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Understanding the epidemiological and evolutionary dynamics of rapidly evolving pathogens
is one of the most challenging problems facing disease ecologists today. To date, many math-
ematical and individual-based models have provided key insights into the factors that may
regulate these dynamics. However, in many of these models, abstractions have been made
to the simulated sequences that limit an effective interface with empirical data. This is
especially the case for rapidly evolving viruses in which de novo mutations result in antigeni-
cally novel variants. With this focus, we present a simple two-tiered ‘phylodynamic’ model
whose purpose is to simulate, along with case data, sequence data that will allow for a
more quantitative interface with observed sequence data. The model differs from previous
approaches in that it separates the simulation of the epidemiological dynamics (tier 1)
from the molecular evolution of the virus’s dominant antigenic protein (tier 2). This separ-
ation of phenotypic dynamics from genetic dynamics results in a modular model that is
computationally simpler and allows sequences to be simulated with specifications such as
sequence length, nucleotide composition and molecular constraints. To illustrate its use, we
apply the model to influenza A (H3N2) dynamics in humans, influenza B dynamics in
humans and influenza A (H3N8) dynamics in equine hosts. In all three of these illustrative
examples, we show that the model can simulate sequences that are quantitatively similar
in pattern to those empirically observed. Future work should focus on statistical estimation
of model parameters for these examples as well as the possibility of applying this model, or
variants thereof, to other host–virus systems.
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1. INTRODUCTION

The ecological and evolutionary dynamics of many
RNA viruses have been increasingly well described
over the last several decades, yet the factors driving
their dynamics are still only poorly understood. One
approach towards identifying key factors is through
the formulation of mathematical models that, when
analysed analytically or simulated, yield quantitative
predictions of the case dynamics and the evolutionary
dynamics of the viral population (Holmes & Grenfell
2009). In the case of antigenically variable viruses,
these ‘phylodynamic’ models (Grenfell et al. 2004) fre-
quently incorporate multiple antigenically distinct
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strains and keep track of either the immune status or
the infection histories of individuals in the host
population.

These multi-strain models range in complexity from
the very simple and abstract (e.g. Girvan et al. 2002;
Tria et al. 2005) to the more complex and biologically
realistic (e.g. Ferguson et al. 2003; Koelle et al. 2006).
Many of them yield dynamics that are qualitatively
consistent with the dynamics they seek to reproduce.
For example, when parametrized with a short duration
of infection, the status-based multi-strain model devel-
oped by Gog & Grenfell (2002) yields self-organized
sets of strains that turn over in time, consistent with
empirical patterns of influenza. Other examples are
the phylodynamic models developed by Ferguson
et al. (2003) and Koelle et al. (2006), both of which
yield case dynamics and viral diversity patterns that
are qualitatively similar to those observed and
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phylogenies that resemble the known topology of influ-
enza’s haemagglutinin (HA) protein. Although these
multi-strain models, among others, have been able to
simulate dynamics that are consistent with particular
features of the observed data, many of these models
embody different mechanistic hypotheses about what
factors play dominant roles in shaping the dynamics.
For example, the model by Gog & Grenfell (2002) con-
siders only strain-specific immunity, whereas the model
by Ferguson et al. (2003) considers the additional role
that generalized immunity may play in shaping the
evolutionary dynamics of influenza’s HA. The model
by Koelle et al. (2006) considers a third hypothesis:
that the evolutionary dynamics of influenza’s HA are
shaped by periodic selective sweeps occurring during
antigenic cluster transitions.

Given this growing set of phylodynamic models that
differ in their mechanistic hypotheses, determining
which model performs best when confronted statisti-
cally with observed data is now necessary. In the case
of phylodynamic models, these data come in two
forms: epidemiological (case) data and evolutionary
(sequence) data. Interfacing disease models with case
data has a long history (e.g. Bobashev et al. 2000;
Finkenstädt & Grenfell 2000; Koelle & Pascual 2004;
Xia et al. 2005; Ionides et al. 2006; King et al. 2008),
with a subset of these analyses focusing on parameter
estimation and model selection for antigenically variable
RNA viruses (Xia et al. 2005; Fraser et al. 2009). How-
ever, phylodynamic models have to date not routinely
been tested statistically against observed sequence data.

A quantitative comparison of simulated sequence
data against observed sequence data could focus on a
number of different sequence-derived patterns. These
include divergence and diversity patterns, as well as
quantitative comparisons of phylogenies reconstructed
from simulated and observed sequences. Although many
phylodynamic models have considered at least one of
these patterns (Girvan et al. 2002; Ferguson et al. 2003;
Tria et al. 2005; Koelle et al. 2006; Minayev & Ferguson
2009a,b), the comparisons against observed data have
been only qualitative in nature. The reason for this limit-
ation lies in the current inability of these models to
capture these patterns quantitatively. This does not
imply that these models are missing the relevant pro-
cesses at play; rather, the quantitative mismatch
between model-simulated sequence data and empirical
sequence data results from the way in which sequences
have been represented in these models. Specifically,
phylodynamic models to date have simplified the rep-
resentation of viral sequences by considering bitstrings
(Girvan et al. 2002; Tria et al. 2005), a subset of codons
(Ferguson et al. 2003; Koelle et al. 2006) or a limited
number of antigenic loci (Recker et al. 2007; Minayev &
Ferguson 2009a,b). These sequence representations have
made the models computationally tractable at the cost
of simulating sequences that differ in length (or in struc-
ture) from the empirical sequences with which they are
being compared. In the case of the models that simulate
a subset of codons, a quantitative comparison could of
course be made between empirical and simulated
sequences, if only a subset of the empirical sequences
were considered. However, considering a subset of sites
J. R. Soc. Interface (2010)
introduces several difficulties. First, which subset should
be used? Our understanding of which sites are important
for antigenic change is still incomplete. Second, if differ-
ent phylodynamic models represent their sequences
differently, a quantitative comparison against sequence
data would use different subsets of the data. This
would result in models not being compared against the
same sequence dataset, making difficult the process of
model selection.

To enable a quantitative comparison between simu-
lated and observed sequence data, we here develop a
new phylodynamic model that makes explicit the differ-
ence between antigenic change and genetic change, and
thereby makes it computationally feasible to model
sequences in their entirety. Specifically, the model we for-
mulate consists of two tiers. The first tier of the model
simulates the ecological dynamics of the virus and its
antigenic phenotypes. As such, it builds conceptually on
the idea that strain phenotypes (i.e. antigenic variants
or clusters), instead of genotypes, can be used as the ‘fun-
damental particle’ for modelling RNA viruses such as
influenza (Plotkin et al. 2002). More recently, Gökaydin
et al. (2007) and Ballesteros et al. (2009) have used this
phenotype-level approach to consider the invasion
dynamics of a new antigenic cluster into a host population
with a resident cluster. Most relevant to the research pre-
sented here, Koelle et al. (2009) have recently introduced
an antigenic tempo model, which, in a modified version,
we use here as the first tier of our two-tiered model.

The second tier of the model simulates the molecular
evolution of a virus’s antigenic protein. It does so by
taking as given the epidemiological dynamics simulated
in the first tier of the model. Biologically, this separation
of ecological dynamics from evolutionary dynamics is of
course absurd: the molecular changes of a virus drive the
emergence of new antigenic variants, and therewith affect
the case dynamics. However, the effect of molecular
changes on the epidemiological dynamics is indirect, with
the link being the dynamics of the antigenic phenotypes.
As such, to simulate case dynamics, a phenomenological
model that reproduces the emergence dynamics of anti-
genic variants can be considered. It is this modular
separation of phenotypic dynamics from genotypic
dynamics that simplifies the computational complexity of
the simulations and thereby allows us to simulate viral
sequences that can be statistically compared with empirical
sequence data. Below, we first describe the epidemiological
submodel and detail (in appendix A) how this model can
be mechanistically interpreted in terms of mutations that
enable immune escape. We then describe the second tier
of the model, the molecular evolution submodel. A sche-
matic overview of the two tiers of the model and the flow
of simulated data is shown in the electronic supplementary
material, figure S1. The Matlab source code is available for
download from the corresponding author’s website.

