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Abstract
Many methods have been proposed for generating an image-derived input function (IDIF)
exclusively from PET images. The purpose of this study was to assess the viability of a multimodality
approach utilizing registered MR images. 3T-MR and HRRT-PET data were acquired from human
subjects. Segmentation of both the left and right carotid arteries was performed in MR images using
a 3D level sets method. Vessel centerlines were extracted by parameterization of the segmented voxel
coordinates with either a single polynomial curve or a B-spline curve fitted to the segmented data.
These centerlines were subsequently re-registered to static PET data to maximize the accurate
classification of PET voxels in the ROI. The accuracy of this approach was assessed by comparison
of the area under the curve (AUC) of the IDIF to that measured from conventional automated arterial
blood sampling.

Our method produces curves similar in shape to that of blood sampling. The mean AUC ratio of the
centerline region was 0.40±0.19 before re-registration and 0.69±0.26 after re-registration. Increasing
the diameter of the carotid ROI produced a smooth reduction in AUC. Thus, even with the high
resolution of the HRRT, partial volume correction is still necessary. This study suggests that the
combination of PET information with MR segmented regions will demonstrate an improvement over
regions based solely on MR or PET alone.

I. Introduction
The blood radioactivity curve or input function is necessary for full quantification of tissue
kinetics from time-activity curves (TACs) using kinetic modeling techniques. The High
Resolution Research Tomograph (HRRT), a brain-dedicated, three-dimensional (3D) PET
scanner, has made possible unprecedented characterization of small features with a resolution
better than 3 mm [1]. This makes it feasible to measure the TAC from a brain blood pool, thus
negating the need for arterial cannulation normally required to measure the input function. In
addition, corrections normally applied to measured arterial data, including dispersion and delay
between the brain and radial artery, can be avoided. Several methods have been proposed to
define blood pools in cerebral PET data by clustering PET voxels or applying manually
delineated ROIs directly [2], [3]. Methods dependent only on PET data often prove difficult
due to the low SNR in PET images. We propose the use of co-registered anatomic magnetic
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resonance (MR) images to aid in the identification of internal carotid artery voxels in human
dynamic PET data. Image-derived input functions (IDIFs) were determined and compared to
the gold standard arterial blood sample data.

II. Methods
A. Overview

Emission data were acquired using the HRRT scanner. MR images were collected on a 3T
scanner. MR images were registered to PET images by normalized mutual information (NMI)
with a 6-parameter transformation using the full brain stripped of surrounding bone and tissue.
Registered MR images and PET images were resampled by trilinear interpolation to produce
a final voxel size of about 0.2 mm in each dimension.

Left and right carotid arteries were simultaneously segmented in registered MR images.
Centerline curves for the segmented carotid regions were extracted by parameterizing the
segmented voxel coordinates and modeling these curves with either single polynomials or B-
splines.

Centerlines were applied to early PET images and reregistered locally to maximize the average
activity along the centerline. Transformation matrices were found for the left and right carotids
independently. Repositioned centerlines were applied to the dynamic frames to measure carotid
TACs. Carotid ROIs were expanded to a range of diameters around the centerline and TACs
were measured and compared to blood sample data.

B. Dynamic Human Measurements
Subject data from two human tracer protocols were used in this study. Six healthy controls
received multiple [15O]water injections of 740 MBq infused over 20 s. List-mode data were
collected for 3 minutes per injection. Summed images of 60 s duration as well as dynamic sets
of 24 5-s frames were reconstructed for each injection. Eight healthy controls received multiple
[11C]MRB (norepinephrine transporter ligand) injections of 740 MBq infused over 60 s [4].
List mode data were collected for 120 minutes per injection, but in this work, data from the
first 7 min was considered. Dynamic set of images were reconstructed with frame intervals of
1 × 15 s, 5 × 30 s, 1 × 45 s, 2 × 60 s, and 1 × 90 s. Original reconstructed image dimensions
were 256 × 256 × 207 with a voxel size of 1.2 mm in each dimension. Images were reconstructed
using MOLAR, a custom cluster-based list-mode OSEM algorithm [5]. Reconstructions
included corrections for attenuation, normalization, deadtime, randoms, scatter, and motion
(measured with the Polaris Vicra tracking system, Northern Digital Inc., Ontario Canada). The
arterial input function was measured using an automated blood counter (ABC) system [6]. This
system consists of a peristaltic pump which passes blood from an arterial line through a BGO
detector. ABC data were corrected for decay, sensitivity, deadtime, external dispersion, and
delay between the brain and the external detector. The delay was determined by a whole brain
model fit. MR images were generated with an MPRAGE protocol for quick acquisition T1-
weighted images. The original resolution of the MR images was 1 mm in each dimension.

