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Computational modelling is an approach to neuronal network analysis that can complement
experimental approaches. Construction of useful neuron and network models is often compli-
cated by a variety of factors and unknowns, most notably the considerable variability of
cellular and synaptic properties and electrical activity characteristics found even in relatively
‘simple’ networks of identifiable neurons. This chapter discusses the consequences of biological
variability for network modelling and analysis, describes a way to embrace variability through
ensemble modelling and summarizes recent findings obtained experimentally and through
ensemble modelling.
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1. INTRODUCTION
In this article, I will describe computational modelling
approaches towards neuron and neuronal network
analysis, some of the challenges faced by modellers
and ways to overcome them. I will mainly focus
on the challenges derived from the natural
variability of neuronal network parameters and
output measures.

The neuronal networks primarily discussed in this
article are the well-characterized circuits composed
of a small number of identified neurons that are
mostly found in invertebrates. Here, the term ‘identi-
fied neuron’ refers to a neuron that exists in a small
number of copies, often a single copy, in every
animal of a species, has the same overall morphology,
synaptic connectivity and axonal projection pattern,
produces the same type of electrical activity and has
the same behavioural function in every animal. Most
notably, the network of identified neurons most fre-
quently referred to in this article is the pyloric circuit
in the stomatogastric ganglion of lobsters and crabs,
a central pattern-generating circuit that produces a
triphasic burst pattern involved in digestion in
crustaceans (see figure 1e,f for a schematic of the
pyloric circuit and a recording of the rhythmic motor
pattern it generates).

Although most of this article will focus on such
identified neuronal networks, many of the lessons
learned from these circuits and their models will
probably generalize to other neuronal structures
(Prinz 2006; Marder & Bucher 2007).
rinz@emory.edu
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2. NETWORKS ARE VARIABLE
From the moment experimentalists started measuring
the properties of neurons and neuronal networks, it
has been clear that these properties are variable. This
is not surprising, because neuronal networks are bio-
logical systems, and all biological systems show some
variability.

What do we mean by the ‘properties’ of neuronal
networks, and by ‘variability’ of these properties? As
defined here, the properties of neuronal networks
(and of any dynamic system) fall into two fundamentally
different categories, namely parameters and output
measures. The parameters that define a neuronal net-
work are biophysical properties that are approximately
constant on the time-scales considered here, and
include, for example, maximal conductance densities
of ionic channels in the membrane of network neurons,
the strengths of specific synapses in the network, and
the number and morphology of neurons in the network.
In contrast, output measures are descriptors of the
electrical network activity produced by these network
parameters. Examples of output measures are the
spike or burst frequency generated by specific neurons
in a network and the temporal relationships between
activity features in different neurons. Note that both
parameters and measures are different from a third
category of network descriptors, the dynamic variables
of a network. These are time-varying values such as
the membrane potential and intracellular calcium con-
centration of individual neurons or the activation and
inactivation state of individual membrane or synaptic
conductances. From the computational modelling per-
spective, dynamic variables are defined by the fact that
each variable’s dynamics are governed by a separate
differential equation.

The term variability as used in this article primarily
refers to animal-to-animal differences in the parameters
This journal is # 2010 The Royal Society
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Figure 1. (a–d) Network parameters and ( f,g) output measures are variable. (a) Conductance densities of ionic membrane
currents in crab inferior cardiac (triangles) and pyloric dilator neurons (circles). Each data point represents one animal.
Adapted from Golowasch et al. (1999) and Goldman et al. (2000). (b) Conductance amplitude and activation threshold vari-
ability of a potassium current in guinea pig ventral cochlear nucleus neurons. Slope conductance, defined as the slope of the

current–voltage relationship between 270 and 250 mV, is used as a measure of conductance amplitude. Adapted from
Rothman & Manis (2003). (c) Action potential bursts and current amplitudes in mouse Purkinje neurons show variable cur-
rent amplitudes in neurons with similar electrical activity. Adapted from Swensen & Bean (2005). (d) Variability in inhibitory
post-synaptic current (IPSC) amplitude at a synapse between identified leech heart interneurons. Each data point represents