As described here, the two-tiered model assumes that
viruses evolve antigenically in a punctuated manner. As
such, mutations are assumed to be antigenically neutral
or nearly so most of the time, with only the rare
mutation resulting in a large antigenic change. This
model is, therefore, a simplification of the previously
published phylodynamic model of Koelle et al. (2006),
which hypothesizes that occasional antigenic innovations
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and the selective sweeps that accompany their emer-
gence are the two key factors that drive the
evolutionary dynamics of influenza A (H3N2)’s HA in
humans. The model presented here improves upon
this previous model in terms of both its simplicity and
its ability to reproduce the quantitative patterns of
the observed sequence data.

Following the description of the model, we provide
three case studies to illustrate the flexibility of the
model and the diversity of dynamics that it can generate.
The first application is to influenza A (H3N2) in humans,
the second to influenza B in humans and the third to
H3N8 in equine hosts. Our first application to influenza
A (H3N2) shows that gradual antigenic evolution
within antigenic clusters is necessary to reproduce the
ecological and evolutionary patterns of the observed
data. To our knowledge, it is the first phylodynamic
model that can quantitatively reproduce the known pat-
terns of viral diversity and divergence over time. Our
second application demonstrates that the model under a
different parametrization can generate the emergence
and maintenance of two viral lineages, consistent with
the evolutionary patterns observed for influenza B. Our
third application serves to illustrate the possibility of
extending the model. Specifically, we extend the two-
tiered model to two patches (representative of North
America and Europe) to show that it can reproduce the
evolutionary dynamics of influenza A (H3N8) in equine
hosts subject to transatlantic quarantine measures.

Although all three of our applications focus on influ-
enza, this two-tiered model is not limited to this virus, as
other RNA viruses (e.g. HIV and norovirus) appear to
evolve by punctuated immune escape (Cobey & Koelle
2008). The model is also not limited to the assumption
of punctuated antigenic evolution, as will be discussed in
§4, although it is in this case that the modular advantages
of this model are most clearly evident.
2. THE TWO-TIERED MATHEMATICAL
MODEL

2.1. Tier 1: the epidemiological submodel

To model the virus’s epidemiological dynamics, we
improve on the antigenic tempo model recently pre-
sented elsewhere (Koelle et al. 2009). This model
starts with a given multi-strain model formulation,
interpreting strains in terms of major antigenic variants
instead of in terms of unique genotypes. As in Koelle
et al. (2009), we use a status-based approach to model-
ling strain interactions (Gog & Grenfell 2002), which
assumes polarized immunity. The deterministic
dynamics of susceptible and infected individuals
belonging to a major antigenic variant i are captured
by equations of the form

dSi

dt
¼ mðN � SiÞ �

Xn

j¼1

b
Si

N
sij Ij þ gðN � Si � IiÞ ð2:1Þ

and

dIi

dt
¼ b

Si

N
Ii � ðmþ nÞIi � hðt � te

i ÞIi; ð2:2Þ
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where N is the population size, m is the birth rate and
the death rate, g is the rate of within-variant waning
immunity, n is the recovery rate, b is the transmission
rate and n is the total number of antigenic variants
that have circulated in the population up to time t.
The dynamics of individuals immune to variant i, Ri,
are not shown, as they can be easily computed by
Ri ¼ N 2 Si 2 Ii. As previously described in Koelle
et al. (2009), the degree of immunity between variants
i and j is given by sij ¼ ulij, where u is the degree of
immunity between a mother–daughter variant pair
and lij is the antigenic kinship level between variants i
and j. hðt � te

i Þ is the per capita antigenic emergence
rate, defined as the rate at which individuals infected
with variant i give rise to a new antigenic variant. We
allow this rate to depend on the age of the variant,
t � te

i , where te
i is the time at which variant i emerged

in the population. Specifically, using an approach simi-
lar to the punctuated model of antigenic change
detailed in Koelle et al. (2009), we model the per
capita antigenic emergence rate, hðt � te

i Þ, phenomeno-
logically by using a Weibull hazard function, with scale
parameter l and shape parameter k

hðt � te
i Þ ¼

k
l

t � te
i

l

� �k�1

: ð2:3Þ

When k ¼ 1, this function reduces to a constant rate of
antigenic change, which many previous multi-strain
models have assumed. However, we consider the case
of k . 1, such that the rate of antigenic change
increases with the age of the variant. This phenomeno-
logical increase in the rate of phenotypic change can be
interpreted in several ways. First, it is consistent with
‘rules of thumb’ that have been developed to predict
the emergence of antigenically novel variants. These
rules of thumb generally specify that a certain number
of amino acid changes in epitope regions are required
to precipitate a major antigenic change (Wiley et al.
1981; Wilson & Cox 1990). Because it takes time to
accumulate these amino acid changes, an endemic
viral variant that has been circulating in a population
is more likely to give rise to a new variant the longer
it persists in the population. Second, an increase in
the rate of antigenic change with variant age can be
understood in terms of neutral networks in genotype
space (Lau & Dill 1990; Koelle et al. 2006; van
Nimwegen 2006). As an antigenic variant ages, the
sequences that it comprises are accumulating neutral
or nearly neutral mutations that are changing the gen-
etic backgrounds of the sequences. Effectively, this
exploration of sequence space can therefore lead to a
per capita rate of antigenic emergence that increases
with variant age. Third, and more formally, we can
mechanistically interpret the rate of antigenic change
increasing with the age of a variant by considering a
Markov model that considers mutation accumulation.
We outline this model in appendix A.

The model specified by equations (2.1)–(2.3), and
schematically shown as the first tier in the electronic
supplementary material, figure S1, differs from the orig-
inal model formulation described in Koelle et al. (2009)
in two ways. First, we allow for the possibility of waning



Table 1. The Markov chain events and their transition rates
used to stochastically simulate the epidemiological submodel.
Events are shown for a focal variant i. Events and transition
rates for all other variants j in the set {1, 2, 3, . . ., n} are
analogous. The population size N is given by Si þ Ii þ Ri.
Several constraints exist in the system and are respected
during the simulation. Because Sj þ Ij þ Rj ¼ N for all
variants j, a birth event, occurring at rate mN, increases the
number of susceptible hosts for each variant j by 1 (i.e.
births do not occur independently for each variant j).
Similarly, a death, also occurring at rate mN, decreases the
number of hosts S, I or R to each variant j by 1. This
decrease is taken from Sj, Ij or Rj with probability Sj/N, Ij/N
and Rj/N, respectively. The rate of possible infection with
variant j (related to the force of infection) is given by bIj.
When i is equal to j, a ‘possible infection’ event results in an
infection with probability Si/N. When i is not equal to j, this
possible infection event results in a gain of immunity
through polarized cross-immunity with probability
sij (Si/N). Recovery of an individual infected with variant i
and the loss of immunity to variant i occur at rates nIi and
gRi, respectively. An antigenic emergence event results in a
decrease in the number of individuals infected with variant i
and the stochastic appearance of a new antigenic variant,
variant n þ 1.

event change rate

birth (Si,Ii,Ri)! (Si þ 1,Ii,Ri) mN

death (Si,Ii,Ri)! (Si 2 1,Ii,Ri) with
probability Si/N;

(Si,Ii,Ri)! (Si,Ii 2 1,Ri) with
probability Ii/N;

(Si,Ii,Ri)! (Si,Ii,Ri 2 1) with
probability Ri/N

mN
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immunity within each antigenic variant (which occurs
when g . 0), such that the dynamics within each anti-
genic variant are governed by susceptible-infected-
recovered-susceptible (SIRS) dynamics instead of
susceptible-infected-recovered (SIR) dynamics. Our
model is therefore more general, allowing for SIR
dynamics when g ¼ 0. Second, we simplify the model
by simulating it stochastically in its entirety instead
of using the stochastic hybrid approach described in
Koelle et al. (2009). This change to a fully stochastic
simulation removes the need to simulate the additional
variables that are used to determine the emergence
times of new phenotypes. Table 1 maps the determinis-
tic equations constituting the model (equations
(2.1)–(2.3)) into Markov chain events and their associ-
ated transition rates, which are used to simulate the
model stochastically with the Gillespie t-leap
algorithm (Gillespie 2007).

