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Population size predicts technological
complexity in Oceania
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Much human adaptation depends on the gradual accumulation of culturally transmitted knowledge and

technology. Recent models of this process predict that large, well-connected populations will have more

diverse and complex tool kits than small, isolated populations. While several examples of the loss of tech-

nology in small populations are consistent with this prediction, it found no support in two systematic

quantitative tests. Both studies were based on data from continental populations in which contact rates

were not available, and therefore these studies do not provide a test of the models. Here, we show that

in Oceania, around the time of early European contact, islands with small populations had less compli-

cated marine foraging technology. This finding suggests that explanations of existing cultural variation

based on optimality models alone are incomplete because demography plays an important role in gener-

ating cumulative cultural adaptation. It also indicates that hominin populations with similar cognitive

abilities may leave very different archaeological records, a conclusion that has important implications

for our understanding of the origin of anatomically modern humans and their evolved psychology.
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1. INTRODUCTION
Humans occupy a greater diversity of habitats, use a

broader range of resources and form a wider array of

social systems than any other animal species. This diver-

sity is often explained in terms of human cognitive

ability—we are able to adapt to a wide range of environ-

ments because we are cleverer than other creatures (e.g.

Tooby & Devore 1987). A number of authors have

argued that cumulative cultural adaptation plays an essen-

tial role in allowing humans to adapt so widely (see

Richerson & Boyd (2005) for references). Humans are

much better at learning from conspecifics than any

other animal, allowing human populations to gradually

create technologies, knowledge and institutions too elab-

orate for any one person to invent. One important

corollary of this hypothesis is that larger populations will

generate more complex cultural adaptations than smaller,

isolated ones (Neiman 1995; Shennan 2001; Henrich

2006; Powell et al. 2009). Here, we test this prediction

empirically and show that in Oceania around the time

of early European contact, large, well-connected

populations had more complicated marine foraging

technology than did small, isolated populations.

Two models of cumulative cultural adaptation predict

that large populations will have more diverse and more

complex tool kits than small, isolated populations. First,

cultural transmission is subject to a process analogous

to genetic drift (Neiman 1995; Shennan 2001)—in

finite populations, the number of people adopting a var-

iant is affected by sampling variation. This means that

cultural variants are lost by chance when their prac-

titioners are not imitated. For instance, the most
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knowledgeable net maker may not be copied because

he/she is poor, unsociable or dies unexpectedly, and

thus her special skills would be lost to the population.

The rate of loss owing to cultural drift will be higher in

small populations than in larger ones because such

random losses are more likely. Lost traits can be reintro-

duced by the flow of people or ideas from other

populations, so the equilibrium amount of variation

depends on the rate of contact between groups.

Second, social learning is subject to error, and since

errors will usually degrade complex adaptive traits, most

‘pupils’ will not attain the level of expertise of their ‘tea-

chers’. In this way, inaccurate learning creates a

‘treadmill’ of cultural loss, against which learners must

constantly work to maintain the current level of expertise.

This process is counteracted by the ability of individuals to

learn selectively from expert practitioners, so that cumulat-

ive cultural adaptation happens when a rare pupil surpasses

his/her teachers (Henrich 2004, 2006). Learners in larger

populations have access to a larger pool of experts,

making such improvements more likely. As in the cultural

drift models, contact between populations replenishes

adaptive variants lost by chance, leading to higher levels

of standing variation and thus more adaptive traits

(Powell et al. 2009). Of course, ecological and economic

factors may affect the kinds of tools that people use. We

do not claim that such factors are unimportant. Rather,

models of cultural adaptation predict that in the same

economic and ecological circumstances, smaller, isolated

populations will have simpler tool kits.

