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Coevolution between two antagonistic species follows the so-called ‘Red Queen dynamics’ when recipro-

cal selection results in an endless series of adaptation by one species and counteradaptation by the other.

Red Queen dynamics are ‘genetically driven’ when selective sweeps involving new beneficial mutations

result in perpetual oscillations of the coevolving traits on the slow evolutionary time scale. Mathematical

models have shown that a prey and a predator can coevolve along a genetically driven Red Queen cycle.

We found that embedding the prey–predator interaction into a three-species food chain that includes a

coevolving superpredator often turns the genetically driven Red Queen cycle into chaos. A key condition

is that the prey evolves fast enough. Red Queen chaos implies that the direction and strength of selection

are intrinsically unpredictable beyond a short evolutionary time, with greatest evolutionary unpredictabil-

ity in the superpredator. We hypothesize that genetically driven Red Queen chaos could explain why many

natural populations are poised at the edge of ecological chaos. Over space, genetically driven chaos is

expected to cause the evolutionary divergence of local populations, even under homogenizing environ-

mental fluctuations, and thus to promote genetic diversity among ecological communities over long

evolutionary time.
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1. INTRODUCTION
Antagonistic coevolution describes the reciprocal evol-

utionary interactions between populations belonging to

an ‘exploiter’ (such as a predator or a parasite) and a

‘victim’ (such as a prey or a host). It is a change in the

genetic make-up of a population in response to a genetic

change in the antagonistic population (Thompson 1994).

Antagonistic interactions have the potential to drive coe-

volutionary dynamics of adaptive traits: an evolutionary

advantage gained by one antagonist is often associated

with a disadvantage for the other antagonist, and may

therefore prompt a counteradaptation. This may drive

stabilizing selection and evolutionary specialization with

extreme refinement of the coevolving traits (convergence

to an evolutionary equilibrium); or runaway selection

and evolutionary escalation with the exaggeration of

traits (with the possible extinction of some or all coevol-

ving populations; Matsuda & Abrams 1994; Ferrière

2000); or fluctuating selection and the so-called ‘Red

Queen dynamics’ of perpetual reciprocal changes in the

coevolving traits (convergence to a non-equilibrium evol-

utionary attractor; Van Valen 1973; Stenseth & Maynard

Smith 1984; Vermeij 1994). It has been suggested that

Red Queen dynamics underlie a large number of impor-

tant biological processes, some of which are still poorly

understood, such as genetic recombination and sexual
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reproduction (Hamilton et al. 1990), the extraordinary

diversity of genes related to immune function, resistance

and virulence (Salathe et al. 2008), and the spatial diver-

sity and local adaptation of exploiter–victim systems

(Gandon 2002).

An important dichotomy exists between two main

types of Red Queen dynamics (Khibnik & Kondrashov

1997; Ebert 2008; Gaba & Ebert 2009): ecologically

driven by negative frequency-dependent selection and

genetically driven by beneficial mutations. This distinc-

tion is significant because the two types strongly differ

in their mechanisms, their underlying genetic architec-

ture, their ecological and evolutionary consequences,

and the time scales on which they develop (Ebert

2008). With ecologically driven Red Queen dynamics,

extant variants of the exploiter genotype that benefit the

most from the numerically dominant victim genotypes

are favoured, and, similarly, victim genotypes that best

resist the numerically dominant exploiter genotypes are

favoured. This pattern results in selection against

common exploiter and victim genotypes in a time-

lagged negative frequency-dependent fashion (ecological

instability). A consequence of this form of fluctuating

selection on extant genetic variation is that genetic poly-

morphism is maintained in the population for long

periods (balanced selection) and that allele frequencies

can oscillate considerably over time periods of a few

generations.

In contrast, genetically driven Red Queen dynamics

involve the repeated incidence, spread and fixation of

new beneficial mutants in populations that stabilize at
This journal is q 2010 The Royal Society
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ecological equilibria. Mutants are driven to fixation by

directional selection (selective sweeps). Thus, genetic

polymorphism is transient only, and the evolutionary

dynamics are slow—for two reasons. First, new mutations

causing variation in the adaptive traits involved are rare

events. Second, a new mutant starts with a very low fre-

quency (1/N, where N is the number of wild-type alleles

in the population); thus, empirically it can take hundreds

of generations until the mutant becomes recognizable

(e.g. 1%) at the population level (Elena et al. 1996).

Therefore, genetically driven Red Queen dynamics

develop on an evolutionary time scale that is several

orders of magnitude slower than the time scale of

ecological processes.

