the weighted-distance mid-point
isoclines (termed allocation boundary) between nodes
as described elsewhere (Theobald 2006). The isocline
provides a simple accounting scheme for recording
path costs between a pair of nodes, and while other
approaches are possible, the methods discussed below
are not sensitive to how the distribution of costs is
recorded or stored. The allocation boundary approach
is useful in that it allows an analysis of the cross-
sectional distribution of cost distance values, revealing
the presence of contiguous low-cost corridors and other
features (figure 3). The full distributions of EGD
values extracted from the allocation boundary are
included in the analysis below, with the extent of the
allocation boundary, which stretches infinitely in both
directions, set proportional to the straight line distance
between each node pair. Functional environmental
models were coded in ArcGIS MODELBUILDER (ESRI
2008) and Python (van Rossum 2008), and run iteratively.
2.5. Statistical analysis

The cost distribution between a pair of nodes represents
the aggregate available paths for travel between that
pair. Where traditional methods ignore all but the
lowest cost path, methods presented here account for
the full distribution of paths using Monte Carlo tech-
niques. The approach is as follows: consider a set of n
nodes S ¼ ( p1, p2, . . ., pn) in Euclidean space RN

where all inter-node distances are known and define a
distance matrix, D ¼ [dij] in Rn�n

þ . Matrix D is
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translation and rotation invariant and satisfies the
Euclidean metric properties of non-negativity (dij . 0),
identity (dij ¼ 0,i ¼ j), symmetry (dij ¼ dji) and
subadditivity (dij � dik þ dkj). Applying a functional
cost model deforms Euclidean space, resulting in D0, a
modified distance matrix. Each informative element
dij in D0 can be described by the probability density
pij defined from the set of cost-weighted distances
along the allocation boundary between pi and pj.

Our interest in D0 is in the information it contains
about relative positions (and configurations) of nodes
under alternative models of environmental distance. In
the public health context, we are interested in connec-
tivity measures that can be derived from D0 and in the
decision-making tools these measures can provide, such
as the identification of neighbouring nodes and alterna-
tive visualizations of connected epidemic landscapes.
2.5.1. Identifying key neighbouring nodes: surveillance
response to an acute case. Designing a surveillance
response to an acute case detected in network node pa

depends on a range of factors, including the population
at risk in other nodes, node characteristics such as avail-
ability of clinical care, availability of trained
surveillance personnel and other resource constraints.
Here, we focus on the information a functional environ-
mental model can provide in prioritizing surveillance of
nodes proximal to pa. The elements of D0 can provide a
ranked listing of nodes near pa as measured by EGD. A
Monte Carlo approach is used to generate different
realizations of D0, where values of elements dij are
drawn repeatedly from the probability density pij. For
each Monte Carlo simulation, nodes pn (where n = a)
are ranked as to their distance (daj) from pa. Rankings
are then analysed using a rank product approach
(Breitling et al. 2004), a non-parametric statistic that
detects items that are consistently highly ranked in
replicated lists. Our interest is in nodes that rank con-
sistently closer under EGD measures when compared
with Euclidean distance; these would be nodes worthy
of surveillance consideration that simple inspection of
Euclidean proximity would not reveal. This approach
is compatible with models accounting for anisotropic
effects, although for simplicity we use an isotropic
environmental model, the watershed model. Because
the large number of comparisons among ranked lists
could inflate the rate of falsely significant rank changes,
the rank product method accounts for multiple testing
by allowing for the flexible control of the false discovery
rate (FDR). Cost distances were subject to quantile nor-
malization (Bolstad et al. 2003), and variance was
stabilized using a generalized logarithm (glog) pro-
cedure (Durbin et al. 2002). Rank product
comparisons for both increasing and decreasing proxi-
mity were made between Euclidean and EGD distance
models at all nodes. We report the FDR level for a
given node calculated using a permutation-based pro-
cedure (Breitling et al. 2004), which represents the
expected proportion of true null hypotheses that are
erroneously rejected, out of the total number of hypoth-
eses rejected (i.e. the proportion of type I errors among
all significant results).
J. R. Soc. Interface (2010)
2.5.2. Embedding and cluster analysis. Presuming that
transmission across the network is governed both by
properties of individual nodes (patch properties) and
by environmental features that provide linkages
among a group(s) of nodes (corridor properties), it is
logical to identify network groupings that arise by con-
sidering environmental connectivity, groupings that
may form epidemiological units useful for surveillance
or control activities. To approach this question, we
turn to traditional second-order analyses such as clus-
tering, first embedding nodes in non-Euclidean, EGD
space and then carrying out a consensus cluster
analysis.

