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Long-Timescale Molecular-Dynamics Simulations of the Major Urinary
Protein Provide Atomistic Interpretations of the Unusual
Thermodynamics of Ligand Binding
Julie Roy and Charles A. Laughton*
School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
ABSTRACT The mouse major urinary protein (MUP) has proved to be an intriguing test bed for detailed studies on protein-
ligand recognition. NMR, calorimetric, and modeling investigations have revealed that the thermodynamics of ligand binding
involve a complex interplay between competing enthalpic and entropic terms. We performed six independent, 1.2 ms molec-
ular-dynamics simulations on MUP—three replicates on the apo-protein, and three on the complex with the pheromone isobu-
tylmethoxypyrazine. Our findings provide the most comprehensive picture to date of the structure and dynamics of MUP, and how
they are modulated by ligand binding. The mechanical pathways by which amino acid side chains can transmit information
regarding ligand binding to surface loops and either increase or decrease their flexibility (entropy-entropy compensation) are
identified. Dewetting of the highly hydrophobic binding cavity is confirmed, and the results reveal an aspect of ligand binding
that was not observed in earlier, shorter simulations: bound ligand retains extensive rotational freedom. Both of these features
have significant implications for interpretations of the entropic component of binding. More generally, these simulations test
the ability of current molecular simulation methods to produce a reliable and reproducible picture of protein dynamics on the
microsecond timescale.
INTRODUCTION
The mouse major urinary protein (MUP) is a 19 kDa member

of the lipocalin family (1). The major features of its structure

(2) are a b-barrel of eight strands (a–h) linked by short loops

(L1–L7), plus one a-helix toward the C-terminus (see

Fig. S1 in the Supporting Material). The barrel is closed at

one end, and the other end provides an entrance into the

small, deep, and very hydrophobic central cavity. In nature,

the protein is proposed to act as a molecular sponge, excreted

in the urine to provide a slow-release mechanism for small,

volatile mouse pheromone molecules. MUP has provided

a fertile test bed for studies of the thermodynamics of

ligand-protein recognition. Using isothermal calorimetry,

Bingham et al. (3) showed that despite its hydrophobic

character, binding of the natural pheromone 2-methoxy-3-

iosbutylpyrazine (IBM) to MUP is driven by enthalpy, not

entropy. Sharrow et al. (4,5) made the same observation

with another ligand, 2-sec-butyl-4,5-dihydrothiazole (SBT).

Associated x-ray crystallographic and NMR studies with

IBM (6) and other ligands (7–9) suggested that ligand

binding restricts protein flexibility in certain regions but

increases it in others (a form of entropy-entropy compensa-

tion), and it was concluded that binding is driven by en-

thalpic terms associated with ligand-protein nonbonded

interactions. This was something of a puzzle, as it was gener-

ally assumed that, in purely enthalpic terms, new interactions

that form between the ligand and the protein are almost
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equi-energetic with those lost between the ligand and the

solvent. Subsequent molecular modeling studies (6) sug-

gested an explanation: the binding cavity is so hydrophobic

that even in the absence of a ligand, water molecules prefer

to avoid it. Simulations predicted an average hydration

density of just 0.2–0.3 g/cm3. Binding of the ligand is thus

predicted to release very few water molecules from the

cavity, which would explain the negligible entropic contribu-

tion, and create many new favorable nonbonded interactions,

explaining the favorable enthalpic term. In view of the tenet

that ‘‘nature abhors a vacuum’’, this conclusion (10) origi-

nally met with some resistance; however, several examples

of this process of dewetting have now been observed in a

variety of situations (11,12).

Molecular modeling methods have also been used to look

at the issue of entropy-entropy compensation. The residue-

specific configurational entropies that can be extracted

from NMR relaxation data may be directly compared with

values obtained from simulations. However, the method-

ology for doing this is not straightforward, since there are

issues regarding how the individual residue motion should

be decoupled from overall protein tumbling, and which

model should be used to describe the time dependency in

the orientations of the selected bond vectors. Macek et al.