The slow time scale involved hampers the empirical

investigation of genetically driven Red Queen dynamics,

and mathematical models have been useful to seek con-

ditions that could favour the Red Queen over

specialization or escalation. So far, the majority of these

models have focused on the two coevolving species and

ignored the community context in which coevolution

takes place. In this setting, genetically driven Red

Queen dynamics develop as regular, predictable cycles

in the adaptive trait space. However, pairs of coevolving

species are inevitably embedded in community-level

interactions of varying degrees of complexity. It is because

most species interact with suites of other species that vary

dynamically across geographical landscapes that coevolu-

tionary processes can be important in shaping the

structure and maintaining variability within specific pair-

wise interactions, such as predator–prey or host–parasite

systems (Abrams 1991, 1996; Strauss et al. 2005;

Thompson 2005; Thrall et al. 2007). For example, some

trematode parasites have strong effects on the evolutionary

dynamics of their snail hosts, but themselves are depen-

dent upon waterflow for completion of their life cycle

(Lively 1999). How the community context of coevolution

affects the occurrence and manifestation of genetically

driven Red Queen dynamics remains poorly known.

Seminal steps in the theoretical study of coevolution-

ary dynamics in the community context have been taken

recently (Caldarelli et al. 1998; Loeuille et al. 2002;

Gandon 2004; Nuismer & Doebeli 2004; Loeuille &

Loreau 2005; Kisdi & Liu 2006; Bell 2007; Ferrière

et al. 2007; Shoresh et al. 2008; Jones et al. 2009;

Stegen et al. 2009), but models of genetically driven

coevolutionary dynamics in which more than two species

coevolve in a multi-dimensional trait space are still

lacking. Here, we extend a simple two-species predator–

prey coevolutionary system (Dieckmann et al. 1995;

where genetically driven Red Queen cycles were

first documented) to model coevolution in a three-

dimensional trait space among three species forming a

food chain. The function of each species in the food

chain is determined by a continuous character subject

to rare and small genetic mutations. One may expect

that the addition of a coevolving species to a coevolving

pair could stabilize the evolutionary process at an evol-

utionary equilibrium, thereby suppressing the Red

Queen dynamics (Vermeij 1982; Futuyma 1983), or

that the addition could destabilize the periodic evolution-

ary oscillation and drive the genetically driven Red Queen

into chaos (Gavrilets 1997). Here we show that con-

ditions leading to genetically driven periodic cycles in
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the two traits of coevolving predator and prey favour

chaotic dynamics in the three coevolving traits of the

three-species food chain.
2. MODEL CONSTRUCTION
We focus on a single adaptive trait per species that charac-

terizes the function of the species in the food chain. The

trait determines competitive ability in the prey, and fora-

ging success in the predator and superpredator. On the

evolutionary time scale, de novo trait variation is caused

by a rare genetic mutation. The current phenotypes

determine the ecological equilibrium of the food chain,

and hence the selective pressures acting on variants of

the traits. Under the assumption that mutations have

very small effects, the long-term coevolutionary process

can be modelled as a trait substitution sequence in each

species (Metz et al. 1992, 1996), the dynamics of which

are captured by a set of three deterministic differential

equations, one per trait (Dieckmann & Law 1996).

When reduced to the classical two-trait, predator–prey

coevolutionary model, the system is known to drive trait

evolution towards a stable equilibrium or towards a Red

Queen cycle (if not towards extinction; Dieckmann

et al. 1995; Dercole et al. 2003, 2006).

As in Dieckmann et al. (1995), Lotka–Volterra

equations are used to describe the ecological dynamics

of the food chain:

dn1

dt
¼ n1ðr � cn1 � a2n2Þ; ð2:1aÞ

dn2

dt
¼ n2ðe2a2n1 � d2 � a3n3Þ ð2:1bÞ

and
dn3

dt
¼ n3ðe3a3n2 � d3Þ; ð2:1cÞ

where n1, n2 and n3 are prey, predator and superpredator

densities, respectively; r and c are prey intrinsic per capita

growth rate and sensitivity to intraspecific competition,

respectively; and ai, ei and di are the attack rate, efficiency

and intrinsic death rate in the predator (i ¼ 2) and

superpredator (i ¼ 3), respectively. Each species is charac-

terized by one genetic trait xi (i ¼ 1–3). The genetic

system is one-locus haploid; the genetic traits can influ-

ence the prey competition function c and the attack

rates a2 and a3, and trait dependencies are modelled

using the following functional forms:

c ¼ c0 þ c2ðx1 � c1Þ2; ð2:2aÞ

a2 ¼ exp

�
� x1 � a24

a21

� �2

þ 2a23

x1 � a24

a21

x2 � a25

a22

� x2 � a25

a22

� �2�
ð2:2bÞ

and a3 ¼ exp

�
� x2 � a34

a31

� �2

þ2a33

x2 � a34

a31

x3 � a35

a32

� x3 � a35

a32

� �2�
ð2:2cÞ

(with 0 , a23, a33 , 1 and c0, c2, a21, a22, a31, a32 all

positive). Prey competition is minimum at x1 ¼ c1,

where prey are best adapted to their environment, while

the attack rates a2 and a3 are bidimensional Gaussian

functions with elliptic contour lines centred at (a24, a25)
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Figure 1. Period-doubling route towards genetically driven
Red Queen chaos in a three-species food chain. Peak values
of the superpredator trait, x3 (blue), in the corresponding
evolutionary attractor and the largest Lyapunov exponent,