C. MR Segmentation
Carotid arteries were visually located in the MR images and bounding boxes, approximately
8 cm (sagittal axis) × 4 cm (coronal axis) × 1.5 cm (transverse axis), were defined to improve
the speed and accuracy of the segmentation (Fig. 1). Bounding boxes were positioned to include
the cervical portion of the internal carotid artery between the bifurcation with the external
carotid and the petrous segment. Images were also thresholded, eliminating values below 20%
of the maximum intensity in the bounded region, to reduce the influence of low intensity
background. The segmentation was implemented using the level sets method which relates the
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evolution of a surface to image properties through a signed distance function such that the zero
level set of this function contains the desired boundary [7]. In contrast to the more conventional
use of the image gradient in the speed term which controls propagation of the level set, the
segmentation was based on a piecewise smooth distribution of intensity, an application of the
Mumford-Shah functional pioneered by Chan and Vese for image segmentation [8]. The
variance of image intensity inside and outside the boundary is minimized through F stopping
the level set function ϕ.

(1)

(2)

Here I0 is the image intensity, s1 and s2 are the mean values inside and outside the boundary,
respectively, and λ1, λ2, ν, and μ are weights. St, the boundary is implicitly determined as St
= {(x, y, z) | ϕ(x, y, z, t) = 0}. The segmentations were initialized using the pixels with an
intensity greater than or equal to 95% of the maximum intensity in the bounded region of the
image. Both carotids were simultaneously segmented from each MR image. The result of this
segmentation is a binary image (ϕ> 0) with an initial estimate of the location of the carotid.

D. Centerline Modeling
The segmented carotid arteries were modeled by fitting the 3D coordinates of the carotid ROI
voxels in the binary images to either a single parameterized polynomial of at least third degree
or a uniform cubic B-spline curve. A uniform cubic B-spline has cubic polynomial segments
with equally spaced knots, or junctions where smoothness is enforced [9]. This step was
performed in order to reduce reliance on the accuracy of the MR segmented cross section size
of the carotids. Also, this provides a framework for controlling the tortuosity of the carotid
ROIs.

Polynomial coefficients for third to ninth order polynomials representing the centerline were
estimated by minimizing the Euclidean distance between all segmented voxels and their
respective nearest points on the parameterized curve by nonlinear least squares. The ninth order
polynomial model in three dimensions had 30 unknown coefficients estimated. The nearest
point on the centerline curve to each segmented voxel was found as a function of the curve
parameters by Newton-Raphson at each iteration of the optimization.

The spline curves were defined by the positions of control points; here, the number of such
points was varied from 3 to 9. Control point positions were also estimated using nonlinear least
squares minimizing the Euclidean distance between segmented voxels and their corresponding
nearest sampled points on the spline curve. The five control point spline curve model in three
dimensions had 15 values estimated, each control point having three coordinate values.
Segmented voxels were assigned to the nearest sampled point or node along the spline curve
for calculating distance at each iteration.

E. Centerline PET-MR Registration
From the initial PET-MR registration, centerlines were applied to the 60-s PET images for
[15O]water and to summed 45 s PET images for the [11C]MRB. Early frames were chosen by
visual inspection for visibility of the carotid arteries and low activity in the surrounding tissue
and proximal brain regions. Since registration of the PET images is optimized for the whole
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brain, small errors in this registration will cause objects which are far off-center in the image,
such as the carotids, to be misaligned. Thus, the centerline position and orientation was then
optimized by finding the values of the 6 registration parameters that maximized the average
radioactivity concentration measured along the centerline. This was done for both the left and
right carotids of each subject independently. Registered centerlines were then applied to the
dynamic data sets and time-activity curves collected.