To relocalize nodes under alternative distance
measures, each realization of D0 was used to embed
nodes in Re EGD space using a semi-definite program-
ming relaxation approach. Methods for choosing the
number of dimensions e are discussed elsewhere
(Loland & Host 2003), and as in other analyses, scree
plots in this study (data not shown) showed marginal
improvement in embedding for e . 2, and thus we loca-
lize on a R2 plane. Anchor-free node embedding is an
optimization problem, where inter-node distances are
treated as constraints and the coordinate space is sys-
tematically searched to find node coordinates that
satisfy these constraints. An intuitive description of
the problem is as follows: for every node pair a
random draw is performed from pij until a full set D0

is assembled. Then, a nonlinear global minimization
problem is solved with the objective function

f x1; . . . ; xnð Þ ¼
X
ði;jÞ

xi � xj

�� ��2�d2
ij

� �2
; ð2:1Þ

where xn is the position of node pn, and a set of coordi-
nates x1,. . ., xn is a solution if and only if it is the global
minimizer of f, with the global minimum being zero.
Numerous multidimensional scaling algorithms have
been developed. Here, we achieve efficient optimization
over large samples of D0 using a semi-definite program-
ming relaxation solution recently proposed for sensor
network localization (Biswas et al. 2006; Kim et al.
2008), undertaken in Matlab (Mathworks Inc. 2008)
using the SeDuMi toolbox for optimization over sym-
metric cones (Strum 1999). The result for each
realization of D0 is an embedding of each pn in EGD
coordinate space, denoted S0 ¼ ( p01, p02, . . . , p0n), with
localization error estimated by a stress function given
by (Golub & Van Loan 1996)

s ¼
Pn

i¼1

Pn
j¼1 ðd̂ij � dijÞ2Pn

i¼1

Pn
j¼1 d2

ij

 !1=2

; ð2:2Þ

which captures the distance error between D0 and
the distances resulting from the embedding
technique (d̂ij).

The resulting representation of nodes, S0, is useful in
that we can compare clustering of sites under Euclidean
and EGD domains. We use a simple k-means clustering
approach here, although alternative clustering
approaches (Gaussian mixture models, c-means, etc.)
could easily be substituted. The domain of each S0 is
partitioned into clusters of k nodes, which can be
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represented as a vector of labels over S0. Let
l(q)[f1, 2, . . ., k(q)gn denote the label vector of the clus-
tering of qth realization of S0; i.e. lðqÞi is the membership
label of p0i in the partitioning of the qth realization of S0.
A set of m such partitions l(1, 2, . . ., m) from Monte Carlo
relocalizations forms a cluster ensemble, where the goal
now is to seek a consensus function that combines the
information in the m partitions into a single clustering.
The cluster labels are symbolic and thus we must simul-
taneously solve a correspondence problem, as well as the
optimization problem where, given a set of m clusterings,
we seek the consensus clustering that minimizes the dis-
agreement with the m clusterings. Here, we follow
previous work (Strehl & Ghosh 2002) and define the
optimal combined clustering as the one that shares the
most mutual information with the m original clusterings,
as estimated by the normalized mutual information
(NMI). We note that the consensus function is capable
of combining multiple partitionings without accessing
the original partitioning features. This approach is
useful for combining results from diverse partitionings
generated using multiple algorithms and applied to
differing subsets of the network. Consensus clustering
was performed in Matlab (Mathworks Inc. 2008) using
three previously developed algorithms (Strehl & Ghosh
2002): Cluster-Based Similarity Partitioning, Hyper-
Graph Partitioning and Meta-Clustering, with the
final consensus clustering determined by the maximum
average NMI.
J. R. Soc. Interface (2010)
3. RESULTS