L1 (red), as functions of the prey mutation rate, m1. The
value m1

1 indicates the lower limit of the chaotic range. Par-
ameter values: m2 ¼ 1, m3 ¼ 1, s2

1 ¼ 0:3, s2
2 ¼ 2, s2

3 ¼ 2,
r ¼ 0.5, d2 ¼ 0.05, d3 ¼ 0.02, e2 ¼ 0.14, e3 ¼ 0.14, a21 ¼

0.22, a22 ¼ 0.25, a23 ¼ 0.6, a24 ¼ 0, a25 ¼ 0.04, a31 ¼ 0.22,

a32 ¼ 0.25, a33 ¼ 0.6, a34 ¼ 0, a35 ¼2 0.04, c0 ¼ 0.5, c1 ¼

0, c2 ¼ 3.
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and (a34, a35), respectively, and controlled in amplitude

and orientation by parameters a21–a23 and a31–a33,

respectively. Differences (x1 2 a24) and (x2 2 a25)

(respectively, (x2 2 a34) and (x3 2 a35)) measure the

degree to which the predator (superpredator) ‘matches’

the prey (predator); that is, the attack rate is maximum

when x1 ¼ a24 and x2 ¼ a25 (respectively, x2 ¼ a34

and x3 ¼ a35), while parameters a21–a23 (respectively,

a31–a33) control the sensitivity of the attack rate to the

mismatch.

When a mutation occurs in trait x1 and generates a new

value x01, the ecological system becomes

dn1

dt
¼ n1 r � cðx1Þn1 � cðx1Þn01 � a2ðx1; x2Þn2

� �
; ð2:3aÞ

dn01
dt
¼ n01ðr � cðx01Þn1 � cðx01Þn01 � a2ðx01; x2Þn2Þ; ð2:3bÞ

dn2

dt
¼ n2

�
e2a2ðx1; x2Þn1 þ e2a2ðx01; x2Þn01

� d2 � a3ðx2; x3Þn3

�
ð2:3cÞ

and
dn3

dt
¼ n3 e3a3ðx2; x3Þn2 � d3ð Þ; ð2:3dÞ

so that the fitness function of mutant x01 is given by

f1ðx1; x2; x3; x
0
1Þ ¼

1

n01

dn01
dt

���� n¼�n
n0

1
¼0

¼ r � cðx01Þ�n1ðx1; x2; x3Þ
� a2ðx01; x2Þ�n2ðx1; x2; x3Þ; ð2:4Þ

where n ¼ (n1, n2, n3) and n̄ denotes the ecological

equilibrium of model (2.1) at which the food chain

stabilizes in the absence of mutants (§3).

Similar equations can be written when a mutation

arises in the predator (trait x2) or superpredator (trait

x3; see appendix S1 in the electronic supplementary

material) and yields the fitness functions of mutants x02
and x03:

f2ðx1; x2; x3; x
0
2Þ ¼

1

n02

dn02
dt

���� n¼�n
n02¼0

¼ e2a2ðx1; x
0
2Þ�n1ðx1; x2; x3Þ � d2

� a3ðx02; x3Þ�n3ðx1; x2; x3Þ ð2:5Þ

and

f3ðx1; x2; x3; x
0
3Þ ¼

1

n03

dn03
dt

���� n¼�n
n03¼0

¼ e3a3ðx2; x
0
3Þ�n2ðx1; x2; x3Þ � d3: ð2:6Þ

The long-term coevolution of traits x1, x2 and x3 on the

evolutionary time scale obeys the so-called canonical

equation of adaptive dynamics (Dieckmann & Law

1996); that is, the three-dimensional system of ODEs,

dx1

dt
¼ 1

2
m1s

2
1 �n1

@f1

@x01

����
x0

1
¼x1

; ð2:7aÞ

dx2

dt
¼ 1

2
m2s

2
2 �n2

@f2

@x02

����
x0

2
¼x2

ð2:7bÞ

and
dx3

dt
¼ 1

2
m3s

2
3 �n3

@f3

@x03

����
x0

3
¼x3

ð2:7cÞ
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The right-hand sides are the product of mutation rates

(mi, i ¼ 1–3), mutational steps variances (s2
i ), equili-

brium densities (n̄i) and selection gradients (fitness

derivatives). The latter explicit expressions are cumber-

some and were always generated and handled by means

of symbolic computation.
3. MODEL ANALYSIS AND RESULTS
The ecological model (2.1) has a unique non-trivial

equilibrium,

�n1 ¼
r

c
� a2d3

ce3a3

; ð3:1aÞ

�n2 ¼
d3

e3a3

ð3:1bÞ

and �n3 ¼
e2a2

a3

r

c
� a2d3

ce3a3

� �
� d2

a3

; ð3:1cÞ

which is positive if and only if n̄3 . 0. When positive, the

equilibrium �n is globally stable (in the positive orthant).