The majority of the events and their rates shown in
table 1 are frequently used in stochastic simulations of
disease dynamics. The one exception is the antigenic
emergence event, which brings phenotypic novelty
into the viral population. When an antigenic emergence
event occurs for variant i in the simulation, it results in
an individual infected with variant j, where j ¼ n þ 1
and n is the number of variants that have been in the
population up to time t. The event also results in a
decrease in the number of individuals infected with var-
iant i from Ii to Ii 2 1 (table 1). The number of hosts
susceptible to variant j can be computed at the time
of variant j’s emergence if the numbers of births,
deaths and infections have been tracked over the
simulation.
possible
infection

for i ¼ j:
(Si,Ii,Ri)! (Si 2 1,Ii þ 1,Ri)
with probability Si/N;
(Si,Ii,Ri)! (Si,Ii,Ri) with
probability (1 2 Si/N)

for i = j:
(Si,Ii,Ri)! (Si 2 1,Ii,Ri þ 1)
with probability sijSi/N;
(Si,Ii,Ri)! (Si,Ii,Ri) with
probability (1 2 sijSi/N)

bIj

recovery (Si,Ii,Ri)! (Si,Ii 2 1,Ri þ 1) nIi

loss of
immunity

(Si,Ii,Ri)! (Si þ 1,Ii,Ri 2 1) gRi

antigenic
emergence

(Si,Ii,Ri)! (Si,Ii 2 1,Ri þ 1)
and (Snþ1, 0,Rnþ1)!
(Snþ1 2 1, 1,Rnþ1)

h(t 2 ti
e)Ii
2.2. Tier 2: the molecular evolution submodel

The second tier of the model consists of a molecular
evolution submodel, which generates a set of time-
stamped viral sequences from which a phylogeny can
be inferred and from which diversity and divergence
patterns can be constructed. This submodel uses as
input the variant-specific disease dynamics from the
epidemiological submodel, but does not provide any
feedback to it (electronic supplementary material,
figure S1). To simulate the molecular evolution sub-
model, a desired number of sampled sequences s is
first specified. Times of isolation are then randomly
assigned to each of these s sequences, taking into con-
sideration the number of infected individuals at each
time point. This is done by setting the probability of
the time of isolation being day k as I(k)/

P
iI(i),

where I(k) is the total number of individuals infected
on day k and index i sums over all days of the simu-
lation. Each time-stamped sequence is then
probabilistically assigned an antigenic variant to
which it belongs by letting the probability that the
sequence belongs to variant j be given by Ij(k)/P

iIi(k) where k is the day of the sequence’s isolation
and index i sums over all antigenic variants present
on day k.

A desired nucleotide length l for the viral sequences
is then specified, along with a mutation rate mnuc in
units of nucleotide changes per site per year. The
J. R. Soc. Interface (2010)
per-sequence mutation rate m is given by the product
mnucl. Finally, we specify a given model of sequence
evolution and provide parameters associated with this
model. The model of sequence evolution chosen can
be extremely simple and parameter sparse. For
example, Kimura’s two-parameter model requires only
one parameter for the transition rate and one parameter
for the transversion rate (Felsenstein 2004). Alterna-
tively, the model chosen can be more complicated. For
example, the general time reversible (GTR) model
with a proportion of invariant sites (I) and a gamma
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distribution of rate variation (G) would entail specifying
11 parameters: the frequencies of the four nucleotide
bases, the transition rates between each pair of bases,
the proportion of invariant sites and a parameter a
that controls the shape of the gamma distribution
(Felsenstein 2004).

Under a given model of sequence evolution and its
associated parameter values, site-specific mutation
rates are then assigned to each of the l nucleotide
locations. Under Kimura’s two-parameter model, the
mutation rate of each site is mnuc. Under the GTR þ
I þ G model, the mutation rate at each site is assigned
based on the proportion of invariant sites I and the a

parameter of the G distribution, such that the
per-sequence mutation rate comes out to be m.

To begin the molecular evolution submodel simu-
lation, a single sequence of length l is generated, with
each site probabilistically assigned a nucleotide depend-
ing on base frequencies specified by the model of
sequence evolution. This sequence belongs to antigenic
variant i ¼ 1, and all infected individuals on day 0 of
the simulation are infected with this strain. Starting
with the first antigenic variant, all sampling times of
the (genetically yet undetermined) sequences that
belong to variant 1 are found, as are all the emergence
times of variants that were generated specifically by this
variant. Then, starting from day 0, from each day to the
next, two processes occur: mutation and transmission of
extant sequences. Mutation is simulated by first deter-
mining the number of mutations that will occur on a
particular day. This number is determined by drawing
from a Poisson distribution with mean mI, where I is
the number of individuals infected on a particular
day. These mutations occur in the viral population (of
size I) at sites that are chosen randomly, weighted by
their per site mutation rate mnuc. A mutation assigned
at a chosen nucleotide site in a chosen individual
results in a nucleotide change that reflects the transition
rates given by the model of sequence evolution. Trans-
mission is simulated by first calculating, from one day
to the next, the number of new infections and the
number of recoveries, both only of the first variant.
New infections are then drawn from the extant pool of
viral sequences belonging to variant 1 and recoveries
are chosen from this same pool. Recoveries always
occur randomly, while new infections are chosen
depending on the selective advantage of each viral
sequence.

The selective advantage of a sequence is given by
fk, where k is the sequence’s nucleotide distance from
the founder sequence of the variant and f is a par-
ameter specifying the intensity of the selective
advantage a single nucleotide change confers within
a single antigenic variant. In the case of purely neutral
evolution within antigenic variants (g ¼ 0 in equation
(2.1)), f ¼ 0, such that new infections are chosen ran-
domly from the pool of extant sequences. In the case
of gradual antigenic evolution within antigenic var-
iants (g . 0 in equation (2.1)), f . 0, such that new
infections are preferentially chosen from the set of
extant sequences that have higher divergence from
their founder sequence. (Clearly, there should be a
quantitative relationship between the parameters g
J. R. Soc. Interface (2010)
and f, with higher values of f associated with higher
values of g. Unfortunately, at this point, we do not
have an equation mechanistically linking the value of
f to the value of g as we have for linking l to m
(appendix A).) The implementation of the trans-
mission step thereby captures both demographic
stochasticity in disease transmission and the possi-
bility for within-variant selection to act.

Throughout the day-to-day simulation of mutations
and transmission events, sampling times of sequences
belonging to variant 1 will be reached, as will emergence
times of variants that arose from variant 1. When a
sampling time is reached, a viral sequence is randomly
chosen from the pool of infected individuals; this simu-
lated sequence is now one of the s sequences that can be
used in inferring a phylogeny. When an emergence
time is reached, a viral sequence is randomly
chosen from the pool of infected individuals and
mutated at a single nucleotide location; this simulated
sequence is now the founder of the antigenic variant
born of variant 1 at that time. Alternatively, to be
strictly consistent with the Markov chain process
detailed above, the viral sequence can be chosen prefer-
entially according to its nucleotide distance k from its
founder sequence.