Cost distributions for inter-node paths between the 32
villages using environmental models differed depending
on the underlying environmental inputs. In particular,
when models incorporate directed paths, such as
streams, narrow, low-cost corridors are pronounced for
nodes that lie along those paths. Figure 4 shows a
subset of village nodes with insets showing distributions
of path costs dividing three node pairs (13,14), (13,15)
and (14,15), estimated using the overland distance
and watershed models. Histograms corresponding to
the simple overland distance model (filled bars) reflect
the distribution of unweighted paths between villages,
showing a greater frequency of low-cost paths between
closer village pairs (13,15) and (14,15) than those
farther apart (13,14). By contrast, the watershed
model (unfilled bars) shows that village 14 is isolated
from the two other villages by a topographic boundary,
resulting in a right-skewed distribution of path costs for
(13,14) and (14,15), whereas villages 13 and 15 are
linked by stream corridors, resulting in a left-skewed
distribution between (13,15).
3.1. Identifying key neighbouring nodes

The watershed functional model aids in prioritizing sur-
veillance of nodes along flow paths to a node with an
acute case, pa. Table 1 shows the results of ranking



Table 1. Selected villages where ranking of proximal nodes is significantly altered in the watershed model when compared with
the Euclidean null model, as estimated using 1000 realizations of D0. The median rank of nearest neighbour nodes under the
watershed model is compared with the Euclidean model, with changes in rank noted, and the false discovery rate (FDR)
reported as described in the text.

ranking

village 13 village 24

nodes

change in ranking FDR

nodes

change in ranking FDREuclidean watershed Euclidean watershed

1 15 16 �2 0.01 25 25 — 0.98
2 14 15 �1 0.06 23 23 — 0.99
3 16 9 �2 0 31 26 �1 0.03
4 10 14 �2 0.04 26 18 �1 0.03
5 9 10 �1 0 18 31 �2 0.26
6 17 17 — 0.63 13 28 �4 0.04
7 26 19 �7 0.10 10 2 �7 0
8 18 20 �6 0.04 9 27 �7 0.15
9 24 26 �2 0.58 15 10 �2 0.05

10 25 25 — 0.66 28 9 �2 0.26
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the closest 10 nodes for two representative nodes,
pa ¼ 13 and pa ¼ 24, generated using 1000 realizations
of D0. Rankings of proximal nodes are significantly
altered under the watershed model when compared
with the Euclidean null. In table 1, the FDR level is
reported as a measure of the significance of the
change in proximity of the village. Here, the FDR can
be interpreted as a conservative estimate of the percen-
tage false positives if this village and all other villages,
with rank product values smaller than this village,
were considered as significantly more or less proximate.
Essentially, the FDR level for a village is the proportion
of significant shifts in rank that are truly null if the shift
in rank of the current village is taken as significant.

When pa ¼ 13, key shifts in ranks occur among
neighbouring village nodes. Figure 5a shows how the
top five ranked nodes proximal to pa ¼ 13 change
under the watershed model, whereas figure 5b shows a
similar phenomenon for pa ¼ 24.

3.2. Embedding and cluster analysis

Embedding of multiple realizations of S0 in EGD space
produces a cloud of potential coordinates for each p0n.
Figure 6 shows these clouds for the embedding of
1000 realizations of the overland functional model,
which exhibits strong resemblance to the Euclidean
model because elevation gradients in this region are
modest. Embedding error was low across models, as
seen in the inset in figure 6, which shows the distri-
bution of s for the R2 embedding of 1000 watershed
model realizations.