Thus, the ecological model (2.1) is only viable within the

region of the trait space defined by the condition n̄3 . 0.

If the superpredator and the predator are able to sim-

ultaneously match the predator and the prey,

respectively (i.e. a25 ¼ a34), and if, at the same time, the

prey is able to minimize its sensitivity to intraspecific

competition (i.e. c1 ¼ a24), then x̄1 ¼ c1, x̄2 ¼ a25, x̄3 ¼

a35 is an equilibrium of the evolutionary model (2.7).

Starting from these conditions, and fixing parameters at

values corresponding to evolutionary cycles in the

ditrophic model (Dieckmann et al. 1995), we performed

the numerical continuation of the equilibrium �x with

respect to several parameters.

As expected, evolutionary stability was sensitive to the

mutation rate m1 of the prey. As m1 increases, the evol-

utionary equilibrium loses stability through a
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supercritical Hopf bifurcation that yields a small-

amplitude stable evolutionary cycle (see appendix S3 in

the electronic supplementary material). Starting from

the Hopf bifurcation, we numerically continued the

cycle, while monitoring its stability through the compu-

tation of the associated Floquet multipliers (i.e. the

three eigenvalues of the linearized Poincaré map associ-

ated with the cycle; one of them is structurally equal to

1, and therefore its estimated value is a measure of com-

putation accuracy; the other two determine the stability of

the cycle). Again, by increasing m1, evolutionary stability

was easily lost through a series of period-doubling bifur-

cations (a negative Floquet multiplier passing through

21; see appendix S3 in the electronic supplementary

material). At each period-doubling bifurcation, the cycle

becomes unstable, and a new stable cycle (which traces

twice the bifurcating cycle) appears. Switching to the con-

tinuation of the new stable cycle allowed us to find the next

period-doubling bifurcation. Because the sequence of

bifurcation parameter values mi
1; i ¼ 1; 2; . . . , accumulates

geometrically at the frontier m1
1 of the chaotic region of the

Feigenbaum period-doubling cascade, only a limited

number of bifurcations in the sequence could be detected

(mi
1; i ¼ 1; 2; 3, are reported in figure 1). The robustness of

the cascade has been checked through the continuation of

the period-doubling bifurcations with respect to various

pairs of parameters (details will be published elsewhere).

In order to estimate m1
1 , we computed the full spec-

trum of the attractor’s Lyapunov exponents L1 � L2 �
L3 for finely incremented values of m1 (step 1025; see

appendix S2 in the electronic supplementary material).

L1 . 0 implies that m1 is in the chaotic region, whereas

L1 ¼ 0 in periodic windows (figure 1); in the chaotic

region, L2 is structurally equal to 0 (its estimated value

measures computation accuracy), while L3 is negative.

The attractor’s fractal dimension then follows from the

Kaplan–Yorke formula (figure 2). In this example, the

dominant Lyapunov exponent equals þ0.0081321 and

the fractal dimension of the attractor is 2.0176 (the attrac-

tor lies roughly on a two-dimensional Möbius strip).

Typically, the prey and predator characters oscillate with

small irregular fluctuations in amplitude and frequency,

while variation in the amplitude of the oscillations in

the superpredator trait is more pronounced.

Our analysis shows that the genetically driven Red

Queen turns chaotic under conditions similar to those

leading to genetically driven Red Queen cycles, provided

that the mutation time scale of the prey is short enough

compared with the mutation time scales of the predator

and the superpredator. That is (Dieckmann et al. 1995;

Dercole et al. 2003), the predator efficiency should be

great enough to drive the prey away from its genetic opti-

mum; and there should be sufficient need for the predator

to track the prey’s character change. As the prey departs

from its optimum, its population density drops, which

causes a reversal of selection on the predator’s trait, fol-

lowed by a reversal of selection on the prey’s character.

If the prey evolves fast enough, it will not be ‘caught

up’ by the predator and permanent trait oscillations will

evolve; the system ends up in chaos because the predator

is also engaged in a coevolutionary chase with the super-

predator. Broad comparative analyses (e.g. Martin &

Palumbi 1993) have established a strong relationship

between nucleotide substitution rate and body size. For
Proc. R. Soc. B (2010)
instance, rates of nuclear and mtDNA evolution are

slow in whales, intermediate in primates and fast in

rodents, and a similar effect of body size also exists in

poikilothermic vertebrates. Thus, trophic chains with

smaller prey (and hence faster mutagenesis) may be

more prone to coevolutionary chaos.
4. DISCUSSION
Even though quantitative data on long-term predator–

prey coevolutionary dynamics remain elusive (Barnosky

2001), the fossil record supports the view that predation

is an important driver of evolutionary change (Kelley

et al. 2003). Moreover, palaeontological and phylogenetic

analyses gather increasing evidence for the role of three-

level chain interactions in coevolution (Currie et al. 2003;

Kelley et al. 2003). These empirical findings have been

paralleled by extensions of coevolutionary theory beyond

pairwise interactions (Abrams 1996; Caldarelli et al.