Existing empirical evidence bearing on this hypothesis

is mixed. There are a number of examples of the degra-

dation of technology in small, isolated island

populations. For instance, the Tasmanian tool kit gradu-

ally became simpler after isolation from mainland

Australia (Diamond 1978; Henrich 2004, 2006; but see

Read 2006), and other Pacific groups have abandoned
This journal is q 2010 The Royal Society

mailto:mkline@ucla.edu
http://dx.doi.org/10.1098/rspb.2010.0452
http://dx.doi.org/10.1098/rspb.2010.0452
http://dx.doi.org/10.1098/rspb.2010.0452
http://rspb.royalsocietypublishing.org
http://rspb.royalsocietypublishing.org


Table 1. Data on population size, contact and tool kits for

each population in our sample. (Data were coded from the
electronic Human Relations Area Files ethnographic
database. Total number of tools includes artefacts for which
there was no techno-unit (TU) information available; mean
TU are based only on tools for which TU information was

available. The proportion of tools with TU information
ranged from 55% to 78% for each group and is not
significantly associated with mean TU (Pearson’s
r ¼ 20.089, p ¼ 0.404, n ¼ 10).)

culture population contact total tools mean TU

Malekula 1100 low 13 3.2
Tikopia 1500 low 22 4.7

Santa Cruz 3600 low 24 4.0
Yap 4791 high 43 5.0
Lau Fiji 7400 high 33 5.0
Trobriand 8000 high 19 4.0
Chuuk 9200 high 40 3.8

Manus 13 000 low 28 6.6
Tonga 17 500 high 55 5.4
Hawaii 275 000 low 71 6.6
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apparently useful technologies such as canoes, pottery

and the bow and arrow (Rivers 1926). Elsewhere in the

world, the isolated Polar Inuit lost kayaks, the leister

and the bow and arrow when all knowledgeable people

died during a plague, only to have these skills reintro-

duced by long-distance migrants from Baffin Island

(Rasmussen 1908; Golden 2006). Neither of two sys-

tematic tests of this hypothesis found any relationship

between population size and tool kit diversity or complex-

ity (Collard et al. 2005; Read 2008). However, the sample

used in both analyses did not include any measure of con-

tact between populations and was drawn mostly from

northern coastal regions of the western North America

where intergroup contact was probably common (Balikci

1970; Jordan 2009), but difficult to estimate. If, as the

cultural adaptation models predict, frequent contact

between groups mitigates the effects of small population

size, then the results from these analyses do not provide

a test of the models.

Here, we examine the effects of population size and

contact on the complexity of marine foraging tool kits

among island populations in Oceania. Because island

populations are geographically bounded and separated

by significant distances, it is possible to estimate popu-

lation sizes and contact rates with a reasonable degree

of accuracy. The groups in our sample exploit similar

marine ecosystems, and thus by focusing on marine fora-

ging tools, we minimize the effect of ecological variation.

The groups also share a common cultural descent, mini-

mizing the potential impact of cultural history. Analysis of

these data indicates that both the number of tools used for

marine foraging and the average complexity of tools are

higher in large populations than in small, isolated ones.
2. MATERIAL AND METHODS
Our sample is drawn from the electronic Human Relations

Area Files (eHRAF) (World Cultures Ethnography Database

2008) and consists of information on indigenous marine fora-

ging tool kits from 10 island societies (table 1). Rates of

contact are defined as high or low by the eHRAF Culture

Summaries. Finer-grained measures of contact were not avail-

able. We collected ethnographic excerpts indexed by eHRAF

as fishing, marine foraging or fishing gear. We used these

excerpts to generate a list of all marine foraging tools and

coded each of those tools in terms of complexity. Tool types

were established using the following criteria: (i) tools had

different names and at least one non-overlapping function,

(ii) tools had different mechanical structures, or (iii) tools

were made through different production processes. The

number of tool types varied from 13 in Malekula to 71

in Hawaii.

Tool complexity was quantified by the number of ‘techno-

units’. A techno-unit was defined by Oswalt (1976, p. 38) as

‘an integrated, physically distinct and unique structural con-

figuration that contributes to the form of a finished artefact’.

