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There are approximately 7000 languages spoken in the world today. This diversity reflects the legacy of

thousands of years of cultural evolution. How far back we can trace this history depends largely on the

rate at which the different components of language evolve. Rates of lexical evolution are widely thought

to impose an upper limit of 6000–10 000 years on reliably identifying language relationships. In contrast,

it has been argued that certain structural elements of language are much more stable. Just as biologists use

highly conserved genes to uncover the deepest branches in the tree of life, highly stable linguistic features

hold the promise of identifying deep relationships between the world’s languages. Here, we present the

first global network of languages based on this typological information. We evaluate the relative evolution-

ary rates of both typological and lexical features in the Austronesian and Indo-European language

families. The first indications are that typological features evolve at similar rates to basic vocabulary

but their evolution is substantially less tree-like. Our results suggest that, while rates of vocabulary

change are correlated between the two language families, the rates of evolution of typological features

and structural subtypes show no consistent relationship across families.
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1. INTRODUCTION
How far back can we trace the history of languages? The

traditional comparative method in historical linguistics

uses systematic sound correspondences between homolo-

gous (‘cognate’) words to infer relatedness between

languages. Most linguists argue that this approach can

only be used to make inferences about languages that

diversified within the last 6000–10 000 years (Nichols

1992; Ringe 1995; Kaufman & Golla 2000). Beyond

this time, however, it becomes impossible to distinguish

accurately whether any signal in the data represents des-

cent from a common ancestor or false similarities owing

to chance and borrowing between languages.

Some authors have claimed that certain typological

features that describe the structures present in a language,

such as ergativity, head marking and numeral classifiers,

are more stable than the lexicon (Nichols 1992, 1994).

If some typological features are consistently stable

within language families, and resistant to borrowing,

then they might hold the key to uncovering relationships

at far deeper levels than previously possible. For example,

Nichols (1994) uses typological features to argue for a

spread of languages and cultures around the Pacific

Rim, connecting Australia, Papua New Guinea, Asia,

Russia, Siberia, Alaska and the western coasts of North

and South America. If this is correct, then these typolo-

gical features must be reflecting time depths of at least

16 000 years and possibly as deep as 50 000 years ago

(Nichols 1994). A recent phylogenetic study of phonolo-

gical and morphosyntactic features in non-Austronesian
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languages of Island Melanesia argued that typological

traits reveal a phylogenetic signal consistent with deep

(approx. 10 000 years) historical relationships (Dunn

et al. 2005). One explanation for this stability is that the

evolution of typological features is more constrained

than that of the lexicon because structural traits function

as an interrelated system with strong dependencies

between components (‘un système où tout se tient’,

variously attributed to Antoine Meillet, and Ferdinand

de Saussure; Peeters 1990).

However, the lack of comprehensive worldwide typolo-

gical data has made it difficult to assess the overall shape

and tempo of changes in language structure. The recently

published World atlas of language structures (WALS)

remedies this problem (Haspelmath et al. 2005). WALS

includes information about 141 typological features

from 2561 languages. Here, we report the results of phy-

logenetic analyses of the typological data in the WALS.

First, we explore the global pattern of typological data

using a network method to assess evidence for a deep

signal in the data. Second, we quantify the fit of typologi-

cal and lexical features onto known family trees for two of

the world’s largest and best-studied language families—

Indo-European and Austronesian. Third, we infer the

rates of evolution of typological and lexical features

within these families and compare rates between families.
2. MATERIAL AND METHODS
(a) Typological data

From the 141 characters in the WALS (Haspelmath et al.

2005), we discarded the three characters belonging to the

‘sign languages’ and ‘other’ categories, leaving 138 characters

for analysis (electronic supplementary material, table S1).

We extracted three datasets from WALS. The first dataset
This journal is q 2010 The Royal Society
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was a ‘worldwide’ dataset that included all languages in

WALS with less than 25 per cent missing data (electronic

supplementary material, table S2). Unfortunately, the

WALS database has incomplete data for many languages

and feature classes, so this left a total of 99 languages in

this worldwide dataset. The second and third datasets com-

prised 20 Austronesian and 20 Indo-European languages

that we had sufficient lexical data for and that were

well described in the WALS database. To maximize the

phylogenetic signal in the typological data, we recoded 49

of the 138 characters by splitting up aggregate categories

and combining feature states with few members (see

electronic supplementary material and table S3).