1998; Loeuille et al. 2002; Gandon 2004; Nuismer &

Doebeli 2004; Loeuille & Loreau 2005; Kisdi & Liu

2006; Bell 2007; Ferrière et al. 2007; Shoresh et al. 2008;

Jones et al. 2009; Stegen et al. 2009), but so far the com-

plexity of evolutionary dynamics among more than two

species coevolving in a multi-dimensional trait space has

been little explored. As a step forward in that direction,

we added a superpredator, as a third coevolving species,

to coevolution between a prey and a predator.

Prey–predator–superpredator trophic chains have

long attracted the attention of ecologists as they occur

by diverse mechanisms, can cross ecosystem boundaries

and have practical importance; for example, in the man-

agement of fisheries or biological control of crop pests

(Cohen et al. 2009). Our model descends from the line-

age of two-species models that addressed genetically

driven predator–prey coevolution (Stenseth & Maynard

Smith 1984; Rosenzweig et al. 1987; Rand & Wilson

1991; Marrow et al. 1992; Dieckmann et al. 1995;

Doebeli 1997; Gavrilets 1997; Khibnik & Kondrashov

1997; Dercole et al. 2003, 2006) and specifically extends

the analysis of Dieckmann et al. (1995), where stable

cycles in adaptive dynamics were first documented.

We searched for strange attractors in the three-trait,

three-species coevolutionary model by weaving intuition

and theory. Theory was telling us that in third-order

dynamical systems the most common route to chaos is

the Feigenbaum period-doubling cascade (see appendix

S3 in the electronic supplementary material), and we

knew that evolutionary stability in predator–prey

models was especially sensitive to the mutation rate of

the prey (Dieckmann et al. 1995; Dercole et al. 2003).

Thus, our analysis of the tritrophic evolutionary dynamics

was organized by looking for parameters that caused

evolutionary cycles in the lower ditrophic model (and

such that increasing the prey mutation rate could trigger

doubling of the cycle period) and then tracking the

period-doubling cascade. The strategy was successful at

detecting transitions towards evolutionary chaos in the

three-species system.

Our analysis of three-species coevolution was intended

as an extension of Dieckmann et al.’s (1995) two-species

model. This is the technical motivation for our choice

of the type I functional response to describe trophic

interactions, hence the Lotka–Volterra structure of the
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ecological model. This has the important consequence of

ensuring that the food chain always stabilizes at an equili-

brium on the ecological time scale. Therefore, oscillations

predicted by the evolutionary model could only be due to

nonlinear interactions between selective pressures acting

on genetic variation in the adaptive traits—not to trait

variation induced by instabilities in the ecological

dynamics (Abrams & Matsuda 1997a). More realistic

food chain models with, for example, saturating (type

II) functional responses or self-limitation at higher

trophic levels can also stabilize at ecological equilibria,

though ecological cycles and ecological chaos are also

expected in viable regions of the trait space. This opens

the possibility of Red Queen chaotic dynamics that

would be ‘ecogenetically driven’ (sensu Khibnik &

Kondrashov 1997; for the two-species case see Dercole

et al. 2003; Dercole et al. 2006).

Another fundamental feature of the model is the defi-

nition of the adaptive traits. We keep the ‘matching

model’ used in Dieckmann et al. (1995), which has long

been popular in the theory of predator–prey coevolution

(Cohen et al. 1993; Abrams 2000; Loeuille & Loreau

2005; Stegen et al. 2009). The matching model assumes

that the traits of a species and its prey jointly determine

the attack (and capture) rate on the former by the

latter, and that the attack rate is maximized when the

two traits match. Scaled body size is a commonly used

surrogate measure for such traits (Williams & Martinez

2000). Defining the adaptive traits according to the

matching model is known to promote genetically driven

Red Queen cycles in the two-species predator–prey coe-

volutionary model (Marrow et al. 1992, 1996;

Dieckmann et al. 1995; Abrams & Matsuda 1997b;

Doebeli 1997; Gavrilets 1997), and thus provided us

with the appropriate framework to answer our main ques-

tion—how are two-species Red Queen cycles affected by

the coevolution of a third species?