Techno-unit counts are based on verbal descriptions, illus-

trations and photographs from the eHRAF and ranged

from one techno-unit (e.g. a stick used for prying shellfish

from the reef) to 16 techno-units (e.g. an untended crab

trap made of a bamboo tube and baited lever); see the elec-

tronic supplementary material for an example of techno-unit

coding. In contrast to Oswalt, we include decorative elements

in the techno-unit counts because the production of any part
Proc. R. Soc. B (2010)
of the tool may be socially learned, and thus subject to the

dynamics of the cultural transmission process upon which

both models are based. If a given tool was present in more

than one society’s tool kit, we coded that tool independently

for each society where information was available. Next, we

computed the mean of these techno-unit estimates. We

then used the mean as the techno-unit estimate for that

tool across all societies where it was present, replacing the

original independent estimates. This helped to control for

potential coder and/or ethnographer bias and worked against

our hypotheses by decreasing variation between groups.

We used log-transformed population size, tool number and

tool complexity data because both the treadmill and drift

models predict a concave relationship between population size

and technological complexity. We attempted to control for vari-

ation in marine biodiversity using the number of fish genera per

region as listed in Fishbase (Froese & Pauly 2009) as a covari-

ate. To control for the variation in the importance of fishing, we

used data on per cent of subsistence that comes from fishing

data compiled for eHRAF by Ember et al. (1992), Ember

(2008) and by Huber et al. (2004). Previous analyses indicate

the risk of resource failure is associated with increased tool

complexity (Torrence 2000; Collard et al. 2005). To control

for this possibility, we included a number of measures of such

risk including: (i) seasonality and productivity (latitude and

effective temperature), (ii) vulnerability to catastrophic storms

(total cyclones, and mean and total wind speeds for those

cyclones for the past 10 years), and (iii) drought risk (mean

annual number of rainy days and standard deviation in daily

rainfall). Effective temperature is a measure created by Bailey

(1960) and used by Binford (2001) and Collard et al. (2005)

as a measure of ecosystem abundance (see the electronic sup-

plementary material for details). With the exception of

Hawaii, all data on cyclones were gathered from Australian

Severe Weather (2009). For Hawaii, we used cyclone data

from the National Weather Service (2009) online. All other

weather data were gathered from Weatherbase (2009).

Similarly, for each society we used three measures, taken

from the eHRAF collection description, to control for the

amount of ethnographic effort: number of publications, total

pages of publications in eHRAF and number of authors.
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We did not use tool counts for the two island populations

available in Oswalt (1976): the Pukapuka and the Tiwi.

Although including these groups does not qualitatively alter

our results (see the electronic supplementary material), we

do not think it is appropriate to mix sources in this way.

We were careful to choose our ethnographic sources ahead

of time based on inclusion in the eHRAF, and then used con-

sistent methods to infer the number of tool types and the

number of techno-units. There may have been systematic

error in our estimates of the absolute numbers of tools

owing to the fact that ethnographers did not describe all

tool types, but by being consistent in the way we chose and

coded the ethnographies, we hoped to preserve the relative

size of the numbers on different islands.
10
500 5000 50 000 500 000

population size

Figure 1. Number of tools as a function of population size.
Larger populations have significantly more tool types than

smaller populations. The trend line is based on a linear
regression of the logarithm of the number of tools against
the logarithm of population size (b ¼ 0.805, p ¼ 0.005, n ¼
10). Four of five low-contact groups have fewer tools than
expected, whereas four out of five high-contact groups

exceed the expected number of tools. Diamonds, low
contact; triangles, high contact.
3. RESULTS
Analysis of these data support the hypothesis that gradual

cultural evolution causes large populations to have a

greater number of more complex cultural adaptations

than small, isolated populations in three ways.