F. Carotid ROI Diameter Variation
The approximate Euclidean distance from all points in the region local to each carotid centerline
was calculated. Carotid ROIs of varying diameter were constructed by selecting all voxels less
than specific radii from the centerline. Carotid ROIs with diameters 2, 4, 6, and 8 mm were
evaluated by application to the dynamic data sets to collect time-activity curves.

III. Results
A. Centerline Accuracy

Single polynomials centerline fits improved drastically up to seventh order polynomials, which
required estimating 24 coefficients. This can be observed in the sharper decrease in average
perpendicular distance from a segmented voxel to the centerline model as the order of the single
polynomial is increased (Fig. 2). Average distance from a segmented voxel to the modeled
centerline for a ninth degree polynomial was 1.5 ± 0.4 mm. Spline curves with three control
points or more performed similarly to the higher order single polynomials. Average distance
from a segmented voxel to the modeled centerline for a spline curve with five control points
was 1.2 ± 0.2 mm. This approach, though, required much less computation time.

B. Re-registration
The left and right carotid centerlines were independently reregistered to early PET images. The
ipsilateral and contralateral transformation matrices were applied to each centerline and the
resultant positions compared. If the datasets were perfectly matched, the transformation
matrices from left and right carotids would be identical. The distance between a given centerline
transformed by its own transformation matrix and that same centerline transformed by the
matrix from the other centerline from the same scan was computed. This distance should
approach zero if both matrices were similar. The average distances are given in Table 1 for
both centerline models and clearly demonstrate the need for individual carotid registration.

C. Comparison of IDIF to ABC
IDIFs were similar in shape to the TACs collected with the ABC system. The early maximum
peaks were in good temporal agreement after delay correction of the ABC data [10]. The curves
for re-registered carotids were generally higher than corresponding uncorrected application of
the carotid segmentations to PET data (Fig. 3). ABC data which had a finer temporal resolution
was rebinned, averaging values around the same time points as the IDIF data. However, the
ABC curve peaks were still higher for the same subject. This is due to the partial volume effect
as the carotid diameter (~ 5 mm) is not sufficiently large to provide accurate quantification for
the HRRT (~ 3 mm resolution).

The area under the curve (AUC) was calculated for IDIFs and compared to the blood sampled
curves before and after local re-registration for both left and right carotids (Fig. 4). AUC was
calculated over the first two minutes post-injection for [15O]water and over the first seven
minutes for [11C]MRB. Average AUC ratio improved from 0.40 ± 0.19 for centerlines
positioned with initial registration to 0.69 ± 0.26 for centerlines positioned by local re-
registration. Left and right carotids AUC values for each subject differed by 0.10 ± 0.09 or
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about 10% of the blood sampled AUC before re-registration. This value increased to 0.18 ±
0.13 after local re-registration. Higher variability between the left and right carotids after re-
registration could indicate unequal accuracy of re-registration for the left and right carotids.

Increasing the carotid ROI diameter produced a steady decline in AUC from the value measured
using only the centerline (Fig. 5).

IV. Discussion
The proposed method successfully characterizes a carotid ROI in PET images utilizing
anatomical MR information with minimal user intervention. It is only necessary for the user
to specify the general area of the carotids by locating the bounding box. TACs measured by
this method were of similar shape to curves measured by continuous blood sampling.

Local re-registration of the MR-based centerline to the PET images improved results
demonstrating some misalignment of the carotids when using a transformation based solely
on a brain registration. The large differences between carotid positions after registration using
only the left or right carotid suggest that independent registration is necessary for accurate
alignment. The need for a separate re-registration for left and right carotids was not expected.
This difference may indicate a subtle scale distortion between the high resolution MR and PET
images. Carotid flexion could also contribute to errors in registration.