(13) performed 30-ns simulations on MUP and its complex

with SBT. Their results provided qualitative support for

the view that ligand binding can increase the mobility of

many residues in the protein; however, to complicate

matters, there is also NMR evidence that on a much longer

timescale (milliseconds), ligand binding appears to reduce

MUP’s mobility (14).
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Modern computational resources make it feasible to

perform microsecond-timescale molecular-dynamics (MD)

simulations on proteins such as MUP to help resolve or at

least clarify some of the issues surrounding ligand binding

to this protein. However, conventional all-atom MD simula-

tions of this length are still not well established, and thus

must be undertaken with some caution. We must bear in

mind that the underlying force fields were parameterized

some time ago and have not been rigorously tested in this

time regime. An illustration of the problems that can arise

was recently provided in the related area of DNA simulation,

where the observation of unrealistic and irreversible struc-

tural changes when simulation timescales reached beyond

20–30 ns led to a major effort to reparameterize the AMBER

force field (15). Building on Duan and Kollman’s (16) pio-

neering simulations of the villin headpiece, a number of

studies have conducted microsecond-scale MD simulations

of proteins and peptides; however, most of these works

employed enhanced sampling methods and/or some level

of coarse-graining. As a result, they have not provided an

opportunity to answer the simple question: Are current

atomistic force fields capable of providing a stable simula-

tion of a small, well-folded globular protein on the micro-

second timescale?

To address this issue, we used HECToR, the national

supercomputing service of the United Kingdom, to perform

six 1.2-ms simulations of MUP—three on the apo-form of the

protein, and three on its complex with IBM. The simulations

were performed using AMBER9 and the parm03 force field.

The three replicate simulations of each system differed only

in the initial orientation in space of the protein. The data set

therefore provides an unprecedented view (to our knowl-

edge) of the structure, dynamics, and recognition properties

of MUP, as well as valuable data for validating the general

simulation methodology employed.

Here we report the initial conclusions drawn from this

study. We examine general issues pertaining to equilibration,

convergence, sampling, stability, and reproducibility, and

specific issues regarding MUP-IBM recognition (in partic-

ular, how ligand binding affects protein dynamics and hydra-

tion), and also identify some surprising behavior in the

bound ligand.
MATERIALS AND METHODS

The starting structures for the protein were taken from the crystal structures

of wild-type MUP (2ozq) (17) and wild-type MUP bound to IBM (1qy1) (3).

Crystallographically observed solvent molecules were retained. The ioniza-

tion/tautomeric states of the amino acid side chains were assigned using the

web-based WHATIF tools (http://swift.cmbi.ru.nl/servers/html/index.html).

The protein parameters were taken from the Amber ff03 force field (18), and

parameters for the ligand molecule were generated within the antechamber
module of Amber 9 (19) using the General Amber Forcefield (20). Three

replicates of each structure were generated by performing random rotations

of the original coordinates about the x, y, and z axes. Each replicate was then

immersed in a truncated octahedral box containing an additional ~19,000–

21,000 TIP3P water molecules and sufficient Naþ ions to neutralize the
system. All parameter files and the initial configuration of each system are

included in the Supporting Material.

All systems were initially conditioned using our standard multistep

energy-minimization and restrained-dynamics protocol (21). The production

phase of the simulations consisted of 1.1–1.2 ms of unrestrained MD simu-

lation at constant temperature and pressure (T ¼ 300 K; P ¼ 1 atm) per-

formed using the pmemd module of Amber 9. SHAKE was used to constrain

all bonds to hydrogen at equilibrium values, permitting a 2 fs time step.