one animal. Adapted from Marder & Goaillard (2006). (e) Simplified schematic of the crustacean pyloric pattern-generating
circuit. AB/PD, anterior burster and pyloric dilator pacemaker kernel; LP, lateral pyloric neuron; PY, pyloric constrictor
neuron. Thin lines, fast glutamatergic; thick lines, slow cholinergic. ( f ) Voltage traces of PD, LP and PY neurons in the
pyloric motor pattern. Scale bars, 1 s and 10 mV. Definition of intervals PDon-PDoff (black), PDon-LPoff (dark grey) and
PDon-PYoff (light grey) are indicated. (e,f ) Adapted from Prinz Bucher et al. (2004). (g) Distributions of cycle period and

PDon-PDoff, PDon-LPoff and PDon-PYoff phases in 99 lobster pyloric circuits. Phases are defined as interval duration
divided by cycle period. Grey scale assignments are as in ( f ). Adapted from Bucher et al. (2005).
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and output measures of identified neurons and neur-
onal networks. It is tempting to speculate, however,
that some of the same principles and mechanisms of
network organization that emerge from animal-to-
animal comparisons, as described below, might also
apply on a slow time-scale within a given animal.

Figure 1 shows parameter and output measure
variability in a variety of neuronal systems, both ver-
tebrate and invertebrate. Interestingly, not all
measures of network activity are equally variable
between animals. For example, figure 1g shows that
while the burst period in pyloric rhythms recorded
from different lobster stomatogastric ganglia varies
up to 2.5-fold (horizontal spread in figure 1g), the rela-
tive phasing of burst onset and offset events within a
burst cycle appears to be more narrowly constrained,
with ranges of typically a small fraction of the mean
phase (vertical spreads in figure 1g). It thus appears
that there are some network output characteristics that
are more faithfully maintained between animals than
others. It is likely that this selective maintenance of
specific network output measures reflects their
importance for the animal’s behaviour.

In addition to genetic differences between individual
animals, variability in neuronal network properties is
thought to be exacerbated by multiple mechanisms of
neuronal and synaptic plasticity that are at work in
neuronal networks. These mechanisms are engaged dif-
ferently during the development and lifetime of each
individual animal depending on its life history and the
changing environments it encountered.
3. DEALING WITH NETWORK VARIABILITY
Parameter and output measure variability complicate
the study of neuronal circuits and of the mechanisms
through which they generate electrical activity pat-
terns, because these mechanisms can differ between
different versions of an identifiable network in differ-
ent animals. For example, in half-centre oscillators
consisting of two mutually inhibitory neurons, shifting
the activation voltage thresholds of the inhibitory
synapses to depolarized values decreases the network
oscillation period when the component neurons con-
tain little hyperpolarization-activated membrane
conductance g(Ih), but has the opposite effect—an
increase in network period—when there is a lot of
g(Ih) present in the neurons (Sharp et al. 1996). The
effect of a parameter change on network activity thus
can heavily depend on the values of other network par-
ameters. When, then, can we say that we have truly
understood how a network operates?

One obvious answer is that we have understood how
an identifiable network operates if we understand the
role of all its parameters in all physiologically plausible
versions of that network. However, accomplishing this
would require that we are able to measure and vary
many, if not all, network parameters in the same net-
work instantiation (i.e. the same animal), and do so in
multiple animals to sample multiple different network
versions. This currently is, and will probably always
remain, far beyond what is experimentally feasible.

Constructing and analysing computational network
models provides an increasingly appreciated solution
Phil. Trans. R. Soc. B (2010)
to many of these problems. For example, once a com-
puter model of a network is available, it allows the
researcher to freely vary all parameters of the network
(usually one or a few at a time), including many par-
ameters that are not experimentally accessible, and
observe the resulting changes in network output. How-
ever, construction of a ‘canonical’ network model
whose parameters can then be varied is obviously
itself marred by parameter variability and our inability
to measure all network parameters simultaneously:
what parameter values are one to choose when
constructing such a model network?