Both single polynomial and spline curve models of the centerline produced similarly accurate
approximations to the true ROI centerline. However, the spline fitting algorithm proved to be
much better computationally. The centerline model easily allows the carotid diameter to be
experimentally changed and subsequent TACs analyzed. It could also be expanded into a more
complete tubular model which could serve as a framework for incorporating warping or flexing
effects.

The smooth reduction in AUC ratio with increasing diameter is indicative of the partial volume
effect. With partial volume correction, one would expect to eliminate this dependency on size
of the ROI and would also expect better recovery of the peak TAC value. Future work will
include a partial volume model to correct for both partial volume and spillover effects.

Local re-registration using both carotids simultaneously did not initially produce results
comparable to independent registration. The increase in variability between left and right
carotids with re-registration and overall increase in AUC ratio suggest that possibly one of the
two carotids in each subject has a much more accurate re-registration. Determining whether
the left or right transformation is more accurate for a particular and subject and applying this
transformation to both carotids may improve results.

MR angiography utilizes techniques to more clearly image blood vessels for diagnosis. These
techniques could potentially improve segmentation of the carotid artery. These methods
include the use of gadolinium contrast agents, time-of-flight measurements, and MR
acquisition sequences, such as “dark blood”, to highlight the vasculature [11]. Ideally, any
adjustment to the MR protocol to highlight the carotids would not come at the expense of high
contrast and detail in the brain regions. Furthermore, additional injections or lengthy MR
sequences could be a burden to the human subjects. Improvements to the segmentation
algorithm may yield a more accurate determination of the carotid diameter along the entire
length of the vessel. When registered locally to the PET data through the centerlines, diameter
information would aid in subvoxel delineation of the PET images, and would be of great value
for the partial volume correction.
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The results of this study confirm that MR-derived carotid regions can be applied to PET data
with appropriate re-registration for the purposes of IDIF extraction. The higher resolution and
anatomical detail possible with MR images could reduce errors related to low SNR when
clustering in PET data along [12].
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Fig. 1.
Maximum intensity projections of (A) T1-weighted MR image of human head with brain
subtracted for clarity and (B) zoomed image of centerlines in early PET image. (A) Yellow
box on orthogonal MR image shows approximate location of bounding box. (B) Initial position
of centerline as determined by whole brain registration is shown in green. Position of centerline
after local re-registration is shown in red.
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Fig. 2.
Average distance between segmented carotid voxels and nearest point on centerline curve as
a function of curve complexity. Single polynomial curves of 7th degree and higher performed
similarly to spline curves having 3 to 9 control points.
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Fig. 3.
Example of results for an individual subject. Spline centerline approximation with five control
points was used. Note that peaks are temporally well synchronized. The curve for centerline
positioned by whole brain registration (shown in green) is lower than that for centerline
positioned by local re-registration (shown in red). Both are lower than the curve derived from
the automated blood counter (shown in blue).
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Fig. 4.
Ratio of centerline AUC to blood sampled AUC averaged over all subjects (n = 14) for left
and right carotids. Single polynomial of 9th order and 5 control point spline centerline models
were used. “Initial” values are derived from centerline positioning using the original brain
registration. “Registered” values are derived from centerline positioning using the local re-
registration. Far right “avg” values are averaged over left and right carotids.

Fung et al. Page 10

IEEE Nucl Sci Symp Conf Rec (1997). Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
Ratio of AUC of expanded carotid ROIs to AUC of centerline. Increasing diameter steadily
decreases AUC ratio. Average diameter of the carotid artery is approximately 5 mm.
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Table I

Difference between registration with ipsilateral and contralateral transformation matrix

Centerline Model Right Left

Single Polynomial (9th order) 12.6 ± 5.9 mm 9.0 ± 7.6 mm

Spline (5 Ctrl Pts) 4.6 ± 1.5 mm 9.0 ± 7.6 mm

IEEE Nucl Sci Symp Conf Rec (1997). Author manuscript; available in PMC 2010 July 1.