The particle mesh Ewald method was used to treat long-range electrostatic

interactions. Coordinates were saved every 1 ps. Trajectory analysis was

performed using the ptraj module of Amber 9, plus the pcazip tools for

principal component analysis (PCA) (22) distributed by CCPB (http://

www.ccpb.ac.uk/software). Cluster analysis was done using the backbone

atom root mean-square deviation (RMSD) as the distance metric, and

complete linkage as the clustering algorithm. Schlitter configurational entro-

pies were calculated from trajectories after mass-weighted least-squares

fitting of all atoms was completed. Further parameters are described in the

Discussion. Molecular graphics were produced using the UCSF Chimera

package (23) from the Resource for Biocomputing, Visualization, and Infor-

matics at the University of California, San Francisco (supported by NIH P41

RR-01081), and VMD (24).
RESULTS AND DISCUSSION

Throughout the text, we refer to the three replicate simula-

tions of the apo-form of MUP as apo1, apo2, and apo3,

and to the three replicate simulations on MUP bound to

IBM as ibm1, ibm2, and ibm3.
Equilibration and stability

The initial examination of the trajectories revealed that the

first 10 residues exhibit highly dynamic and variable behav-

iors. These residues are not part of any secondary structural

element, but in the crystal structures they adopt a random coil

conformation and pack closely against the bulk of the pro-

tein. Because of the extensive and slow dynamics of this

region, and its variability between replicate simulations, it

was excluded from most of the analyses of equilibration

and sampling.

All simulations eventually reached equilibrated states,

with heavy atom RMSDs of 2.5–3 Å from the respective

starting structures and 1.5–2 Å from the respective time-

averaged structures. However, the RMSD time-course plots

(see Fig. S2) clearly show that for the apo replicates, equili-

bration/relaxation is a process that can take >100 ns. The

ligand-bound systems appear to equilibrate much more

rapidly, particularly if the RMSD from the time-averaged

structure is used to assess this. Despite the variations in the

rates of equilibration, the conformational changes involved

are consistent between replicate simulations and are domi-

nated by (small) changes in the conformations of the loops

linking the b-barrel strands. The most significant motion,

that of loop L3 around residue 60, is discussed further below.

For an alternative view of equilibration and stability, we

analyzed secondary structure conservation and how well

the molecules remained within the favored regions of the

Ramachandran map. All simulations remained very close

to the crystal structure distributions, with 83–88% of
Biophysical Journal 99(1) 218–226
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residues in the allowed regions, and never more than 1% in

the disallowed regions (the balance being in the generously

allowed region). Although secondary structure elements

sometimes showed reversible fraying, no general degrada-

tion over time was discernible (example data from apo1

are shown in Fig. S3).

We also found that the simulations retained structures in

good agreement with NMR data. Using CamShift (25), we

calculated the main-chain chemical shifts for 20 equally

spaced structures taken from simulation apo1. As shown in

Fig. S4, the correlation between the average values of the

Ca chemical shifts and the deposited values (BMRB entry

1470) (26) is excellent (R2 ¼ 0.91) and the errors are

uniformly distributed, with no evidence of, e.g., larger errors

in the more apparently mobile regions.
Protein dynamics: sampling and reproducibility

Cluster analysis provides a low-resolution means of exam-

ining issues regarding sampling and reproducibility. If the

simulations were perfect, we would expect the replicate

trajectories to populate the same clusters with the same

frequency, and to show frequent hops from cluster to cluster.

Clustering the snapshots from all three apo simulations

together, we see that this is far from the case (Fig. 1 a; for

color version see Fig. S5). Despite the fact that data from

all three replicate simulations was pooled before the analysis,

clustering redivides the structures broadly along replicate

lines. This indicates that even over 1 ms, the simulations

retain some memory of their initial state. We also note that

most of the jumps between clusters are unidirectional; in

other words, these simulations are clearly not completely

converged. When applied to the pooled snapshots from the

ligand-bound simulations (ibm1–ibm3), the results are some-

what better (Fig. 1 b). In addition to the cluster that contains

the starting structures, there is a further cluster populated

by snapshots from each of the three replicate simulations,

and three more that feature snapshots from two of the three

simulations. There are also more cluster transitions, and

more of them are bidirectional. Repeating the cluster analysis
FIGURE 1 Cluster analysis of apo (left) and ibm (right) simulations. The

clusters containing the crystal structures are outlined in black. Numbers in

circles give the percentage occupancy of each cluster, and arrows indicate

cluster transitions.
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on the basis of backbone atoms alone gives essentially the

same results (results not shown).