As expected, non-Euclidean models strongly altered
clustering patterns of nodes as explored using a
k-means analysis. In the watershed model for instance,
the consensus cluster analysis revealed nodes which,
while separated by short Euclidean distances, bridge
drainage divides and are therefore separated by long
effective distances. Figure 7 shows how some of these
nodes (such as 16 and 17) are clustered together in
Euclidean space but are clustered with other nodes
J. R. Soc. Interface (2010)
when embedded in EGD space. The nodes in this
study were (non-randomly) sampled from three coun-
ties, and k-means analysis shows that within-county
nodes are indeed members of the same cluster when
k ¼ 3. The watershed model embedding shows, how-
ever, that village nodes in one county may naturally
group with nodes in other counties when watershed fea-
tures are accounted for. In figure 7, consensus cluster
membership of several nodes in Jinyang county shift
to the cluster formed by a majority of Zhongjiang
county nodes. Surveillance and control activities are
organized at the county level in this region, and some-
times in a manner uncoordinated with neighbouring
counties. A simple k-means analysis can reveal the lim-
ited relevance of county boundaries for effectively
grouping villages.
4. DISCUSSION

Meaningful measures of environmental distance are key
to conceptualizing and quantifying transport processes
that underlie the spread of environmentally mediated
infectious diseases and are critically important to the
planning of disease surveillance and control. The
methods presented here allow us to explore alternative
models of connectivity and determine the value of
adding additional model complexity. Inter-node cost
distributions are robust representations of the degree
of connectivity between nodes. Previous work has fre-
quently relied on unweighted, binary edges, isotropic
kernel functions, or has used a single path cost as the
measure of inter-node distance, which others have
identified as a problematic representation (Adriaensen
et al. 2003; Stevens et al. 2006). The cost distribution
approach presented here is one alternative to least
cost path approaches; other alternatives have been pro-
posed (McRae et al. 2008), yet are limited in application
to isotropic systems. We note that the analysis pre-
sented here does not make use of the order of path
costs along the allocation boundaries because for the
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system under study here, we have no ecological basis to
consider contiguous paths more favourable than discon-
tiguous paths. But in the context of other species where
these effects are known, path costs can be weighted
based on the costs of adjacent paths (using a simple
moving average function across the allocation bound-
ary, for instance), rewarding paths that are members
of a contiguous, high-value corridor.

Two novel methods were presented here to take
advantage of information on the distribution of paths
of varying quality across a heterogeneous environment.
J. R. Soc. Interface (2010)
First, the cost distribution approach can be used to
quantitatively identify nodes proximal to a node of
interest, such as the location of an acute case. Com-
bined with other sources of data, these results could
be used to prioritize resources for disease control and
surveillance following an index case at the beginning
of an epidemic, or resurgence of a previously controlled
disease. We demonstrated that rank product statistics
are a straightforward approach to analysing the
Monte Carlo output described in this study, where
our interest is in detecting items that are consistently
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highly ranked in replicated lists. We found that rank-
ings of proximal nodes are significantly altered under
the assumptions of functional environmental models
when compared with the Euclidean null, and the
approach is compatible with more complex environ-
mental models, including anisotropic models. While
this approach is valuable for analysing relationships
between a given node and nearby nodes, an alternative
approach is necessary to explore the global implications
of a functional environmental model across all points.

To achieve global insights across all nodes, a second
method was presented that positioned a set of nodes so
that the Euclidean distance between these nodes in
EGD space matches the set of non-Euclidean EGD dis-
tances specified by the functional environmental model.
The analysis then proceeded using the distances result-
ing from the embedding, avoiding issues of invalid
variogram and covariance functions that arise with
non-Euclidean distance measures (Loland & Host
2003). Embedding results were stable when nodes
were added or deleted. As a simple demonstration of
the approach, nodes were clustered under Euclidean
and non-Euclidean embeddings, showing that func-
tional environmental models can suggest alternative
groupings of nodes that may have relevance for surveil-
lance and control. For instance, stable groupings of
nodes may be used to establish sentinel sites for ongoing
surveillance, optimizing the allocation of public health
resources. Here, we used a simple k-means approach,
but more sophisticated techniques are amenable. We
deliberately proposed a cluster consensus procedure
that ignores the clustering algorithm that generated
J. R. Soc. Interface (2010)
the partition; this can be advantageous if multiple clus-
tering algorithms were employed or subsets of nodes are
clustered.