The same iterative procedure of mutation, trans-
mission and sequence sampling is then performed for
variant 2 through to the last variant observed in the
simulation. The set of sampled sequences that results
from this simulation can then be compared against
empirical sequence data. Although the simulated
sequences will differ from the observed ones geneti-
cally, patterns of sequence evolution (e.g. divergence
and diversity patterns) can be compared quantitat-
ively across these datasets, and a phylogeny can
be inferred from all s sampled sequences and com-
pared against phylogenies inferred from empirical
sequences.
3. AN APPLICATION OF THE MODEL TO
INFLUENZA DYNAMICS IN HUMANS

To illustrate its use, we simulate the two-tiered model
described above with parameter values that are
reasonable for influenza. We use influenza as an
application because sequence data are readily available
for its dominant antigenic protein, the HA, and
because the advantages of the two-tiered model in
terms of its modular design are most evident for a
system like influenza, where many mutations in the
HA protein have been shown to be neutral or
nearly so and single mutations have been shown to
result in large antigenic changes (Webster & Laver
1980; Nakajima et al. 1983; Berton et al. 1984;
Nakagawa et al. 2000, 2001a,b, 2002; Smith et al.
2004).
3.1. Simulating the dynamics of influenza A
(H3N2) in humans

Influenza A subtype H3N2 has been circulating in humans
since 1968, when a reassortment event between the
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previously circulating influenza A subtype, H2N2, and a
swine influenza virus resulted in its pandemic spread.
From 1968 until the present, this subtype has dominated
the flu season, with annual H3N2 attack rates estimated
to be between 2 and 10 per cent. In temperate regions,
H3N2’s disease dynamics are largely annual, with
occasional years of low activity (figure 1a,b). The evol-
utionary dynamics of the virus are characterized by
the emergence and replacement of antigenic clusters,
occurring every 2–8 years (Plotkin et al. 2002;
Smith et al. 2004) and, genetically, by the ladder-like
phylogeny of its HA protein (figure 1c) (Fitch et al.
1997).

To apply the two-tiered model to influenza A
(H3N2) in humans, we first modify the epidemiologi-
cal submodel shown in equations (2.1) and (2.2) to
incorporate a slightly larger degree of realism. Because
we will compare the model simulations with the
dynamics observed in a temperate region (figure 1a),
we include in our simulations seasonal forcing of the
transmission rate and a small immigration rate.
With these modifications, equations (2.1) and (2.2)
become

dSi

dt
¼ mðN � SiÞ �

Xn

j¼1

bð1þ 1 sinð2ptÞÞ

Si

N
sijðIj þ rpjÞ þ gðN � Si � IiÞ ð3:1Þ

and

dIi

dt
¼ bð1þ 1 sinð2ptÞÞ Si

N
ðIi þ rpiÞ�

ðmþ nÞIi � hðt � te
i ÞIi; ð3:2Þ

where 1 is the strength of seasonal forcing, r is the
immigration rate and pi is the proportion of cases
that belong to antigenic cluster i.

We simulate this submodel under two parameter
sets: (i) purely punctuated antigenic evolution and
(ii) antigenic evolution that includes components of
both punctuated and gradual antigenic change. A
third parameter set, with only gradual antigenic evol-
ution, is considered in the electronic supplementary
material. Under the first parameter set, there is no
waning of immunity within antigenic clusters (g ¼ 0).
In contrast, in simulations with the second parameter
set, individuals can become reinfected with a given anti-
genic cluster after an average duration of immunity 1/g.
All other parameters of the model are chosen to be con-
sistent with values from the literature, where possible
(figure 2, legend).

Although the epidemiological submodel parame-
trized for purely punctuated antigenic evolution
reproduces the emergence–replacement dynamics of
influenza A (H3N2)’s antigenic clusters (figure 2a,c),
it fails to reproduce other features of H3N2’s
dynamics. Specifically, the simulated annual attack
rates are generally too low and the emergence of a
new antigenic cluster results in a year having an unrea-
listically large deviation from other years’ attack rates
(figure 2a,b). However, the epidemiological submodel
J. R. Soc. Interface (2010)
parametrized for a combination of punctuated anti-
genic evolution and gradual antigenic evolution is
capable of reproducing the observed patterns of seaso-
nal and interannual variability, as well as the
magnitude of H3N2’s attack rates (figure 3a,b), while
maintaining the ability to reproduce the emergence
and replacement of antigenic clusters every 2–8
years (figure 3c). These emergence–replacement
dynamics result from the strong selective advantage
of novel antigenic variants, arising from the greater
number of susceptible hosts available to them
(figure 3d). The results shown in figures 2 and 3 are
consistent with the recent findings by Ballesteros
et al. (2009) that both gradual and punctuated anti-
genic evolution are necessary to effectively reproduce
influenza A (H3N2)’s disease dynamics. A model
that considers only gradual antigenic evolution does
not reproduce the observed dynamics well, yielding
strictly annual cycles with very low incidence rates
(electronic supplementary material).

To simulate the molecular evolution submodel, we
specify the length of the HA (l ¼ 987 nucleotides) and
the HA mutation rate (mnuc ¼ 5.7 � 1023 nucleotide
substitutions per site per year). We also use a GTR þ
I þ G model of sequence evolution, with parameters
that were estimated from a maximum-likelihood fit to
H3N2 sequences whose phylogeny is shown in
figure 1c (figure 4, legend). (Alternatively, we could
use a simpler model of sequence evolution; our decision
to use the GTR þ I þ G model is based on improving
the realism of the model, without requiring additional
free parameters.) For the model parametrized for punc-
tuated antigenic evolution, we set f, the degree of
within-cluster positive selection, to 0. For the model
parametrized for a combination of punctuated and gra-
dual antigenic evolution, we allow for some positive
selection within antigenic clusters by setting f ¼ 0.01.
Setting f . 0 is qualitatively consistent with antigenic
maps for H3N2 that show a scatter of points for each
antigenic cluster, indicating imperfect cross-immunity
between viral strains belonging to a single cluster
(Smith et al. 2004). The phylogenies inferred from the
simulated sequences of both models (figure 4a,b) repro-
duce the cactus-like topology of H3N2’s HA phylogeny,
consisting of a long trunk and short side branches
(figure 1c). Diversity and divergence patterns of the
simulated HA sequences can also be plotted and
compared against those observed empirically
(figure 5a–f). The model with only punctuated anti-
genic evolution fails to reproduce the rapid divergence
that is empirically observed (figure 5c versus 5a). In
contrast, the model with a combination of gradual
and punctuated evolution captures this pattern quanti-
tatively (figure 5e versus 5a). Although the model with
both gradual and punctuated evolution clearly per-
forms better in terms of reproducing divergence
patterns, both models are capable of reproducing the
sequence diversity patterns of H3N2’s HA (figure 5d,f
versus 5b). In the electronic supplementary material,
we further considered whether the model of only gra-
dual antigenic change could effectively reproduce the
evolutionary patterns of influenza’s HA. To some
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specific dynamics (http://gamapserver.who.int/GlobalAtlas/). The subset of cases attributed to influenza A (H3N2) is shown
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attack rates. (c) The phylogeny of influenza A (H3N2)’s HA, inferred from antigenically typed sequences isolated between
1968 and 2003 (Smith et al. 2004). Sequences are coloured by antigenic cluster.
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extent, it was able to do so. However, we also elaborate
on why the molecular evolution submodel, as specified,
is not appropriate for this application and review results
from an existing model which show that gradual anti-
genic evolution leads to explosive viral diversity
(as previously also shown in Ferguson et al. (2003)),
inconsistent with a ladder-like phylogeny.