PCA allows us to see how well the dynamical behavior of

the systems converges between replicates and is conserved

or perturbed by ligand binding. As discussed by Rueda

et al. (27), one must consider a constant and suitably dimen-

sioned subspace for this analysis. Performing PCA on each

trajectory independently, we find that between 48 and 60

eigenvectors are required to capture 90% of the variance.

Comparing them pairwise, we find that the apo simulations

have an average subspace overlap in the first 48 dimensions

of 0.80, whereas for the ibm simulations this is 0.84. Again,

as discussed by Rueda et al. (27), one must calculate the

Z-scores to assess the significance of these values. To that

end, we created 25 random models (by random permutations

of the atoms in trajectory apo1) and calculated the subspace

overlaps for 300 independent pairwise comparisons of those

models. The average subspace overlap had a Z-score of 53.2

for the apo simulations and 55.8 for the ibm simulations.

Both are high values, indicating that overall, the replicate

simulations show conserved dynamical behavior, and, in

line with other observations, this is particularly the case in

the ligand-bound state. However, if we look at the actual

dot products between eigenvectors from replicate simula-

tions, we see that in general, the individual modes are not

well conserved. On average, the highest dot product between

any pair of eigenevectors is 0.32 for the apo simulations and

0.35 for the ibm simulations. There is, however, one highly

conserved mode, which features correlated motions in loops

L2 and L3 (results not shown). When the PCA is performed

after pooling replicate trajectories, the subspace overlap

between the apo and ibm trajectories is 0.85 (Z-score:

57.2) and the average maximal dot product is 0.35. Thus,

we see that ligand binding produces no perturbation to the

dynamics of the system that is discernible over interreplicate

variation.

The above analysis tells us that all of the simulations

occupy the same essential dynamical subspace; however,

they do not necessarily sample the same regions of this

space. RMS fluctuations (Fig. 2) provide a more detailed

view of protein flexibility. As expected, the most mobile

regions of the structure are in the loops. We see that the fluc-

tuation profiles are well conserved between replicates, but

that some variation exists, particularly (and not unexpect-

edly) in the most mobile regions. Fig. 2, a and b, also include

the RMS fluctuation profiles generated from analysis of the

three individual time-averaged structures. This provides

a simple test of reproducibility: regions with low RMS fluc-

tuation are those that are very similar in different replicates,

whereas high fluctuations identify divergence in the time-

averaged structures. Again, not unexpectedly, it is in the

most flexible regions of the protein that it is most likely

that the time-averaged structures of the replicates will be

somewhat divergent, since it is harder to achieve full

sampling. Of interest, however, this is not always so; for



FIGURE 2 RMS fluctuations of individual amino acids

for replicate apo (left) and ibm (right) simulations. In

each case the lowest plot is calculated from the fluctuations

between the time-averaged structures from each simula-

tion, whereas the plots stacked above are calculated from

all snapshots within an individual simulation and are dis-

placed vertically by 1, 3, and 5 Å, respectively, for clarity.

Ligand-Induced Changes in MUP Dynamics 221
example, around L2 (residues 43–47) is a dynamic region

that appears to have been very similarly sampled in the repli-

cate simulations. We hypothesize that this type of behavior

may indicate regions that, though flexible, have relatively

simple harmonic motions that can be well sampled over

this timescale, whereas in other cases (see, e.g., around L3,

residues 57–63) the motion may involve complex ‘‘jumping

among minima’’ that make it much harder to sample the

motion well.

To check the reliability of these observations, we calcu-

lated an experimental RMS fluctuation profile for apo-

MUP from the 10 structures deposited in PDB entry 1BF3

(28). The profile is in good agreement with that obtained

from the simulations (Fig. S6), but there are several discrep-

ancies: 1), the N-terminal region appears more stable in the

experimental data than we observe; 2), the variability around

loop L4 is greater than the simulations predict; and 3), loops

L5 and L6 appear more flexible in the simulations than the

NMR data show. However, as we will show below, some

of these differences are probably not statistically significant,

and in any case we must be aware that in analyzing the NMR

data, we are using a small number of structures that have

been chosen for deposition by criteria other than that they

are representative of an equilibrium distribution.