An obvious and ubiquitous approach for dealing
with experimental parameter variability when choos-
ing parameter values for a canonical network model
is to measure the same parameter, for example, the
strength of a given synapse, in multiple animals and
use the mean of the resulting distribution of values
in the model. Unfortunately, decades of collective
experience with model neuron and network construc-
tion show that a model constructed with mean
parameter values obtained in this manner more often
than not fails to generate biologically realistic activity,
let alone the activity observed in the biological circuits
from which its parameter values were derived. This
somewhat discouraging finding is explained by a mod-
elling study (Golowasch et al. 2002) that examines the
distribution of neuron models that generate a certain
type of activity in the space of the underlying par-
ameter values (figure 2). This and other studies
(Goldman et al. 2000; Prinz et al. 2003, 2004;
Achard & De Schutter 2006; Taylor et al. 2006,
2009) have shown that such distributions (referred to
below as ‘solution spaces’) can have a highly non-
convex shape, meaning that the mean of any individual
parameter obtained from such a distribution may well
fall outside of the distribution itself and thus fail to
produce the desired activity when used in a model.

In addition to this ‘failure of averaging’ problem
(Golowasch et al. 2002), modelling approaches have to
address the more general question what type and struc-
ture of model to use. Neuron models vary from
extremely simplified integrate-and-fire models through
single-compartment conductance-based models to
highly complex multi-compartment models with exten-
sive spatial structure. Similarly, network models can
vary widely in the number of neurons in the network
and their type, heterogeneity and connectivity pattern.
The appropriate choice of model type and structure is
tightly connected to the scientific questions the model
is intended to address. Because they have been discussed
extensively elsewhere (Prinz 2006; Calabrese & Prinz
2009), I will not dwell on these more general questions
related to neuron and network modelling here, but will
instead continue to focus on the particular issues
raised by parameter and output measure variability.
4. EMBRACING VARIABILITY THROUGH
ENSEMBLE MODELLING
Rather than struggling or coping with parameter and
output measure variability, several recent approaches
(Foster et al. 1993; Goldman et al. 2000; Golowasch
et al. 2002; Prinz et al. 2003, 2004; Achard & De
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Figure 2. Failure of parameter averaging for model construction. (a) Voltage traces (left) and sodium and delayed rectifier
potassium conductance densities (right) in three versions of a model neuron that generate virtually identical tonic spiking
activity with different conductance combinations. Spike shapes are shown in insets. Scale bar from (c) applies. (b) Location
of model versions with different electrical activity in the model conductance space. Spiking models with electrical activity

as in (a) are indicated by large dark dots. Lighter, smaller dots indicate models that generate bursts of spikes, as in (c).
Locations of models from (a,c) are indicated by numbers. Ellipse shows the 1 standard deviation (s.d.) covariance region
around model 6. (c) Voltage traces of models that lie within the covariance ellipse but generate bursting activity different
from the tonic spiking shown in (a). Model 6 is the model obtained by averaging the conductances of all tonically spiking
models, but generates bursts of three spikes. Adapted from Golowasch et al. (2002).
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Schutter 2006; Prinz 2007a,b; Gunay et al. 2008) have
sought to embrace variability through what I propose
to call ‘ensemble modelling’, in analogy to the usage
of the term in systems biology for the modelling of
groups of metabolic networks with different under-
lying kinetics, but similar steady state (Tran et al.
2008). Rather than seeking to construct a single, canon-
ical model neuron or network to replicate the activity of
a single, ‘typical’ member of a neuron class, ensemble
modelling incorporates variability of the network
parameters, the network output measures or both.