First, larger island populations have a larger repertoire

of tools than smaller island populations (figure 1). In a

linear regression model, the effect of population size on

the number of tools is strong and highly significant (b ¼

0.805, p ¼ 0.005). The other explanatory variables had

smaller standardized coefficients, and the Akaike infor-

mation criterion with a second order correction (AICc)

information theoretic statistic indicates that population

size is a much better predictor than any other single

explanatory variable (table 2).

We also performed a series of regressions that com-

bined population size and one of the alternate

explanatory variables (table 2). The effect of population

size on the number of tools remains strong and, in most

cases, remains significant or close to significant at conven-

tional levels. None of the alternative explanatory variables

were significantly associated with the number of tools,

and when AICc weights for all models that include popu-

lation size are summed, the total is 0.7157 (with 1 being

the maximum). This suggests that any effective model in

our set will include population size as a dependent

variable.

Second, both models of cultural adaptation predict

that contact will be less important in larger populations.

Our data provide some support for this prediction.

Figure 1 shows that four of the five high-contact societies

have more tool types than expected based on their popu-

lation size. These five societies all fall in the intermediate

range of population size. Low-contact groups tended to

have fewer tools than expected while high-contact

groups tended to have more (Mann-Whitney, U ¼ 5;

one-tailed exact p ¼ 0.075, n ¼ 5; t-test, one-tailed p ¼

0.052, n ¼ 10). AICc results suggest that contact is

important, with the model that includes contact and

population size ranked as the second-best model (table 2).

Finally, both models of cultural adaptation predict that

complex tools will be especially prone to loss because it is

harder to learn how to make them (Henrich 2004), and

they will be more affected by cultural drift if component

parts of a tool are the units of inheritance. This prediction

is supported by the data (figure 2). The mean number of

techno-units is significantly higher in larger populations

than in smaller populations (b ¼ 0.706, p ¼ 0.022).
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Again standardized coefficients for most of the alternate

explanatory variables are substantially smaller. However

the standard deviation of rainfall has a substantial effect

on tool complexity. The AICc information theoretic stat-

istic indicates that population size is the best individual

predictor, but standard deviation of rainfall is a fairly

close second (table 3). In a series of regressions that

include population size and one of the alternative vari-

ables, population size remains a strong predictor of tool

complexity, and none of the alternative predictors are sig-

nificantly associated with tool complexity. Once again, the

sum of AICc weights for all models that include popu-

lation size (w ¼ 0.6692) suggests that any informative

model in our set will include population size. According

to the AICc statistic, population size and contact is the

sixth most-preferred model for predicting tool complex-

ity, with population and standard deviation in rainfall

being the most-preferred (table 3).

To assess the robustness of our coding method and of

our sample composition, we retested our main finding—

that population size predicts number of marine foraging

tools—with a revised dataset. First, we had research

assistants recode number of tools for four groups in

our sample and used these numbers instead of those

from the original coder, and used Oswalt’s (1976) data

on Trukese (in eHRAF, Chuuk) instead of our original

coder’s estimate of the number of tools. These changes

do not qualitatively alter our main result (see the elec-

tronic supplementary material for details). Second, we

added two groups available in Oswalt’s sample but not

available in the eHRAF (the Pukapuka and the Tiwi)

to the sample. Using this new dataset (n ¼ 12), we

again find our main result: population size predicts the

number of tools in a group’s marine foraging tool kit

(see the electronic supplementary material for details).