Several well-studied antagonistic pairwise interactions

seem to conform to the matching model. This includes
Proc. R. Soc. B (2010)
parasitic cuckoos and their hosts, in which the probability

that a parasitic egg be rejected depends on the similarity

of host and parasite egg morphologies (Robert & Sorci

1999); crossbills and lodgepole pines, for which fitnesses

are influenced by matching between bill size and cone

structure (Benkman 1999); feather lice and dove hosts,

in which louse fitness at least is influenced by matching

size with host size (and host size correlates with parasite

size across species; Clayton et al. 2003). Other equally

well-studied systems, however, better fit an alternative

model in which the strength of between-species inter-

actions is a monotonic function of the difference

between the predator and prey’s traits. This is the case

of parsnip web-worms and wild parsnips, in which feed-

ing efficiency of defended plants increases with higher

production of detoxifying enzymes (Berenbaum &

Zangerl 1992). Likewise, the rate of successful attack in

the Japanese-camellia–camellia-weevil system is a

monotonic function of the difference between camelia

fruit wall thickness and weevil mouthpart size (Toju &

Sota 2006, 2009). The ‘difference model’ so defined

also fits the trophic interaction between toxic newts as

prey and potentially toxin-resistant garter snakes as pre-

dators (Brodie et al. 2002; Hanifin et al. 2008).

Nuismer et al.’s (2007) theoretical analysis of antagon-

istic coevolution under the difference model of attack rate

shows that coevolutionary cycles are still possible with this

model, provided that selection is strong enough and stabi-

lizing selection acts on the traits. Thus, genetically driven

coevolutionary cycles in pairwise antagonistic interactions

appear to be at least possible under relatively broad con-

ditions when the attack rate is described by the difference

model. The question of whether coevolutionary cycles

turn into chaos in the three-species food chain is open

to investigation. Future models should also examine the

coevolution of alternative or additional traits besides the

attack rate. Dercole et al. (2003) and Kisdi & Liu

(2006), for example, considered the evolution of handling

time, a key factor of the functional response. As an
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extension of our model, it would be interesting to account

for genetic variation in predator and superpredator hand-

ling times, track the evolution of the functional responses

themselves as a byproduct and monitor the potential

bifurcations experienced by the coevolutionary dynamics

as a consequence.

The possibility that natural selection acting on extant

genetic variation drives community dynamics into chaos

has been known since early analyses of host–pathogen

models (May & Anderson 1983), and is not unexpected

given that competition between multiple species or geno-

types can easily destabilize population dynamics

(Hofbauer & Sigmund 1998; Turchin 2003). This type

of chaotic evolutionary dynamics has been found in

theoretical studies of genetic polymorphisms under

frequency-dependent selection (e.g. May & Anderson

1983; Seger 1992; Ferrière & Fox 1995; Solé & Sardanyés

2007), strategy frequencies in evolutionary games

(Nowak & Sigmund 2003) and rapid evolution of a con-

tinuous trait in interaction with population dynamics

(Abrams & Matsuda 1997a). All these are instances of

evolutionary chaos on the ecological time scale. The

system considered here is different since the time scales

of ecology and evolution are separated: the population

dynamics of different alleles stabilize on a monomorphic

state over a time scale that is fast compared with the

slow evolutionary time scale over which the dynamics of

the adaptive traits develop. Thus, our analysis uncovers

the first example of genetically driven chaotic Red Queen.

The genetically driven chaotic Red Queen implies that

nonlinear interactions of selective pressures can drive

phenotypic changes that are unpredictable over the slow

time scale of long-term evolution, even in a perfectly con-

stant abiotic environment. (Note that with chaos in allele

or strategy frequencies driven by negative frequency

dependence, there is unpredictability in the dynamics

of frequencies, but the identity of alleles or strategies

never changes.) This has implications for our understand-

ing of the role of ‘chance’ in evolution (Travisano et al.

1995; Beatty 2006). Chance manifests itself when the

evolutionary trajectories of adaptive traits diverge

between replicated populations that were initiated in simi-

lar phenotypic and genotypic states. Experimental tests

on bacterial systems have provided some of the best evalu-

ations of the role that chance may play in evolution.

Although founded by the same clone, and evolving in

identical conditions, replicate populations often diverge

from one another in their relative growth rate, demo-

graphic traits, morphological features and performance

in other environments (Elena & Lenski 2003 and

references therein). The conventional explanation for

evolutionary divergence ‘by chance’ involves genetic sto-

chasticity (the randomness of mutation and drift owing

to demographic stochasticity) and environmental stochas-

ticity (random changes in environmental conditions;

Lenormand et al. 2008). However, models of adaptive

trait dynamics derived from individual-level ‘first prin-

ciples’ have shown that the effect of genetic stochasticity

is often ‘smoothed out’ in the long term, with traits con-

verging towards the attractor of a deterministic dynamical

system, provided that there is some minimal separation

between the time scales of mutation and selection

(Champagnat et al. 2006). The present study shows that

even if the randomness of genetic stochasticity is
Proc. R. Soc. B (2010)
smoothed out, uncertainty can arise from the selection

component of the evolutionary process: adaptive trait

trajectories converge towards a deterministic attractor,

yet the chaotic nature of the attractor renders the trait

dynamics unpredictable beyond a short evolutionary

time horizon. Thus, the nonlinearity of the selection

gradient offers an alternative to genetic or environmental

stochasticity to explain the chance component of

evolutionary trajectories in real populations.