The results of the simulations shown here and in
the appendix indicate, first, that punctuated antigenic
change is an important driver of influenza A (H3N2)’s
dynamics; second, that gradual antigenic evolution
within clusters contributes to influenza A (H3N2)’s
ecological and evolutionary dynamics; and, third,
that the two-tiered model, when appropriately
parametrized, can generate sequence data that
quantitatively reproduce patterns in observed sequence
data.
3.2. Simulating the dynamics of influenza B
in humans

We now consider the dynamics of influenza B in
humans, and whether an alternative parametrization
of the two-tiered model can yield ecological and
J. R. Soc. Interface (2010)
evolutionary dynamics consistent with this influenza
type. Unlike the largely annual epidemics of influenza
A (H3N2), influenza B epidemics occur only every 2–4
years (figure 6a) (Monto & Kioumehr 1975). Also
different from H3N2, the evolution of influenza B’s
HA is characterized by two distinct lineages, the
Yamagata lineage and the Victoria lineage
(figure 6b) (Rota et al. 1992). Epidemic seasons of
influenza B usually have one of these two lineages
dominating, although a co-occurrence of strains from
both lineages is occasionally observed (Nerome et al.
1998). Within each of these two lineages, genetic and
antigenic viral turnover has been documented (Rota
et al. 1992; Nerome et al. 1998; Nakagawa et al.
2001a,b).

To reflect a lower mutation rate for influenza B (when
compared against the mutation rate for influenza A)
(Nobusawa & Sato 2006), we reparametrized the epide-
miological model with a lower value of g, a lower value
of r and a higher value of l (figure 6, legend). A lower
value of g reflects slower within-cluster waning of immu-
nity, owing to a lower mutation rate. This lower value of
g also reduces the equilibrium number of individuals
infected with influenza B when one cluster is endemic.
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Figure 4. Phylogenies inferred from sequences simulated by the molecular evolution submodel. (a) Phylogeny inferred from
sequences simulated under a model of purely punctuated antigenic evolution ( f ¼ 0). (b) Phylogeny inferred from sequences
simulated under a model of punctuated and gradual antigenic evolution (with f ¼ 0.01). Both phylogenetic trees were inferred
from 300 simulated HA sequences of length l ¼ 987 nucleotides, spanning 35 years. In both simulations, mnuc ¼ 5.7 � 1023

mutations per nucleotide site per year (Fitch et al. 1997), and GTR þ I þ G parameters were set to those estimated from
the H3N2 phylogeny shown in figure 1c. These were: (pA, pC, pG, pT) ¼ (0.35, 0.22, 0.21, 0.22), transition rates: AC ¼
1.21, AG ¼ 4.75, AT ¼ 0.62, CG ¼ 0.17, CT ¼ 4.52, GT ¼ 1, gamma distribution parameter a ¼ 1.21 and proportion of invar-
iant sites f0 ¼ 0.28.
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This in turn would reduce the immigration rate r of
infected individuals. Lastly, with a lower mutation rate,
we would expect a higher value of the Weibull scale
parameter l (appendix A).

In simulations of the two-tiered model with this
alternative parametrization, we find that these changes
in parameter values result in lower attack rates and
more interannual variability (results not shown), con-
sistent with the observed epidemiological dynamics.
However, the model with just these parameter changes
did not reproduce the observed pattern of lineage (and
cluster) co-circulation.

When the model is simulated with a longer duration
of infection, however, two distinct lineages emerge and
persist, with antigenic clusters replacing one another
periodically within each lineage. Furthermore, the two
lineages exhibit asynchronous dynamics, with one lin-
eage usually dominating an influenza B season
(figure 6c,d). The phylogeny inferred from the simu-
lated sequences also reproduces the general topology
of the phylogeny inferred from the empirical sequences
(figure 6e).

We chose to consider a longer duration of infection
because influenza B primarily affects children, and chil-
dren are known to be infectious for longer periods of
time than adults. Although these simulations can
recover features of the observed evolutionary and eco-
logical dynamics of influenza B, other parameter
differences from influenza A (H3N2) not explored here
(e.g. in the degree of cross-immunity between antigenic
clusters) could result in similar dynamics. Statistical
estimation of model parameters will therefore be critical
for identifying the parameters that play the greatest
role in shaping the dynamical differences between
these two types of influenza.
J. R. Soc. Interface (2010)
3.3. Simulating the dynamics of influenza
H3N8 in equine hosts

To illustrate the ease with which the two-tiered model can
be extended, we now consider the evolutionary dynamics
of influenza (H3N8) in equine hosts. This subtype of
equine influenza A virus (EIV) was first isolated from
its hosts in 1963 in Florida (Waddell et al. 1963). Since
then, the virus has undergone many genetic and antigenic
changes that resulted in EIV outbreaks in horses around
the world (Daniels et al. 1985; Kawaoka et al. 1989;
Oxburgh et al. 1994). H3N8 is currently the only known
strain of EIV circulating in equine hosts; the H7N7 sub-
type of EIV has not been isolated in horses since 1980
(Webster 1993).

The patterns of genetic and antigenic change in
EIV resemble the evolutionary patterns of influenza
B virus in humans. Phylogenetic analysis of H3N8
from 1963 to 1986 shows a pattern of relatively
linear evolution (Oxburgh et al. 1994) with lineage
turnover and low genetic diversity (figure 7a). Some
time between 1986 and 1990, H3N8 split into two dis-
tinct lineages, referred to as the ‘European’ and
‘American’ lineages, based on their geographical
origin (figure 7a) (Lindstrom et al. 1994; Daly et al.
1996; Oxburgh et al. 1998; Oxburgh & Klingeborn
1999; Lai et al. 2004). This split was accompanied
by the extinction of the older viral lineages (Daly
et al. 1996; Oxburgh et al. 1998; Oxburgh &
Klingeborn 1999; Lai et al. 2004). After some time,
co-circulation of the two lineages was reported in European
countries, such as Sweden and the UK (Daly et al. 1996;
Oxburgh & Klingeborn 1999), but, interestingly, only a
single isolate of the European lineage was observed in
North America (the Canadian isolate A/Eq/Saskatoon/
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90) (Lai et al. 2004). The American lineage continued to
diversify genetically, evolving into several sublineages
(Lai et al. 2004; Bryant et al. 2009). In contrast, the Euro-
pean lineage has declined in prevalence and appears to be
heading towards extinction, with only a few European iso-
lates having been observed since 1993 (figure 7a) (Oxburgh
et al. 1998; Bryant et al. 2009).

As for flu in humans, the recurrence of H3N8 in the
horse population has been attributed to the antigenic
drift of the virus’s HA protein (Hinshaw et al. 1983;
Kawaoka et al. 1989; Berg et al. 1990; Endo et al.
1992). Haemagglutination inhibition assays of H3N8
isolates from 1963 to 1986 have indicated that the
antigenic evolution of H3N8 parallels to a large
extent the genetic evolution of the virus’s HA
(figure 7a) (Hinshaw et al. 1983; Kawaoka et al.
1989).