Table 2. Each row gives the standardized regression coefficients and significance values for a multiple regression in which the

dependent variable is the logarithm of number of tool types and the independent variables are the logarithm of population
size and one of the alternative variables. (The coefficients for population size are large and mostly significant, whereas the
coefficients for the control variables are smaller and none are close to significant. Significance values based on bootstrap
analysis show a similar pattern (see the electronic supplementary material for details). Models are arranged in order of best
fit according to the AICc information theoretic statistic. The AICc value for a regression with only the constant is 0.63.)

b significance b significance AICc

AICc

weight

population 1.04 0.002 fish genera 20.413 0.110 23.39 0.06513

population 0.792 0.006 contact 0.259 0.239 23.21 0.05956
population 0.824 0.006 mean maximum cyclone wind speed 20.206 0.361 23.12 0.05711
population 0.733 0.014 publications 0.205 0.396 23.11 0.05663
population 0.988 0.017 mean rainfall per year 0.249 0.455 23.08 0.05592

population 0.871 0.007 mean rainy days per year 0.175 0.476 23.07 0.05570
population 0.918 0.012 sum of maximum wind speeds for all

cyclones
20.188 0.510 23.06 0.05539

population 0.858 0.010 total cyclones 20.123 0.628 23.03 0.05454
population 0.783 0.010 latitude 0.635 0.112 23.03 0.05451

population 0.724 0.069 importance of fishing 0.008 0.979 23.01 0.05381
population 0.844 0.019 standard deviation rainfall per year 0.065 0.822 23.00 0.05378
population 0.819 0.014 effective temperature 0.030 0.908 23.00 0.05362
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Figure 2. Mean number of techno-units by population size.
Larger populations have significantly more complex tools
than smaller populations. The trend line is based on a
linear regression of the logarithm of mean techno-units per

tool against the logarithm of population size (b ¼ 0.706,
p ¼ 0.022, n ¼ 10). Diamonds, low contact; triangles, high
contact.
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4. DISCUSSION
There is much evidence that ecological factors affect

subsistence practices and therefore the size and complex-

ity of the optimal tool kit (Bird & O’Connell 2006), and

there are a number of hypotheses about which factors

are most important. For example, Oswalt (1976)

argued that hunting mobile prey requires larger, more

complex tool kits than gathering immobile resources,

Torrence (2000) hypothesized that tool kits are larger

in environments in which the risk of resource shortfall

is high and Shott (1986) posited that mobile populations

have smaller tool kits than sedentary ones. In a

systematic test of these hypotheses, Collard et al.

(2005) found that latitude was the only predictor of

technological complexity and interpreted this result as
Proc. R. Soc. B (2010)
supporting the hypothesis that risk of shortfall is the

most important factor.

The present analysis is aimed at answering a different

question: do population size and intergroup contact

affect the cultural processes that allow populations to

evolve tool kits that are adaptive in their environment?

We believe that individuals rarely invent new tools from

scratch; instead the knowledge about how to make and

use the myriad of highly adaptive tools that characterize

human populations accumulates gradually over time as

people learn from others, make incremental improve-

ments and then serve as models for the next generation.

If this view of human adaptation is correct, the ability of

human populations to evolve the optimal tool kit as deter-

mined by ecological factors will depend on constraints

imposed on cultural adaptation by population size and

the rate of contact between populations. To test this

hypothesis, we chose to study island populations because

they are ecologically similar and because population size

and contact rates are easier to estimate than in continental

populations. Then by limiting the analysis to marine fora-

ging tools, we hoped to minimize the effects of ecological

variation on tool kit complexity. Thus, our observation

that larger populations have more kinds of marine fora-

ging tools and more complex tools than smaller, isolated

populations supports the hypothesis that gradual cultural

evolution plays an important role in human adaptation.

There are three alternate explanations of the relation-

ship between population size and tool kit complexity,

but none explains the relationship between contact and

tool kit complexity. First, it is possible that more complex

marine foraging technology increases the local carrying

capacity, resulting in larger population sizes. But it is

not clear why rates of contact would be linked to larger

population sizes. Second, large populations have more

domains of specialization (Carneiro 1967), and this

might lead to a more diverse tool kit. This only provides

a competing explanation if increased specialization is

not caused by the increase in tool complexity itself, but

by some other correlate of population size. For example,

economies of scale in large populations might permit



Table 3. Each row gives the standardized regression coefficients and significance values for a multiple regression in which the

dependent variable is the logarithm of average number of techno-units per tool and the independent variables are the
logarithm of population size and one of the alternative variables. (The coefficients for population size are large and mostly
significant, whereas the coefficients for the control variables are smaller and none are close to significant. Significance values
based on bootstrap analysis are larger, but show a similar pattern (see the electronic supplementary materials for detail).
Models are arranged in order of best fit according to the AICc information theoretic statistic. The AICc value for a regression

with only the constant is 22.91.)