Further examples of genetically driven chaotic Red

Queen dynamics are likely to be discovered in models of

long-term evolution in which the adaptive process oper-

ates in a three- (or more) dimensional trait space—even

if all traits (e.g. behavioural or life-history traits) pertain

to the same single species. Genetically driven chaos

might also arise in two-trait adaptive dynamics models,

or even in one-trait systems showing ecological multi-

stability (Dercole et al. 2002), that are subject to

externally driven periodic fluctuations in mutation or

selection. Besides its conceptual value, the genetically

driven chaotic Red Queen suggests three new hypotheses

(discussed below) about coevolutionary dynamics. Each

hypothesis opens an avenue for future theoretical work.
(a) The intrinsic unpredictability of coevolutionary

dynamics is widespread

In view of the general theory of dynamical systems, the

existence of chaotic evolutionary attractors over some par-

ameter region can affect the coevolutionary dynamics

broadly outside that region. Even when the coevolution-

ary attractor of the food chain is an equilibrium or a

cycle, the ‘shadow’ of evolutionary chaos will be seen

in the form of long erratic transients (Hastings 2004).

Genetic noise—owing, for example, to random drift

or stochastic gene flow—or stochastic environmental

fluctuations on the slow evolutionary time scale may actu-

ally maintain these transients for arbitrarily long

evolutionary times. Such ‘noise-induced chaos’ illustrates

the general fact that small amounts of exogenous noise

can have disproportionate qualitative impacts on the

long-term dynamics of a nonlinear system in which chaotic

structures exist for some parameter values (Rand & Wilson

1991; Lai et al. 2003; Ellner & Turchin 2005).
(b) Coevolution can drive population dynamics

to the edge of chaos

Looking at evolution on a slow time scale, in contrast

with, or even completely separated from, the fast time

scale of ecology, does not mean that the coevolutionary

process has no effect on the ecological state of the

system. In fact, the genetically driven chaotic Red

Queen implies that the population size of each species

also fluctuates chaotically, but these fluctuations develop

on the slow, evolutionary time scale, because at each

point in evolutionary time, the food chain model analysed

here is at ecological equilibrium. In other food chain

models, ecological cycles and chaos occur readily

(Hastings & Powell 1991; Gross et al. 2005). In the

light of this and other studies (Khibnik & Kondrashov

1997; Dercole et al. 2006), the trait domain correspond-

ing to ecological chaos may contain part or all of

the coevolutionary attractor (ecogenetically driven Red

Queen). A sharp change in the selective regime at the
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boundary between chaotic and non-chaotic ecological

dynamics is expected in general (Ferrière & Gatto 1995;

Dercole et al. 2006), and may poise the food chain near

that boundary for long evolutionary times, in a process

called ‘evolutionary sliding’ (Dercole et al. 2006). This

would provide an evolutionary explanation for the stand-

ing puzzle that the abundance of many natural

populations seemingly fluctuates ‘at the edge of chaos’

(Ellner & Turchin 1995; Turchin 2003).
(c) The chaotic Red Queen promotes genetic

divergence in metacommunities

There is considerable interest in better understanding

how coevolutionary processes work in geographically

structured habitats (Thompson 2005). The arising of

genetically driven chaos has direct implications for the

origin and maintenance of genetic diversity in spatially

extended communities. Let us consider the metaphor of

a fragmented landscape in which all patches are identical

and isolated. Genetically driven chaotic Red Queen

dynamics imply that each local trophic chain evolves

along the same strange attractor, but small ancestral

differences in the genetic make-up of local communities

will result in permanent genetic differences between

patches. The magnitude of these differences will vary

over time and sometimes be as large as the coevolutionary

attractor. In contrast, small ancestral differences remain

small in the case of periodic Red Queen dynamics (and

the same would be true if the Red Queen were ecologi-

cally driven). In other words, local genetically driven

coevolutionary chaos promotes spatial genetic divergence,

even in the absence of environmental differences between

patches. Red Queen dynamics in general can explain phe-

notypic mismatches between coevolving species even in

the absence of spatial structure, gene flow or genetic

drift (Berenbaum et al. 1986; Hanifin et al. 2008); the

chaotic Red Queen, in particular, predicts the persistence

of different degrees of mismatches between local commu-

nities, even if environmental conditions are spatially

uniform.

Furthermore, general results on the synchronization of

dynamical systems subject to common fluctuating

exogenous forces warn that the genetic divergence

between local populations can be lost in the presence of

long-term environmental fluctuations (this is known in

ecology as the Moran effect; see Royama 1992 for a

review). However, recent results (Colombo et al. 2008)

show in great generality that this is possible only if

environmental fluctuations are large and tuned specifi-

cally to the endogenous dynamics of the system.