Although similar to influenza B’s evolutionary
dynamics, the dynamics of H3N8 in equine hosts is com-
plicated by the international movement of race horses.
Geographical isolation, through quarantine measures,
has been proposed as an explanation for the appearance
of the distinct European and North American lineages
(Lindstrom et al. 1994; Daly et al. 1996; Lai et al.
2004), and the weakening of quarantine restrictions in
Europe could be a potential explanation for the co-
circulation of these lineages in Europe. Here, we
J. R. Soc. Interface (2010)
extend the two-tiered model to allow for the evolution-
ary dynamics of H3N8 to take place in two geographical
locations, representing Europe and North America.
Specifically, the epidemiological submodel equations
are first modified to consider two ‘patches’
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Figure 6. Observed versus simulated dynamics of influenza B in humans. (a) As in figure 1a, the case dynamics of influenza in
France over the period 1997–2008 are shown in black. Cases attributed to influenza B are shown in red. (b) The phylogeny of
influenza B’s HA from isolates spanning the years 1973–2008. Sequences were randomly sampled from the influenza virus
resource database. (c) Epidemiological submodel simulations of influenza B case dynamics under a model of both punctuated
and gradual antigenic change. Antigenic clusters are colour-coded. (d) Proportion of cases shown in (c) belonging to each anti-
genic cluster. Parameters used: N ¼ 300 million, R0 ¼ 2, m ¼ 1/70 yr21, n ¼ 1/7 d21, g ¼ 1/15 yr21, 1 ¼ 0.25, u ¼ 0.80, r ¼ 0.005
and Weibull parameters k ¼ 2, l ¼ 700. (e) Phylogeny of 600 simulated HA sequences, of length l ¼ 1041 nucleotides and span-
ning 30 years. The GTR þ I þ G parameters were set to those estimated from the influenza B phylogeny shown in (b). These
were: (pA, pC, pG, pT) ¼ (0.35, 0.20, 0.20, 0.25), transition rates: AC ¼ 1.42, AG ¼ 6.15, AT ¼ 0.54, CG ¼ 1.03, CT ¼ 7.19,
GT ¼ 1, gamma distribution parameter a ¼ 0.79 and proportion of invariant sites f0 ¼ 0.26. Other parameters for the molecular
evolution submodel were mnuc ¼ 2.85 � 1023 mutations per nucleotide site per year and f ¼ 0.01.
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This extension introduces two more parameters: the
degree of transmission reduction from the European
patch to the North American patch (rE!NA) and the
degree of transmission reduction from the North
American patch to the European patch (rNA!E). In
the simulated years 1963–1986, we assign both patches
the same reduction in the degree of transmission
(rE!NA and rNA!E ¼ 1/100). During the simulated
years 1986–1999, we assume that transmission between
the patches ceases (rE!NA and rNA!E ¼ 0), reflecting
effective quarantine between the two continents. After
1999, we let rE!NA remain at 0, but set rNA!E back
to 1/100, to reflect the hypothesized breakdown of
quarantine measures in Europe.

Simulations of this two-patch epidemiological sub-
model yield recurrent outbreaks of EIV in North
America and in Europe (figure 8a,c), frequently
coinciding with the appearance of a new antigenic var-
iant. These patterns are qualitatively similar to the
reported dynamics of EIV, with outbreaks occurring
every 2–8 years and frequently being associated with
new antigenic variants (Waddell et al. 1963; Livesay
et al. 1993; Chambers et al. 1994; Daly et al. 1996;
Ilobi et al. 1998; Damiani et al. 2008). We do not
J. R. Soc. Interface (2010)
make an attempt at a quantitative comparison between
model-simulated case dynamics and observed case
dynamics because H3N8 is not a notifiable disease,
and, as such, the data are not sufficient to allow for
this comparison.

Simulations of the epidemiological submodel also
show that the model can reproduce antigenic turnover
patterns similar to those observed (figure 8b,d). Prior
to 1986, both antigenic variants that arose rapidly
spread through the two patches and globally replaced
the previously endemic variant. After the initiation of
the quarantine measures in 1986, a new antigenic var-
iant arose in North America and, later, another in
Europe. The emergence of these independent variants
corresponds qualitatively to the arrival of the American
and European lineages. In 1999, after the quarantine
measures were weakened in Europe, the North
American variant appeared in Europe, but did not
succeed in replacing the European variant. Thus, we
observe in our simulations co-circulation of the Euro-
pean and North American lineages in Europe. Owing
to the intact quarantine restrictions in North America,
only the North American lineage continues to circulate
there. As time goes on, we continue to observe antigenic
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Figure 7. Phylogenies of influenza A H3N8’s HA in equine hosts, reconstructed from empirical and simulated viral sequences. (a)
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ution of EIV’s HA until the lineage split in the late 1980s. Viral isolates belonging to the simulated European lineage were only
observed in the European patch, whereas viral isolates belonging to the American lineage were isolated in both the North Amer-
ican patch and the European patch. The GTR þ I þ G parameters used in the molecular sequence evolution model were set to
those estimated from the influenza A (H3N8) phylogeny shown in (a). These were: (pA, pC, pG, pT) ¼ (0.35, 0.21, 0.22, 0.22),
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evolution of both the North American and the
European lineages.

Following the simulation of these variant specific
case dynamics, we simulated the second tier of the
model, the molecular evolution submodel, sampling
sequences from both continents. The phylogeny recon-
structed from the simulated sequences shows both
qualitative and quantitative similarities to the tree
inferred from observed H3N8 HA sequences
(figure 7a,b). Qualitatively, lineage turnover and low
genetic diversity are observed in both trees prior to
1986. Both phylogenies then split into two lineages in
the late 1980s. In the last decade, both phylogenies
show that sequences from the North American lineage
were isolated in Europe. In addition to these qualitative
similarities, the branch lengths of the tree inferred from
simulated sequences are similar to those from the tree
inferred from observed sequences.

The application and extension of the two-tiered
model to include space in the simulation of equine
J. R. Soc. Interface (2010)
influenza dynamics testifies to the versatility and adap-
tability of the model to different host systems and
different ecological variables.
4. DISCUSSION

Here, we presented a two-tiered model that can be used
to simulate both the ecological and the evolutionary
dynamics of rapidly evolving RNA viruses. The
model’s novelty resides in its modular design: it separ-
ates antigenic dynamics from genotypic dynamics,
and thereby yields computationally simpler simulations
that allow for a more realistic representation of viral
sequences. At the heart of the two-tiered model is the
antigenic emergence rate, which drives the emergence
dynamics of new antigenic variants in the epidemiologi-
cal submodel. Here, we also showed that this antigenic
emergence rate, when parametrized with a shape par-
ameter k of 2, can be mechanistically interpreted in
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terms of a model that considers neutral mutation
accumulation and the probability of immune escape
increasing linearly with the number of mutations
already accumulated (appendix A). The phenotypic
dynamics resulting from this first tier of the model are
then used as input for the second tier of the model,
the molecular evolution submodel. We showed here
that this second submodel simulates sequence data
from which quantitative indexes (divergence and diver-
sity metrics) can be computed, which can be compared
with empirical sequence data. Furthermore, phyloge-
nies can be inferred from these simulated sequences,
with branch lengths that are comparable to those
from trees inferred from empirical viral sequences. The
two-tiered model in its entirety can, therefore, be used
to generate case data and sequence data that can be
confronted statistically against empirical datasets of
these two types.

The modularity of the two-tiered model is its prin-
cipal strength and will allow this framework to be
adapted to consider alternative hypotheses and to
include alternative, and potentially better or faster,
submodels. For example, the first tier of the model
J. R. Soc. Interface (2010)
uses a status-based, reduced infectivity multi-strain
model in its implementation (Gog & Grenfell 2002).
However, recent work has shown that this model, in
contrast to other, more highly dimensional, multi-
strain models, overestimates the level of herd immu-
nity to a new antigenic variant (Ballesteros et al.
2009). Owing to its modularity, the two-tiered model
can be easily modified to consider alternative epide-
miological submodels, for example, the well-known
history-based multi-strain model (Andreasen et al.
1997). Furthermore, any of these models can be
extended to consider specific questions of interest,
such as what climate variables are important drivers
of influenza’s seasonal dynamics (Shaman et al.
2009), what role population substructure plays in the
ecological and evolutionary dynamics of influenza
(Truscott et al. 2009) and how cross-immunity may
act (e.g. by its separate effects on infectiousness and
infectious period; Park et al. 2009). The only require-
ment of the epidemiological submodel is that it
generates variant-specific case dynamics, which are
used as input into the second tier of the model
(electronic supplementary material, figure S1).

http://www.horsetalk.co.nz/archives/2007/09/105.shtml
http://www.horsetalk.co.nz/archives/2007/09/105.shtml
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Similarly, the molecular evolution submodel, as
described, can be easily replaced with an alternative sub-
model. One possible alternative submodel that would be
computationally faster, but apply to a more limited
number of cases, might use approaches based on
coalescent theory to yield viral genealogies. A second
possibility is to replace the current molecular evolution
submodel with a model that has a mechanistic link
between the parameter f in the second tier of the
model and the parameter g in the first tier of the
model. A third possibility would be to consider not
just the process of point mutations, but also to allow
for insertions, deletions, recombination and, for segmen-
ted viruses, reassortment. Here, the only requirement for
the second tier is that it takes in variant-specific case
data and generates time-stamped viral sequences.