b significance b significance AICc
AICc
weight

population 0.514 0.143 standard deviation rainfall per year 20.321 0.337 24.33 0.05504
population 0.727 0.026 mean maximum cyclone wind speed 20.205 0.453 24.27 0.05355
population 0.907 0.048 mean rainfall per year 0.274 0.494 24.26 0.05317
population 0.798 0.029 effective temperature 0.201 0.511 24.25 0.05301

population 0.828 0.038 sum of maximum wind speeds for all
cyclones

20.203 0.551 24.24 0.05270

population 0.715 0.030 contact 20.144 0.600 24.23 0.05238
population 0.702 0.033 importance of fishing 20.103 0.710 24.22 0.05215
population 0.732 0.030 latitude 20.127 0.652 24.22 0.05209

population 0.757 0.036 total cyclones 20.120 0.694 24.21 0.05189
population 0.632 0.093 fish genera 0.128 0.705 24.21 0.05186
population 0.670 0.052 mean number of rainy days per year 20.096 0.747 24.20 0.05171
population 0.722 0.039 publications 20.044 0.883 24.19 0.05137
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higher degrees of specialization. However, this does not

explain the relationship between tool kit complexity and

rates of contact. Finally, it may be that an increase in

population size and subsequent resource scarcity may

cause a population to broaden its diet to include resources

with lower rates of return, which in turn inspires the

invention of technologies that make food-handling (and

thus foraging in general) more efficient (Hawkes &

O’Connell 1992). Again, this cannot explain the impor-

tance of contact. In addition, we would expect some

effect of ecological variables such as seasonality, pro-

ductivity or resource risk were this the case. However, it

is important to realize that this mechanism and the cul-

tural evolutionary models discussed above are

compatible: one concerns determinants of optimal tool

kit breadth, the other constraints on achieving that

breadth. In fact, the models that best explained tool com-

plexity in our dataset included population size as well as a

measure of contact, cyclone winds or rain variability. A

more extensive study of the impact of intergroup contact

on tool kit complexity may help to explain why such

results have not been found in previous studies.

Our results also have important implications for the

evolution of human cognition. Archaeologists sometimes

assume that the cognitive abilities of a hominin species

can be inferred from the complexity of the artefacts that

they have produced. For example, the use of ochre and

other signs of modernity appear sporadically in the

archaeological record of Africa during the late Middle

Pleistocene. Since it seems unlikely that cognitively com-

plex hominins evolved and then disappeared from Africa,

some archaeologists have suggested that the finds are

incorrectly dated or otherwise artefactual (Klein 1999).

However, if population size affects technological com-

plexity, other interpretations become plausible. For

example, Powell et al. (2009) have argued that the geo-

graphical patterning of the first emergence of markers of

modern human culture, and their subsequent spatio-

temporal transience, are better explained by changes in

population size than by a late, species-wide cognitive
Proc. R. Soc. B (2010)
revolution. Similarly, Hill et al. (2009) have argued that

the sporadic appearance of sophisticated tools during the

Late Stone Age in Africa can be understood as the result

of climate-induced fluctuations in population size. Our

study provides empirical support for these arguments.

These findings are a first step in understanding the

nature of cumulative cultural gains and losses. Although

our sample size is small and our analysis is restricted to

a limited range of tool types, our results suggest that cul-

tural drift or the treadmill mechanism may have

influenced the evolution and adaptive radiation of Homo

sapiens as a cultural species.
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