Fig. 3 shows how RMS fluctuations change on ligand

binding. We see that there is no obvious relationship

between how close a residue is to the bound ligand and
FIGURE 3 Average change in RMS fluctuation of each amino acid on

ligand binding (top), and associated p-values (below). RMS fluctuation

changes that have a p-value < 0.2 are highlighted. Black bars at the top

of the plot identify amino acids within 5 Å of bound ligand.
any changes in that residue’s dynamics. As noted above,

although certain regions of the protein are rigidified, others

become more dynamic. At this stage, we have not attempted

to make a detailed comparison of our results with those from

an S2 analysis of NMR experiments, for two reasons: First,

as discussed in the Introduction, transforming the MD trajec-

tory data into the NMR observables is nontrivial and requires

a detailed study outside the scope of this initial report.

Second, there is not always a straightforward interpretation

for what the NMR experiment typically measures. For

example, we took one random 1-ns section from the equili-

brated portions of each trajectory and used a simple

model-free approach (29) to calculate backbone amide S2

values. We then took the same trajectory sections and calcu-

lated the backbone RMS fluctuations. The correlation

between the calculated S2 values and calculated RMS fluctu-

ations is only modest (R2 ¼ 0.23 for the apo data, and R2 ¼
0.24 for the ibm data), and if we try to compare changes in S2

with changes in RMS fluctuations as a result of ligand

binding, there is effectively no correlation at all (R2 ¼
0.06). This is not necessarily surprising, since the NMR

approach only detects changes in the librational motion of

the NH vectors, whereas RMS fluctuations are sensitive to

translational motions as well.
Mechanics of ligand-induced changes
in protein flexibility

With three replicate simulations, we can use a simple

Student’s t-test to assess the significance of the various

changes in residue dynamics we observe. This reveals that,

in fact, only a few of the features seen in Fig. 3 (in particular,

the rigidification of the structure in L2 and the loosening of

the structure in L3) are statistically significant. Although

analyzed in terms of NMR (S2) order parameters rather

than RMS fluctuations, these changes were also observed

in the shorter (30 ns) simulations of Macek et al. (13). A

detailed analysis of the trajectories allows us to provide

some insight into how these changes in dynamics come

about.

Loop L3 constitutes one of the most flexible regions of the

protein, and the initial structural adjustment of this in the

dynamics is a large part of the equilibration process

described above. In all the trajectories of both the apo- and

ligand-bound systems, the loop swings from its crystal
Biophysical Journal 99(1) 218–226
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structure conformation to one that brings it closer to loop L2

(Fig. 4; color version Fig. S7). This appears to be driven by

hydrophobic effects, since there are no clear and consistent

hydrogen bonds, salt bridges, or other specific interactions

favoring the process. In the apo simulations, this equilibra-

tion process is accompanied by a lateral shift in residues

34–38 in L1, such that Phe-38, which forms part of the

binding-site cavity, is shifted outward by ~1.5 Å on average.

This shift appears to improve the loop-loop interactions and

stabilizes the new conformation of L3. However, in the

ligand-bound simulations, the lateral shift of residues 34–

38 does not occur, presumably because this would disturb

interactions between Phe-38 and the ligand. As a result,

the interactions with L3 are not so optimal, and L3 continues

to oscillate between the closed position and one more similar

to the crystal structure conformation. Plots of the distance

between the Ca atoms of residues 35 and 61 show this

process clearly (Fig. S8). We note that these observations

are not quite the same as those made in the previous study

by Macek et al. (13). In that work, only the apo simulations

showed the closing of L3 toward L2, and in that case it was

diagnosed as being the result of new H-bonds formed

between Asn-35 and both Arg-60 and Asp-61. The failure

of the ligand-bound systems to undergo this conformational

transition was attributed to interactions between Phe-56 and

the ligand impeding this motion. In the work presented here,

although Asn-35 and Asp-61 are frequently close in the apo

simulations, they are rarely in a suitable relative orientation

for effective H-bond formation, and although the side chain

of Arg-60 does form transient interactions with Asn-35 in the

early parts of the simulations, after ~100 ns it adopts a much

more solvent-exposed orientation and never approaches

Asn-35 closely again. The role of Phe-56 in this process is

also not clear. Though this residue does indeed undergo
FIGURE 4 Comparison of the L3 regions of the apo-crystal structure