Following its description, we applied the two-tiered
model to influenza A (H3N2) in humans, to influenza
B in humans and to influenza A (H3N8) in equine
hosts in order to illustrate its use. In the first appli-
cation, we showed that a model parametrized for a
combination of gradual and punctuated antigenic
change could quantitatively reproduce the ecological
and evolutionary patterns of this subtype in humans.
In contrast, and consistent with previous theoretical
findings (Ballesteros et al. 2009), a model with purely
punctuated antigenic evolution failed to capture these
patterns well. In the electronic supplementary material,
we also showed that only gradual antigenic evolution
was not consistent with all of the observed dynamics
of influenza A (H3N2). The ability of only the model
with both modes of antigenic change to quantitatively
reproduce the dynamic patterns of this variant resolves
the seemingly contradictory findings that antigenic
change occurs either in a punctuated (Smith et al.
2004; Wolf et al. 2006; Blackburne et al. 2008) or in a
gradual (Shih et al. 2007; Suzuki 2008) manner. Both
modes of antigenic evolution appear necessary: gradual
antigenic evolution is needed to reproduce the observed
periodicity of influenza’s ecological dynamics and the
rapid rate of HA divergence, while punctuated antigenic
evolution is needed to reproduce rates of divergence and
the overall ladder-like topology of influenza A (H3N2)’s
HA protein.

The application of the model to influenza B illustrated
the model’s ability to generate qualitatively different eco-
logical and evolutionary dynamics under alternative
parametrizations. This ability is critical for the model
to be effectively interfaced with different empirical data-
sets, through the development and application of new
statistical approaches. The application of the model to
influenza A (H3N8) in equine hosts served to illustrate
the ease with which the model could be extended to
accommodate further hypotheses. Specifically, we con-
sidered the hypothesis that the introduction and later
weakening of quarantine measures between North Amer-
ica and Europe played a role in shaping the evolutionary
dynamics of H3N8. Although the model realizing this
hypothesis was able to reproduce features of the ecologi-
cal and evolutionary dynamics of H3N8, alternative
hypotheses could easily be considered within this frame-
work. A statistical comparison between these models’
simulated sequences (and possibly case dynamics)
J. R. Soc. Interface (2010)
could then determine the appropriate level of support
for each of the models considered.

In our applications to flu, we parametrized the two-
tiered model to consider the effects of humoral
immune escape, driven by genetic changes in the
virus’s dominant antigenic protein. While this parame-
trization has empirical support in the case of influenza
(Smith et al. 2004), we may want to consider alternative
mechanisms of immune escape. For example, there is
evidence for positive selection of cytotoxic T lympho-
cyte escape mutants (Gog et al. 2003). Another
possible hypothesis is that generalized immunity plays
a role in shaping the ecological and evolutionary
dynamics of influenza (Ferguson et al. 2003). These
hypotheses, as other ones mentioned above, could
easily be integrated into this two-tiered modelling fra-
mework. This integration would enable us to finally
compare these hypotheses in a quantitative way, consid-
ering both incidence data and sequence data.

Although our focus here was on the ecological and
evolutionary dynamics of RNA viruses at the popu-
lation level, the two-tiered structure of the model
could also be used to consider the dynamics at another
level of organization. Specifically, while we modelled the
dynamics of susceptible, infected and recovered hosts
here, within-host dynamics could instead consider
classes of naive cells and cells that are infected with
virus of different antigenic phenotypes. In lieu of simu-
lating epidemiological dynamics, the first tier of the
model would simulate the viral load dynamics, by anti-
genic type. The second tier of the model would then be
used again to generate viral sequences that could be
compared with viral sequences isolated from a single
chronically infected host over several time points (e.g.
in the case of HIV; Shankarappa et al. 1999).

Regardless of whether the two-tiered framework pre-
sented here is applied at the within-host level or the
population level, its ability to generate both case data
and sequence data that can be statistically confronted
with empirical observations will improve our under-
standing of the key drivers of viral dynamics, and may
thereby ultimately help in their control.
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APPENDIX A. A MECHANISTIC
INTERPRETATION OF THE WEIBULL
HAZARD FUNCTION

We can interpret the rate of antigenic change increasing
with the age of a variant (as specified by the Weibull
hazard function in equation (2.3)) by considering the
following Markov chain on the non-negative integers.
Denote by Pn(t) the probability mass function for the
compound event that, at time t, a viral sequence belong-
ing to a given antigenic variant i has accrued n
mutations from the founder sequence of the variant
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and that a new antigenic variant j has not yet arisen
from the mutations that have accrued in this sequence.
Denote by Qn(t) the probability that, at time t, the viral
sequence has accrued n mutations and that a new anti-
genic variant j has already arisen from these accrued
mutations. Using these definitions, we can write the
following master equation for considering the
production of new antigenic variants

dPnðtÞ
dt

¼ mð1� an�1ÞPn�1ðtÞ �mPnðtÞ ðA 1aÞ

and

dQnðtÞ
dt

¼ man�1Pn�1ðtÞ; ðA 1bÞ

where m is the per-sequence mutation rate and an is the
probability that a mutation to an antigenically pre-
served sequence that has already accrued n mutations
will result in a new antigenic variant. As the simplest
possible non-trivial assumption, we let this probability
be linearly increasing with the number of mutations n

an ¼ rn; ðA1 cÞ

where r can be thought of as a parameter that captures,
inversely, the antigenic protein’s robustness to genetic
change. Let us consider te

i , the time of emergence of
antigenic variant i, to be t ¼ 0. At this time,
any sequence belonging to cluster i is in an unmutated
state

P0ðte
i Þ ¼ 1;Pnðte

i Þ ¼ 0 for all n . 0 and

Qnðte
i Þ ¼ 0 for all n:

To solve this system, we can define the generating
function

gðu; tÞ ¼
X1
n¼0

unPnðtÞ: ðA 2Þ

Differentiating with respect to t, we have

@

@t
gðu;tÞ¼m

X1
n¼0

un½ð1�rðn�1ÞÞPn�1ðtÞ

�PnðtÞ�: ðA3Þ

Differentiating with respect to u, we have

@

@s
gðu; tÞ ¼

X1
n¼0

nun�1PnðtÞ; ðA 4Þ

so that

@

@t
gðu; tÞ þmru2 @

@s
gðu; tÞ ¼ mðu � 1Þgðu; tÞ: ðA 5Þ

To solve this, we use the method of characteristics.
Let u¼ s(t,u0) define a family of curves with u0 ¼

y(0,u0) that covers the plane such that each point (t, u)
in the plane lies on one and only one curve in this
family and thus can be traced back uniquely to its
‘origin’ (0,u0).