(b) Lexical data

Lexical cognate data for the languages in WALS were taken

from two sources (electronic supplementary material, tables

S4 and S5). The Austronesian lexical data were extracted

from the Austronesian Basic Vocabulary Database (Greenhill

et al. 2008; http://language.psy.auckland.ac.nz/austronesian).

This database project contains 210-item wordlists and cog-

nate information from over 650 Austronesian languages.

The Indo-European lexical data came from a published data-

set of 200-item basic vocabulary wordlists and cognate

information from 95 Indo-European languages (Dyen et al.

1992). Both the Austronesian and Indo-European databases

comprised items of basic vocabulary (terms for body parts,

kinship terms, colours, simple verbs, numbers, etc.) that

are thought to be highly stable over time and resistant to

being borrowed between languages (Swadesh 1952).

(c) NeighbourNet analysis

The worldwide NeighbourNet was constructed using

SPLITSTREE v4.8 using uncorrected P-distances (Bryant &

Moulton 2004; Bryant et al. 2005). To reduce the noise in

the network, splits were filtered according to a weight

threshold of 0.002. NeighbourNets were also constructed

for each typological/lexical dataset using the same method,

and splits were filtered to a threshold of 0.001 (electronic

supplementary material, figure S5).

(d) Character fit analysis

We constructed family trees for the Indo-European and

Austronesian language families (electronic supplementary

material, figure S4) from the standard Ethnologue classifi-

cation (Gordon 2005) and previous research on

Indo-European (Gray & Atkinson 2003; Atkinson & Gray

2005), and Austronesian (Blust 1999; Lynch et al. 2002;

Gray et al. 2009). To measure the fit of each character onto

these trees, we calculated the retention index (RI; Archie

1989; Farris 1989) for all characters in the four datasets

(Austronesian Lexicon, Austronesian Typology, Indo-Euro-

pean Lexicon and Indo-European Typology) using PAUP*

v.4b10 (Swofford 2002). We selected the RI for this compari-

son as it does not require us to estimate branch lengths as

likelihood-based character-fit analyses would. RIs are only

available for characters that are parsimony informative (con-

stant characters or characters with all unique states do not

provide information on the fit of the data to a tree). RIs

were calculated for 113/210 characters in the Austronesian

lexicon, 109/138 characters in the Austronesian typology,

183/200 characters in the Indo-European lexicon, and 116/

138 characters in the Indo-European typology.
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(e) Rates analysis

To calculate the rate estimates, trees with branch lengths pro-

portional to the amount of change between each language are

required. We used a Bayesian phylogenetic approach

implemented in the program BAYESPHYLOGENIES (Pagel &

Meade 2004) to produce a posterior distribution of phyloge-

netic trees from the binary-coded lexical cognate data. The

analysis used a two-rate model of cognate evolution that

allows cognates to be gained and lost at different rates. The

Markov chain ran for 10 million generations, and burn-in

was set to 5 million generations after inspection of log likeli-

hood plots of the parameters. The tree topologies were

constrained to match the classification trees (electronic

supplementary material, figure S4), so that each tree

sample varied only in their estimate of the branch lengths.

Trees were sampled every 5000 generations from the chain,

leaving a total of 1000 post-burn-in trees.

By constraining the tree topology to established language

groupings we minimize any bias that might result from esti-

mating the tree topology from the lexical cognate data. The

use of the lexical data to estimate the branch lengths is

consistent with arguments that lexical phylogenies based on

basic vocabulary provide good estimators of the underlying

cultural history (Mace & Pagel 1994). Moreover, the site-

specific likelihoods (indicating the fit of the data under the

model of evolution) calculated on the trees with branch

lengths derived from the typological data were essentially

identical to those obtained with lexical branch lengths

(Spearman’s r ¼ 0.997, p , 0.001)—in other words, there

is no reason to think that the use of lexical branch lengths

biases our results.

Maximum-likelihood rate estimates, m, were calculated

from these posterior tree distributions using BAYESTRAITS

(Pagel et al. 2004). BAYESTRAITS implements a continuous

time Markov model that allows characters to change between

states over small time intervals. This can be used to recon-

struct how traits with discrete, finite states evolve on the

trees in the posterior distribution. Estimates of m were

obtained for all four datasets (Austronesian lexicon,

Austronesian typology, Indo-European lexicon and

Indo-European typology). Traits with greater than 50 per

cent missing data were excluded from the analyses. For con-

stant characters, the maximum-likelihood rate estimate is

zero. However, for any trait that can vary, the true rate is

always non-zero. We can infer a rate for constant characters

by plotting the observed number of states against the rate

estimates for each feature within each of the four datasets.