(light gray), time-averaged structure from the three apo simulations

(dark gray), and time-averaged structure from the three ibm simulations

(medium gray). Phe-38 and the ibm ligand are also shown.
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a small conformational shift on ligand binding, there is no

statistically significant alteration in the dynamics of the

protein in this region as a result.

The loop containing residues 48–50 shows the most

significant reduction in flexibility on ligand binding.

Comparing the time-averaged structures from the apo- and

ligand-bound simulations provides a fairly straightforward

mechanical explanation for this. Ligand binding results

in a reorientation of Phe-90, which forms part of the hydro-

phobic cavity. This switch results in it packing much more

firmly against Tyr-80, reducing its dynamics. This in turn

is passed on to the loop via the van der Waals contacts

between Tyr-80 and Leu-52 (Fig. 5; color version Fig. S9).
Calculations of configurational entropy changes

The observation that the structure of MUP permits the small

conformational adjustments that accompany ligand binding

to lead to both increases and decreases in protein flexibility

in different regions is in agreement with the observations

from NMR experiments. Such findings have led to the idea

of entropy-entropy compensation as a mechanism to mitigate

the reduction in configurational entropy that typically

accompanies complex formation. A variety of methods are

available to estimate entropy changes from simulation data.

Methods based on quasi-harmonic approximation are partic-

ularly popular, and the best-known approaches are those

developed by Schlitter (31) and Andricioaei and Karplus

(30). Though they differ somewhat in philosophy, particu-

larly as regards how they cope with motions that have

frequencies beyond the classical limit, in practice they yield

very similar results. We used the Schlitter approach to esti-

mate the net effect of all the dynamical changes observed

in the simulations on the configurational entropy change.
FIGURE 5 Comparison of the L2 region in the time-averaged structures

from the apo (dark gray) and ibm (light gray) simulations. Ligand binding

shifts Phe-90, which then packs tighter against Tyr-80, which in turn

rigidifies residues 48–50 via the interaction with Leu-52.



FIGURE 6 Integrated RDFs for water in the apo simulations (dotted line)

compared to the ibm simulations (dashed line). The g(r) values have been

scaled so that the equivalent function for the ligand (solid line) integrates

to one.
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Taking 1000 equally spaced snapshots from the first micro-

second of each simulation, the change in the protein config-

urational entropy that accompanies ligand binding is found

to be insignificant (2.0 5 22 kJ/mol). Since entropy calcula-

tions of this type are known to be very sensitive to sampling,

it is interesting to see whether the availability of unusually

long simulations offers a significant advantage. Repeating

the calculations using 1000 equally spaced snapshots taken

from the first 100 ns of each simulation, the configurational

entropy change is calculated to be �23 5 25 kJ/mol; i.e.,

ligand binding tightens the protein structure. However, we

recall that for the apo protein in particular, the first 100 ns

features a certain amount of relaxation rather than equili-

brated sampling, which may affect the result. Repeating

the calculation using the second 100 ns of each trajectory,

the result is again that the entropy change is insignificant

(1.3 5 20 kJ/mol). Clearly, this result must be reconciled

with the NMR observations that ligand binding tends more

often to increase backbone S2 values than decrease them.

In view of our observation (discussed above) of the limited

correlations between RMS fluctuations and S2 values, we

hypothesize that we may be observing another type of

entropy-entropy compensation, where a reduction in transla-

tional freedom for a residue is offset by an increase in libra-

tional motion.