Genetically driven coevolutionary chaos could therefore

play an important role in promoting genetic diversity in

ecological communities threatened by environmental

homogenization (Olden et al. 2004). We conclude that

genetically driven Red Queen chaos might explain genetic

differentiation of local communities without invoking

local adaptation to different habitat conditions or to mul-

tiple steady states of local populations in the

metacommunity. This points to the possibility that, in

sexual species, the genetic divergence of local populations

induced by complex adaptive dynamics might favour the

evolution of reproductive isolation and hence parapatric

speciation—even across relatively uniform habitats, as in
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marine species (Palumbi 1994). Extension of speciation

models along ecological gradients (Doebeli & Dieckmann

2003) will help examine this hypothesis further.
5. CONCLUDING REMARKS
Here, we have extended Dieckmann et al.’s (1995) model

of predator–prey genetically driven coevolution by adding

a coevolving superpredator to the system. When Red

Queen periodic cycles develop in the two-species model,

the adaptive dynamics of the three coevolving species

are often chaotic. A general condition for this to happen

is that the evolutionary rate of the prey be large enough.

The greatest irregularity is then predicted in the dynamics

of the superpredator trait. Because the ecological model

of the food chain is always at equilibrium throughout

the trait space, instability in the ecological dynamics

plays no role in generating this chaotic Red Queen,

which is thus entirely driven by nonlinear interactions

between the selective pressures acting on rare genetic

variation of the traits.

The specificities of the model and the new hypotheses

arising from the results call for continued theoretical

investigation of chaotic dynamics in genetically driven

coevolutionary processes. This theoretical endeavour

should be paralleled by an empirical effort focusing on

the patterns of temporal unpredictability and spatial

heterogeneity of antagonistic coevolution and the conse-

quences for population dynamics, genetic differentiation

in metacommunities and macroevolutionary processes,

including speciation.

A key difference between coevolutionary cycles and

coevolutionary chaos lies in the expectation that

geographically distinct communities subject to homogen-

izing factors of their environment (e.g. large-scale climatic

fluctuations) should exhibit similar degrees of phenotype

mismatching when coevolving cyclically, and persistently

dissimilar degrees of mismatching when coevolving

chaotically. Spatially heterogeneous mismatches have

been documented recently in the camellia–weevil (Toju

2009) and newt–garter snake (Hanifin et al. 2008) sys-

tems. In the light of our results, the fine-scale

divergence of coevolution in the former may not require

geographical variation of environmental factors (Toju

2009). Molecular data supporting the role of beneficial

mutations, rather than standing genetic variation, as fuel-

ling coevolution between newts and their snake predators

(Feldman et al. 2009) offer promising evidence for the

relevance of genetically driven Red Queen models to

deepen our understanding of geographical patterns of

coevolution in nature.

Besides trophic interactions, the Red Queen is

expected to reign in many exploiter–victim systems

(Lythgoe & Read 1998). Biomedical science has already

revealed the potential ubiquity of the Red Queen in para-

sitic and pathogenic interactions (Moya et al. 2004).

Experimental coevolution in host–pathogen systems is

being used successfully to evidence the patterns and dis-

sect the processes of ecologically driven Red Queen

dynamics in laboratory systems (Koskella & Lively

2009) and in nature (Decaestecker et al. 2007). On the

evolutionary time scale, antagonistic coevolutionary

dynamics fuelled by de novo genetic variation have

been studied experimentally using bacterial systems
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(Lenski & Levin 1985; Bohannan & Lenski 2000;

Buckling & Rainey 2002; Gallet et al. 2009). The time-

shift experimental design (Gaba & Ebert 2009)

implemented to study ecologically driven Red Queen

dynamics could be applied to measure how predictable

genetically driven coevolutionary trajectories are under

different experimental treatments, and thus to search for

the essential property of chaotic dynamics—exponentially

declining predictability of trajectories. Combining

experiments with sufficiently detailed mathematical

models of the study systems will be instrumental to ident-

ify relevant experimental treatments, to design data

collection and analysis and to interpret the results

(Decaestecker et al. 2007). If it were supported by such

experiments on microbial systems, the genetically driven

chaotic Red Queen might contribute to our understand-

ing of the rapid and indeterminate evolution of viral

pathogens (Kirkwood & Bangham 1994; Moya et al.

2004), and perhaps influence the study and control of

emergent pathogens on large temporal and spatial scales.

Ultimately, the important question raised by the

genetically driven chaotic Red Queen is unlikely to be

whether or not long-term evolution in any specific eco-

logical system is chaotic—a question that makes sense

only in the realm of mathematical models. Population

ecologists have long gone beyond that question—chaos

versus non-chaos—to draw stunning insights from the

nonlinear dynamics theory into how environmental

forces and internal dynamics shape species abundance

and distribution in nature (Allen et al. 1993; Ellner &

Turchin 1995; Dixon et al. 1999; Turchin 2003). The

same move could take place in evolutionary biology, as

genetically driven Red Queen chaos challenges our ability

to measure, compare and interpret coevolutionary pat-

terns and processes in the real world.
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