We fitted an exponential curve to the data and used this to

provide a predicted rate for constant characters in each data-

set—the point on the curve where the observed number of

states is one. The results we report include the estimated

rates for non-constant characters and the inferred rate for

constant characters. We also repeated all rate analyses setting

the constant rate to the minimum estimated maximum-

likelihood rate among the variable characters. This had no

appreciable effect on the results we report.
3. RESULTS
(a) The global pattern of typological diversity

To explore global patterns of the typological signal, we

used a phylogenetic network technique, NeighbourNet

(Bryant & Moulton 2004; Bryant et al. 2005), to visualize

the relationships implied by these data (figure 1). In these

http://language.psy.auckland.ac.nz/austronesian
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Figure 1. NeighbourNet for the 99 most well-attested languages in the WALS database. This network is based on 138 typo-
logical characters and shows the signals grouping languages. Branch lengths are proportional to amount of divergence between
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networks, the length of the branches is proportional to the

amount of divergence between languages. Box-like struc-

tures represent the conflicting signals when typological

features support incompatible language groupings. If

typological features are deeply stable, then we would

expect the groupings in the network to reflect known

linguistic history and contain few boxes of conflicting

signals. In contrast, if the typological features tend to

diffuse between adjacent languages in a linguistic area

or evolve too rapidly to reveal a deep signal, we would

expect to see a star-like network with many boxes and

clusters reflecting geographical proximity or chance

resemblances.

The network in figure 1 correctly groups some of the

languages into known language families, with Indo-

European, Altaic and Nakh-Daghestanian being the most

distinct. The network also groups a number of subfamilies

together—such as the Pama-Nyungan languages (Kayar-

dild, Martuthunira and Ngiyambaa), the Bantu languages

(Luvale, Swahili and Zulu), the Oceanic languages

(Maori, Fijian and Rapanui), the Semitic languages

(Hebrew and Arabic) and the Cushitic languages (Irakw

and Oromo Harar). However, other well-known families

are not recovered, including Sino-Tibetan, Uralic, and

Trans-New Guinea. The Austronesian language family

also does not form a monophyletic group. Additionally,

the network shows evidence of a substantial conflicting

signal between structural elements (box-like structures)

and does not accurately recover many attested phylogenetic

relationships within the major language families. For

example, in Indo-European, the network links German to

French, when German is more closely related to English

(Beekes 1995).

The network does, however, show evidence for some

higher level clusters in the data. The first of these (cluster 1,

labelled in figure 1) includes the languages from conti-

nental Eurasia, which could be interpreted as indicating

an ancient common ancestry. This cluster groups the

Indo-European languages with the Uralic languages

(Finnish and Hungarian), consistent with the proposed

macro-family Indo-Uralic. These two families are joined

in this cluster by the Altaic language family (Turkish,

Evenki and Khalkha), the Dravidian language Kannada

and a number of languages from the Caucasus region:

the Nakh-Daghestanian family (Ingush, Lezgian and

Hunzib), Abkhaz (Northwest Caucasian) and Georgian

(Kartvelian). If typological features do indeed evolve

slowly enough to reveal a deep history, then this cluster

may represent the controversial Nostratic macro-family

(Renfrew & Nettle 1999). However, the inclusion of

languages such as Alamblak (from Papua New Guinea),

Awa Pit (from Colombia), Quechua (from Ecuador)

and the isolate Basque are incompatible with this propo-

sal. A second large cluster (cluster 2, labelled in figure 1)

includes the Australian languages, the Austronesian

languages, and some languages from the African families

of Afro-Asiatic and Niger-Congo. This second cluster

does not correspond to any known macro-family propo-

sals or geographical regions, however, Austronesian

languages are placed next to some other non-Austronesian

languages from Southeast Asia (Thai, Vietnamese and

Mandarin).