To allow for variability of output measures, ensem-
ble modelling approaches typically define acceptable
ranges—based on experimentally observed ranges—
for network activity characteristics such as burst
period and durations, spike or burst shapes and
others. Any model parameter combination that pro-
duces model activity within these target ranges is
then deemed a suitable model and considered part of
a subset of the model’s parameter space that is called
its ‘solution space’. This is in contrast to more trad-
itional modelling approaches in which, rather than
defining a solution space containing multiple par-
ameter sets that generate acceptable network activity,
the aim is to identify a unique, optimal parameter set
that best reproduces the detailed activity pattern of a
single experimental recording. Figure 3a,b shows two
examples of pyloric network model versions that are
part of a solution space defined by ranges of allowable
output measures such as period, burst durations and
phase relationships between burst onset and offset
events in a burst cycle. The underlying cellular and
synaptic parameters of the two networks are clearly
different, indicating that similar and physiologically
functional network activity can indeed arise from
widely varying parameter sets (Prinz et al. 2004), con-
sistent with the biological variability shown in figure 1.
Phil. Trans. R. Soc. B (2010)
To incorporate network parameter variability,
ensemble modelling approaches can use a variety of
strategies to identify suitable parameter sets and
explore a model network’s solution space. Some of
these strategies for solution space mapping are sche-
matically represented in figure 4. Solution space
exploration can start from a small number of individ-
ual solutions obtained through informed hand-tuning
of a model or through a model optimization method
such as gradient descent or an evolutionary algorithm.
From such ‘anchor points’, solution space can then be
explored by varying individual parameters one at a
time (figure 4a) or interpolating between known solu-
tions (figure 4b). Alternatively, the entire parameter
space of a model neuron or network can be covered
with a random (figure 4c) or a regular (figure 4d) set
of simulation points to explore the extent and shape
of solution space. Advantages, disadvantages and tech-
nical details of these different approaches to solution
space mapping are discussed in more depth elsewhere
(Prinz 2007a,b; Calabrese & Prinz 2009).
5. STRUCTURE OF NEURON AND NETWORK
SOLUTION SPACES
Ensemble modelling approaches of various flavours
have shown that solution spaces of model neurons
and networks can extend quite far along the axes of
individual model parameters. For example, figure 3c
shows that pyloric network models that generate elec-
trical activity within physiologically realistic bounds
cover several orders of magnitude for the strengths of
all but one of the underlying inhibitory synapses
(Prinz et al. 2004). Analysis approaches aimed at
the question of whether model solution spaces are
contiguous in parameter space have furthermore
shown that solutions tend to be part of a connected
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subspace of the model’s whole parameter space (Prinz
et al. 2003; Taylor et al. 2006, 2009), although the
topological structure of a complex model’s solution
space can itself be quite complex (Achard & De
Phil. Trans. R. Soc. B (2010)
Schutter 2006) and non-convex (Golowasch et al.
2002), as shown in figure 2.

Because of the high-dimensional nature of par-
ameter and solution spaces of all but the simplest
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neuronal systems, understanding the internal structure
of a model’s solution space beyond its extent in one or
two dimensions is difficult. However, in the case of
regular datasets obtained from systematic exploration
of neuronal parameter spaces as pictured in
figure 4d, some insight into solution space structure
can be gained from a recently developed visualization
method called ‘dimensional stacking’ (Taylor et al.
2006). Dimensional stacking allows for a two-dimen-
sional representation of a high-dimensional model
parameter space without collapsing or averaging
along additional dimensions by representing each
entry in a high-dimensional dataset as a pixel whose
location in the two-dimensional ‘stack’ is determined
by its location in parameter space in a systematic
fashion. Such dimensional stacks have yielded insights
into the structure of neuronal solution spaces, most
notably the finding that these solution spaces tend to
show smooth variations of output pleasures such as
burst period over wide ranges of parameter space.

The fact that solution spaces tend to be contiguous
and often organized in a regular fashion is good news
both from the modelling perspective and from the
viewpoint of neuronal network stability and robust-
ness. Both for the modeller and for the neuronal
system itself, interconnected and smoothly varying sol-
utions mean that small variations in any given
Phil. Trans. R. Soc. B (2010)
parameter—unless they occur in a direction that
takes the system out of its solution space—are likely
only to change network activity quantitatively without
qualitatively disrupting proper network function.