We will produce solutions of equation (A 5) defined
on each of these curves and then consider the curves
J. R. Soc. Interface (2010)
together to form the complete solution. Define the
function restricted to the curve with origin at (0,u0)

~gðt; u0Þ ; gðyðt; u0Þ; tÞ: ðA 6Þ

We now have

d
dt

~gðt; u0Þ ¼
@

@t
gðyðt; u0Þ; tÞ þ

@

@u
gðyðt; u0Þ; tÞ

� dy
dt
ðt; u0Þ: ðA 7Þ

Substituting equation (A 5) yields

d
dt

~gðt;u0Þ¼
@

@t
gðyðt;u0Þ;tÞ

þ mðy�1Þgðyðt;u0Þ;tÞ�ð@=@t Þgðyðt;u0Þ;tÞ
mry2

� �

�dy
dt
ðt;u0Þ: ðA8Þ

We are free to define our curves any way we choose
within the constraints given above, so we let

dy
dt
¼ mry2; ðA 9Þ

with solution

yðt; u0Þ ¼
u0

1�mu0rt
: ðA 10Þ

Now, substituting equation (A 9) into equation (A 8)
yields

d
dt

~gðt; u0Þ ¼ mðy� 1Þ~gðt; u0Þ: ðA 11Þ

With the additional substitution of equation (A 10),
this yields

d
dt

~gðt; u0Þ ¼ m
u0ð1þmrtÞ � 1

1�mu0rt

� �
~gðt; u0Þ; ðA 12Þ

which itself has solution

~gðt; u0Þ ¼ ~gð0; u0Þeð�ð1=rÞ logð1�u0mrtÞ�mtÞ

¼ ~gð0; u0Þð1� u0mrtÞð�1=rÞe�mt : ðA 13Þ

The initial condition at time t ¼ 0 becomes
~gð0; u0Þ ¼ 1; leaving

~gðt; u0Þ ¼ ð1� u0mrtÞ�1=re�mt : ðA 14Þ

Finally, we trace back from u0 to u, solving equation
(A 10) for u0

u0 ¼
u

1þ umrt
; ðA 15Þ

to get

gðu; tÞ ¼ ð1þ umrtÞ1=re�mt : ðA 16Þ

The probability of escape by time t is

PEðtÞ ¼ 1� gð1; tÞ ¼ 1� ð1þmrtÞ1=re�mt : ðA 17Þ
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To leading order, we have

logð1� PEðtÞÞ ¼ �1
2rm

2t2 þ OððmrtÞ3Þ; ðA 18Þ

or

PEðtÞ � 1� eð�1=2Þrm2t2
: ðA 19Þ

The density function for the time of antigenic escape
is just the time derivative of PE. To leading order, this is

fEðtÞ ¼ ðrm2Þte�1=2ðrm2Þt2
; ðA 20Þ

which is a Weibull density function with shape
parameter k ¼ 2 and l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=m2r

p
.

A mutational process for which the probability of
antigenic immune escape increases linearly with the
number of mutations already accrued can, therefore,
be modelled phenomenologically with a hazard rate
with shape parameter k ¼ 2 and a value of l that
depends on the viral mutation rate m and its sensitivity
to phenotypic change r.

Several modifications to this mechanistic model can
be considered. First, instead of assuming that the prob-
ability of antigenic immune escape is linearly increasing
with the number of accrued mutations (equation (A 1c)),
we can consider a second model that is also increasing
with the number of accrued mutations, but also has
the desired feature of saturating at 1. One such function
is an ¼ rn/(rn þ 1). However, this function and those of
a similar form do not have a closed-form solution for the
probability of escape by time t. Although the linear func-
tion we use in the derivation of the Weibull hazard
function (equation (A 1c)) allows the probability of anti-
genic immune escape upon the next mutation to exceed
1, we can simulate the epidemiological submodel in a
parameter regime where we are ensured that this under-
lying probability (which we do not explicitly use in the
simulations) would never get sufficiently close to 1.

Second, instead of using the hazard rate of the
Weibull density function shown in equation (A 20),
one could use an exact expression for the rate of gener-
ating new antigenic variants that is derived from the
Markov model shown in equations (A 1). This rate
would be based on the exact expression for the cumulat-
ive density function shown in equation (A 17). In our
simulations, we instead used the Weibull functional
form because it is a simple and well-known distribution
that has the ageing properties that we find biologically
necessary.
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Finkenstädt, B. & Grenfell, B. 2000 Time series modelling
of childhood diseases: a dynamical systems approach.
J. R. Stat. Soc. Ser. C 49, 187–205. (doi:10.1111/1467-
9876.00187)

Fitch, W. M., Bush, R. M., Bender, C. A. & Cox, N. J. 1997
Long term trends in the evolution of H(3) HA1 human
influenza type A. Proc. Natl Acad. Sci. USA 94,
7712–7718. (doi:10.1073/pnas.94.15.7712)

Fraser, C. et al. 2009 Pandemic potential of a strain of influ-
enza A (H1N1): early findings. Science 324, 1557–1561.
(doi:10.1126/science.1176062)

Gill, P. W. & Murphy, A. M. 1977 Naturally acquired immu-
nity to influenza type A: a further prospective study.
Med. J. Aust. 2, 761–765.

Gillespie, D. T. 2007 Stochastic simulation of chemical kin-
etics. Annu. Rev. Phys. Chem. 58, 35–55. (doi:10.1146/
annurev.physchem.58.032806.104637)

Girvan, M., Callaway, D. S., Newman, M. E. J. & Strogatz,
S. H. 2002 Simple model of epidemics with pathogen
mutation. Phys. Rev. E 65, 1–9.

http://dx.doi.org/doi:10.1007/s002850050079
http://dx.doi.org/doi:10.1007/s002850050079
http://dx.doi.org/doi:10.1371/journal.pone.0007426
http://dx.doi.org/doi:10.1371/journal.pone.0007426
http://dx.doi.org/doi:10.1016/0378-1135(90)90109-9
http://dx.doi.org/doi:10.1016/0378-1135(90)90109-9
http://dx.doi.org/doi:10.1371/journal.ppat.1000058
http://dx.doi.org/doi:10.1371/journal.ppat.1000058
http://dx.doi.org/doi:10.1080/08898480009525471
http://dx.doi.org/doi:10.1016/j.vetmic.2009.03.004
http://dx.doi.org/doi:10.1016/j.tree.2008.06.008
http://dx.doi.org/doi:10.1099/0022-1317-77-4-661
http://dx.doi.org/doi:10.1016/j.virusres.2007.08.001
http://dx.doi.org/doi:10.1016/j.virusres.2007.08.001
http://dx.doi.org/doi:10.1099/0022-1317-66-3-457
http://dx.doi.org/doi:10.1007/BF01317139
http://dx.doi.org/doi:10.1007/BF01317139
http://dx.doi.org/doi:10.1038/nature01509
http://dx.doi.org/doi:10.1111/1467-9876.00187
http://dx.doi.org/doi:10.1111/1467-9876.00187
http://dx.doi.org/doi:10.1073/pnas.94.15.7712
http://dx.doi.org/doi:10.1126/science.1176062
http://dx.doi.org/doi:10.1146/annurev.physchem.58.032806.104637
http://dx.doi.org/doi:10.1146/annurev.physchem.58.032806.104637


Two-tiered phylodynamic model K. Koelle et al. 1273
Gog, J. R. & Grenfell, B. T. 2002 Dynamics and selection of
many-strain pathogens. Proc. Natl Acad. Sci. USA 99,
17 209–17 214. (doi:10.1073/pnas.252512799)

Gog, J. R., Rimmelzwaan, G. F., Osterhaus, A. D. M. E. &
Grenfell, B. T. 2003 Population dynamics of rapid fixation
in cytotoxic T lymphocyte escape mutants of influenza A.
Proc. Natl Acad. Sci. USA 100, 11 143–11 147. (doi:10.
1073/pnas.1830296100)
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