The left side of the network (figure 1) contains a subset

of the languages of Australia, and distinguishes between
Proc. R. Soc. B (2010)
the Pama-Nyungan languages (Kayardild, Martuthunira,

Ngiyambaa), and others from different families (Goo-

niyandi, Mangarayi). However, two other languages

from the northern tip of Australia (Tiwi and Maung)

are not included but placed in the second cluster. Another

interesting subset here may also hint at some deeper

links—most of the languages of North America are

linked together in this network (Lakhota, Slave, Maricopa

and Koasati). However, this grouping rather unusually

includes a language from Paraguay—Guarani—and does

not include other North American languages of Yaqui

and Kutenai.
(b) Modelling structural and lexical

evolution on trees

The existence of high-level clusters in the WALS data is

consistent with the proposal that some typological fea-

tures evolve slowly enough to identify deep historical

relationships. However, phylogenetic networks cannot

distinguish between similarity owing to common ancestry

and similarity owing to areal diffusion or chance resem-

blances arising through independent innovation. To

evaluate the claim that some typological features of

language are highly stable, we compared the shape and

tempo of typological and lexical evolution by modelling

their replacement through time on two language family

trees that have well-established internal subgroupings:

Indo-European (Beekes 1995; Gray & Atkinson

2003; Atkinson & Gray 2006), and Austronesian (Blust

1999; Lynch et al. 2002; Gray et al. 2009). If some

typological features are highly stable and good indicators

of common ancestry, then we would expect them (i) to fit

well with established language groupings and (ii) to show

slower rates of change than lexical features as a whole. We

extracted typological data from the WALS for the 20 most

well-attested languages in each of the two families, remov-

ing the languages with the least data. We assembled

lexical datasets for the same 20 languages from published

databases of the Indo-European (Dyen et al. 1992) and

Austronesian (Greenhill et al. 2008) vocabulary.

We assessed the shape of language evolution in these

data by estimating the fit of the typological and lexical

data onto the established family trees using the RI

(Archie 1989; Farris 1989). A stable, well-fitting charac-

ter will have an RI approaching one, while an unstable

or rapidly evolving character will have an RI approaching

zero. Histograms of the RIs for the lexical and typological

features in the Indo-European and Austronesian datasets

are shown in figure 2a. In the lexical data, the mean RI for

each character was 0.84 (s.d. ¼ 0.31) for the Austronesian

and 0.89 (s.d. ¼ 0.21) for the Indo-European vocabulary.

The mean RI per character of the typological data was

much lower at 0.36 (s.d. ¼ 0.33) for the Austronesian

and 0.32 (s.d. ¼ 0.33) for the Indo-European. In both

families, the lexical data were a significantly better fit to

the expected family trees than the typological data

(Mann–Whitney: Austronesian U ¼ 8331, p , 0.001,

Indo-European U ¼ 13 086.5, p , 0.001). These differ-

ences in fit are also evident in networks of the typological

and lexical data (figure 2a, inset) where the lexical

networks clearly show a much more tree-like signal than

the typological networks. Unfortunately, the RI is unable

to estimate the fit of constant characters on the trees.
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The characters that are constant in both language families

(n ¼ 6) are potential candidates for deep relationship

indicators. However, a closer inspection of these characters

shows that four of them are only constant owing to large

numbers of missing data (with only approx. 12.5% of the

states assigned across the 40 languages). The two charac-

ters that are constant in both families and have

appreciable amounts of data are ‘N-M Pronouns’ (with

15 of the 40 languages showing ‘no N-M pronouns’,

and the remainder missing data) and ‘order of adverbial

subordinator and clause’ (with 38 of 40 languages

belonging to the state ‘adverbial subordinators which are

separate words and which appear at the beginning of the

subordinate clause’).

It could be argued that the analysis of character fit is

biased in favour of the lexical cognate data since historical

linguistics often uses lexical information to infer linguistic
Proc. R. Soc. B (2010)
relationships. Indeed, some subgroups are defined by

major lexical innovation, such as Eastern Malayo-

Polynesian (Blust 2009). In other cases, however,

subgroups are defined by phonological and morphologi-

cal innovations (Durie & Ross 1996; Blust 2009). For

example, the Proto-Nuclear Polynesian subgroup is

demarcated by many morphological innovations, the

Oceanic subfamily is defined by the phonological

merger of *p and *b, and Central-Eastern Malayo-

Polynesian is identified by the lowering of high vowels

and four shared grammatical morphemes (Blust 2009).

The subgroups we use here represent the best available

estimate of the true underlying language tree, drawing

on a consilience of evidence from both lexical and

structural data (Durie & Ross 1996; Blust 2009). Any

bias in favour of the cognate data is therefore expected

to be minimal.

To estimate rates of change, we calculated the

maximum-likelihood estimate for the rate of evolution

across the posterior distribution of trees in each family.

Figure 3 shows a comparison of the distributions of

rates for Indo-European and Austronesian lexical and

typological characters. In both families, the distributions

of lexical and typological rates are comparable. The simi-

lar ranges evident in these plots indicate that there is in

fact no substantial difference between the slowest rates

of lexical and typological change in either family.