Further information about the internal structure of
neuron and network solution spaces comes from
recent experimental and modelling evidence which
indicates that parameters within a solution space often
show pairwise or higher linear relationships. Figure 5
shows such pairwise and four-way correlations from
electrophysiology studies (figure 5c) and mRNA copy
number measurements (figure 5a,b) in stomatogastric
neurons (Schulz et al. 2006, 2007; Khorkova &
Golowasch 2007). Such correlations appear to be cell-
type specific, suggesting that the functional identity of
a given neuron type may reside in the set of parameter
correlation rules it maintains rather than in the value of
any particular parameter. Although the overall structure
of high-dimensional neuron and network solution
spaces remains difficult to understand, correlations of
the kind shown in figure 5 impose substantial con-
straints on the possible solution space topologies.

In addition to the experimental evidence for par-
ameter correlations within neuronal solution spaces,
such correlations are also found in model solution
spaces obtained by parameter space exploration and
subsequent selection of biologically realistic model
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versions (Smolinski & Prinz 2009; Taylor et al. 2009;
Hudson & Prinz submitted). Figure 6 shows examples
of such conductance correlations in ensembles of
bursting model neurons selected for various output
measure ranges. In contrast to the experimentally
observed conductance correlations shown in figure 5,
which are always positive correlations, the modelling
results in figure 6 also include negative pairwise
conductance correlations, i.e. instances where one
conductance decreases when the other increases. It is
not currently clear why such negative relationships
have not yet been observed in experiments, as they
appear to make both functional sense and are feasible
within the existing structures of molecular pathways
and expression regulation within biological neurons.
Phil. Trans. R. Soc. B (2010)
A further conclusion from the modelling results
presented in figure 6 is that the effects of applying
multiple output measure constraints on the shape
and structure of model solution spaces are anything
but simple, and often highly counterintuitive. For
example, bursting model neurons with burst dur-
ations between 0.5 and 0.75 s (lower left corner in
figure 6) show positive correlations between the Na
and CaT conductances and the CaS and KCa con-
ductances, and a negative correlation between the
CaT and KCa conductances, while bursting models
with burst periods between 1 and 2 s (second from
left in bottom row of figure 6) show positive corre-
lations between CaS and A and CaS and leak
conductances, and a negative correlation between
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negative pairwise conductance correlation and grey shading indicates that a pairwise correlation was present in one of the
parents. Adapted from Hudson & Prinz (submitted).
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the CaT and CaS conductances. But when combined,
the burst duration and burst period selection
criteria define a model population (leftmost panel
in second row from bottom) in which only the con-
ductance correlations related to burst duration
persist, whereas those related to burst period are
no longer present. Conversely, combining selection
criteria can also lead to the appearance of new con-
ductance correlations in the child population that
were present in neither of the parent populations.
One such example is the positive correlation between
the A and CaT conductances found in bursting
models with a slow wave peak between 255 and
225 mV and a duty cycle between 0.3 and 0.4 (right-
most panel in second row from bottom) that is not
present if only slow wave peak or only duty cycle
are constrained.
Phil. Trans. R. Soc. B (2010)
6. SUMMARY
Both the cellular and synaptic parameters of neuronal
networks and their output measures can be highly vari-
able. This poses substantial problems for efforts at
accurate computational modelling of neuronal sys-
tems, because network parameters can not usually all
be measured in the same individual and averaging
over data from multiple individuals to construct a
canonical network model that represents all networks
of a given type is destined to fail in most cases.

Ensemble modelling represents a relatively recent
approach that not only overcomes most of these prob-
lems, but also reproduces and studies biological
variability rather than ignoring it. With increasing com-
putational power available to neuroscience researchers,
it stands to reason that ensemble modelling approaches
will continue and perhaps expand the fruitful interplay
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between experimentation and computational modelling
that allows us to study signal processing in neuronal
circuits with all available tools.
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