As a simple measure of the utility of non-Euclidean
metrics for defining epidemiological distance in this
system, we examined the official Chinese Centers for Dis-
ease Control classification of each study village (and its
neighbours) as re-emergent (R) or not re-emergent
(NR) based on the criteria presented above. We
inquired for each functional model as to whether the
nearest neighbours of R villages are generally other
R villages as opposed to NR villages, and whether NR
villages were generally closer neighbours with other
NR villages. For each node pm, nodes pn (where n = m)
were ranked as to their distance from pm, using Euclidean
distance and then watershed distance. Under the
Euclidean distance model, like-classified neighbours
were ranked no higher (closer) than non-like-classified
neighbours using a non-parametric test comparing
the distances of like and unlike neighbours (Mann–
Whitney–Wilcoxon test: Z ¼ 20.62, p ¼ 0.53). The
watershed model, however, ranked like-classified
neighbours higher (closer) than unlike neighbours
(Mann–Whitney–Wilcoxon test: Z ¼ 23.70, p , 0.001),
indicating that watershed distance may be an improved
measure of epidemiological distance when compared
with Euclidean distance in this system. Much additional
work is needed to rigorously confirm this finding; an
ongoing study being conducted by the authors is
collecting extensive epidemiological and molecular gen-
etic data in these villages over a 5-year interval to
confirm the levels of infection in both R and NR villages
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and to directly estimate parasite dispersal coefficients.
Combining these data with mathematical modelling
approaches will be instrumental in gaining insight
from, and extending, the approach described here.
Indeed, the methods presented are valuable in that
they can reveal in which systems non-Euclidean dis-
tance measures may be of value. Even confirmation of
the null, that Euclidean distances are sufficient, is
useful in that it provides a test of a commonly untested
assumption: that Euclidean distance is the most suit-
able metric for geographical analyses in a particular
system.

Two considerable challenges face the application of
these methods to infectious disease transmission.
First, assigning relative mobility coefficients to environ-
mental features and surfaces requires detailed data on
the habitat preferences, occurrence and movement
rates of the organism of interest through diverse land
cover classes. Where multiple species or life stages are
involved, the data requirements are large and future
work should address the need to synthesize connectivity
models parametrized for multiple organisms of interest.
Strong habitat preferences do not guarantee use of that
habitat for dispersal (Schippers et al. 1996; Vignieri
2005), and an organism’s decisions along the way may
be more important in determining the overall path
than the cumulative resistance over the entire trajec-
tory (Brooker et al. 1999). Here, we explicitly consider
the uncertainty associated with typical, least cost
path techniques by developing simulation approaches
to examine the implications of alternative connectivity
models in two infectious disease applications.

Even having parametrized several competing func-
tional models, a second major challenge is
determining which of these best represents the processes
that govern host/vector/pathogen spread; that is,
which model is ‘best’. This requires additional, objective
data for model selection. Contemporary measures of
migration from multilocus genotypes (Wilson &
Rannala 2003) will be estimated in our ongoing study
in this region, but traditional epidemiologic surveillance
datasets may be equally valuable for this purpose,
although reporting, classification and selection issues
certainly arise with these data. The utility of the com-
peting model approach is that we are able to
determine the value of adding additional model com-
plexity, that is, which models provide explanatory
power that significantly exceeds simple Euclidean dis-
tance. This information can then be used to prioritize
the type and quantity of data collection necessary to
validate an operational model of connectivity for a
given transmission system.

A final point of utility for the methods presented
herein is that they allow us to explore the potential
health effects of environmental change, which can
alter natural groupings of populations. The clustering
methods presented here can be applied to the questions:
what are natural groupings in the network under cur-
rent conditions, and how does environmental change
alter these groupings? Proximity to hazards (infectious
or otherwise) is highly relevant to the epidemiology of
environmental change. Distance, linear and social, is a
component of key variables of interest, such as access
J. R. Soc. Interface (2010)
to care, proximity to environmental hazards (e.g. dis-
ease vectors, contaminated water sources, exposure to
airborne disease, etc.) and mobility of environmental
hazards themselves. In essence, environmental change
can pull (push) some hazards ‘closer’ (‘further’) than
they have been historically, while also changing the
magnitude of certain hazardous exposures. There is a
great need, then, to design interventions to increase
the effective distance between hazards and susceptible
populations. The methods presented above provide a
framework for carrying out such an analysis.
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