Austronesian rates for lexical features were on average

slightly higher than rates for typological features

(Mann–Whitney: Austronesian U ¼ 5961, p , 0.001)

while in the Indo-European data, lexical and typological

rates were not significantly different (Mann–Whitney:

Indo-European U ¼ 6718, p . 0.05). The bimodal

distribution for Austronesian lexicon indicates that its

higher average rate is due to a relatively high number of

rapidly evolving words.

While we find no clear difference between overall rates

of lexical and typological change, some subsets of typolo-

gical features may nonetheless change slowly enough to
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infer deep relationships. For example, Nichols (1992)

claims that ergativity, head marking and numeral classi-

fiers are among the most stable structural features of

language. The WALS project groups the typological

data into nine feature classes describing different aspects

of language structure. Figure 3 shows the inferred rate

distributions grouped according to the nine typological

feature classes defined in the WALS database, together

with the lexical rate estimates. This plot highlights con-

siderable variation in the rates of evolution between

feature classes and between families. For example, char-

acters in the nominal syntax feature class have some of

the highest rates in Austronesian but lowest in Indo-

European, while the reverse is true for complex sentence

structures. A univariate ANOVA shows that, when

controlling for language family, there is no effect of

typological feature class on rates of feature evolution

(F ¼ 1.27, p ¼ 0.26).

Finally, we examined the relationship between rates of

change for individual lexical and typological features

across language families. Identifying specific features

that are consistently stable across families has the poten-

tial to greatly improve our ability to detect and evaluate

deep inter-family relationships. In addition, the kinds of

regularities identified may point to constraints on the

process of language evolution itself. In agreement with

previous research (Pagel 2000; Pagel & Meade 2006),

we find that rates of lexical change are correlated

across language families (Spearman’s r ¼ 0.37,

p ¼ ,0.001). By contrast, there is no significant corre-

lation in rates of typological feature change between

Indo-European and Austronesian (Spearman’s r ¼

0.17, p ¼ 0.10). Although non-significant, this relation-

ship is positive, suggesting a small number of

structural features may still be consistently stable. We

can identify nine features that have rates in the slowest

0.20 quantile in both language families: the velar

nasal, case syncretism, numeral bases, pronominal and

adnominal demonstratives, the optative, coding of nom-

inal plurality, glottalized consonants, syllable structure

and suppletion according to tense and aspect. These

traits could be seen as candidates for investigating

deep time scales; however, caution is needed in inter-

preting these results. First, a x2-test reveals that

finding nine traits in the slowest 0.20 percentile in

both families does not differ significantly from chance

(x2 ¼ 3.487, p ¼ 0.062), and the same applies using

the 0.05 percentile (x2 ¼ 2.34, p ¼ 0.13). Second,

many of these characters reflect shared absence in the

majority of the languages in our sample. For example,

for the character the optative, WALS only has data for

30/40 of the languages in our sample, and 28 of these

are marked as ‘inflectional optative absent’. Likewise,

in the character the velar nasal, the Austronesian

languages show their well-known bias for nasal substi-

tution (Blust 2004), with 11 of the 20 languages

having initial velar nasals, eight languages missing data

and only Kilivila showing an absence. However, in the

12 Indo-European languages with data, the most promi-

nent state (10/12) is ‘no velar nasal’. Together with the

absence of any correlation in the typological rates of

evolution between the families, these patterns do not

support the existence of a set of universally stable

typological features.
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4. DISCUSSION
There is considerable interest in the possibility that ana-

lyses of typological features may enable us to ‘push back

the time barrier’ beyond the apparent 6000–10 000 year

upper limit of the comparative method (Gray 2005). It

has been suggested that typology can reveal historical

signal dating back at least this far (Dunn et al. 2005,

2008), or even tens of thousands of years earlier (Nichols

1994). The network analysis of WALS structural features

reported in figure 1 points to some intriguing possible

deep relationships, perhaps most notably the cluster link-

ing together many of the major language families of

Eurasia. However, our analysis of rates of evolution

failed to identify any typological features that evolve at

consistently slower rates than the basic lexicon. If the

signal in the lexicon does stretch back as far as 10 000

years (Nichols 1992; Ringe 1995; Kaufman & Golla

2000), then our results suggest that typological data is

constrained by a similar time horizon (e.g. Dunn et al.

2005, 2007, 2008).

Beyond the difficulty of identifying consistently stable

typological features, our findings suggest two further chal-

lenges to inferring deep ancestral relationships from

structural language data. First, the typological features

show relatively high rates of homoplasy. The classification

of lexical data into cognate sets relies on isomorphism

between sound and meaning within a vast possible state

space of the items under comparison. The coupling of

these two aspects reduces the possibility of chance simi-

larity (Meillet 1948). In contrast, there is a ‘poverty of

choice’ of possible typological states (Harrison 2003).

For example, there are only six permutations for the

ordering of the subject, object and verb that a language

can use. Accordingly, there is a 1/6 chance that any two

languages share the same ordering—in fact, since some

configurations are much more likely than others, even

this probability is an underestimate. This means that,

even for a given rate of change, shared typological features

are a less reliable indication of a common ancestry than

shared basic vocabulary, and are more likely to produce

spurious relationships.

A second issue with identifying slowly evolving typolo-

gical features is diffusion between geographically

proximate languages (Matras et al. 2006). This can

occur through processes like language shift (Thomason &

Kaufman 1988)—where speakers of one language change

to another owing to societal influences, yet retain

morphology or phonology from their original language, or

metatypy (Ross 1996)—where a language rearranges

some aspect of typology (e.g. morphosyntax) owing to con-

tact between languages without explicit borrowing between

the languages, usually as an outcome of intimate cultural

contact. Our results show a substantial non-tree-like

signal in the typological data and a poor fit with known

language relationships within the Austronesian and Indo-

European language families. On a global scale, figure 1

shows some putative geographical clusters like the

‘Nostratic’ grouping in Eurasia. In this Nostratic cluster,

Hindi does not group correctly with Indo-European but

is located with its geographical neighbour, the Dravidian

language, Kannada, suggesting that the similarities seen

here may indeed be due to diffusion. Likewise, a grouping

of Indonesian, Thai, Vietnamese and Mandarin may be the

result of areal diffusion in the Southeast Asian region
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(Bisang 2006; Matras et al. 2006). The areal diffusion of

typological features—like lexical borrowing—does make it

harder to identify common ancestry.

Diffusion and chance resemblances are serious chal-

lenges for historical inference based on typological data.

The problem of diffusion can be lessened if known instances

of diffusion are identified and removed (Ross 1996; Dunn

et al. 2008), and the data are analysed with methods that

are robust to the effect of diffusion (Greenhill et al. 2009).

For example, the WALS contains information about word

order (subject, object and verb), but additional distinctions

can be made between word order for different kinds of

clauses (e.g. main versus subordinate clauses) or between

clausal and nominal objects. By identifying these and

other more specific character states, it may be possible to

increase the historical signal in typological data (Reesink

et al. 2009), although rates of evolution will then necessarily

increase. In addition, the WALS data is unfortunately

sparse, containing only 138 characters (compared with the

approx. 200 well-attested items of lexicon), and with

many languages missing information—perhaps more

signal will be evident in a more complete dataset.

While we were unable to identify a set of consistently

stable typological features, rates of lexical evolution in

one family were a good predictor of rates in the other.

This fits with previous work showing that rates of

change in lexical items are highly correlated across the

Indo-European, Austronesian and Bantu language

families (Pagel 2000; Pagel & Meade 2006). Recent

work has also shown that rates of lexical change are pre-

dictable based on the frequency of use and part of

speech (Pagel et al. 2007) and that some meanings have

a lexical ‘half-life’—the time after which there is a 50

per cent chance that the word is replaced—in excess of

20 000 years. These extremely slow and predictable

rates of lexical change mean that basic vocabulary may

be a more practical choice for investigating questions of

deeper language origins.

Finally, our findings highlight how little we know about

the shape and tempo of language change. Contrary to

what might be intuitively expected, our results indicate

that dependencies between structural elements of

language appear to do little to slow down rates of struc-

tural change, or to limit the diffusion of features

between languages. In addition, we find that rates of

structural evolution are specific to each language family,

while lexical rates are correlated across families. One

explanation for this observation may be that the fre-

quency of use of different structural elements is an

important determinant of rates of structural change, just

as is the case for lexical change (Pagel et al. 2007).

While frequency of word use is relatively constant across

languages, the way structures are used depends on what

other structural constraints operate in a language (Meillet

1948). This may explain the variation we see in rates of

structural evolution between language families. In

future, model-based approaches like those outlined here

could be used to test hypotheses about macro-scale

language change, and so shed light on the basic mechan-

isms driving the shape and tempo of language evolution.
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