Configurational entropy calculations of this type are sensi-

tive to simulation time and sampling (32). We previously

described (33) how estimates for the entropy S(t) calculated

over a given simulation time t appear to fit a function of the

form:

SðtÞ ¼ Sinf ¼ atn (1)

Where Sinf is the entropy for a simulation of infinite length,

and a and n are parameters that may be found by curve-

fitting. As shown in Fig. S10, the simulation data presented

here fit this functional form fairly well; however, in this case

the approach does not deliver any significant benefits. The

estimates for Sinf calculated from individual replicate trajec-

tories are slightly more divergent than the unextrapolated

values, and the values of a and n are also very replicate-

dependent.
Analysis of binding-site hydration

Our previous MD simulations on MUP (6) revealed that even

in the absence of a ligand, water molecules avoid entering

the highly hydrophobic binding cavity, leading to the situa-

tion of a partial vacuum within the site. This dewetting

process then provides an explanation for the unusual

enthalpy-driven nature of the ligand-binding process. The

much longer simulations performed here confirm our earlier

observation. The cumulative radial distribution function

(RDF) for water oxygen atoms around the hydroxyl group

of Tyr-120 is shown in Fig. 6. Because of the buried nature

of the site, we calibrated the density scale (y axis) of these
plots by measuring the RDF for the ligand in the binding

site of the ibm simulations, which must integrate to one. In

comparison, we can see that the water occupancy of the

binding site in the apo protein averages ~0.4. We also see

that a small amount of water (occupancy ~0.3) remains close

to Tyr-120 in the ligand-bound simulations. This appears to

be the result of water molecules transiently coming close to

this residue via the slightly porous walls of the binding

cavity. Hydration density maps confirm these observations

(Fig. 7; color version Fig. S11). A very low occupancy of

the cavity is evident in the apo-protein (Fig. 7 a), concen-

trated around the hydroxyl group of Tyr-120. By contouring

at a very low level, we can confirm that the cavity still

exists—the partial vacuum has not caused it to collapse

(Fig. 7 b). Obviously, although the hypothesis of dewetting

is attractive in that it helps to explain the experimental

data, there is the caveat that these simulations were per-

formed using the TIP3P water model, which is designed to

reproduce the behavior of bulk water and may possibly

give some artifactual behavior in this rather unusual environ-

ment. Further support for this analysis comes from indepen-

dent modeling studies (34), but in the future it would be

useful to investigate this system using alternative water

models.

As discussed by a number of authors (35,36), analyses

of the relative contributions of enthalpic and entropic

components to recognition processes in solution are compli-

cated by the fact that both DH and DS terms, as measured

experimentally, are likely to feature large contributions

from solvent-solvent enthalpy and entropy changes.

However, it can be shown that statistically-mechanically,

these solvent-solvent terms exactly cancel. Since other terms

remain (37), the driving force therefore comes from solute-

solvent contributions to DH and DS. The fact that the binding

site is significantly dewetted is nevertheless an important

feature. It means that for MUPþIBM, ligand binding is

associated with negligible changes in protein-water terms,

but significant changes in ligand-water and ligand-protein

terms.
Biophysical Journal 99(1) 218–226



FIGURE 7 Water density in the ligand-binding site of

simulation apo1. The left panel shows the small volume

with a normal water density around the hydroxyl group

of Tyr-120, whereas the right panel is contoured at a low

density to reveal the full extent of the binding pocket.
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Analysis of ligand dynamics

Our simulations reveal a previously unobserved aspect of

ligand binding to MUP: the pyrazine is not held rigidly in

the cavity, but tumbles extensively. By monitoring the orien-

tation of the pyrazine N1–N4 vector (Fig. 8; stereo color

version Fig. S12), we can see a number of broad clusters in

its distribution. Two of these correspond to orientations

that permit H-bonding between either N1 or N4 and the

Tyr-120 hydroxyl group (in the crystal structure the interac-

tion is with N1), but clearly alternative orientations without

such an H-bond also occur frequently. Monitoring the orien-

tation of the orthogonal C2-C6 vector also reveals a great deal

of motion, though certain orientations are apparently disal-

lowed. The correlation time is 140 ns for the N1–N4 vector

and 190 ns for the C2-C6 vector. This observation clearly

has significant implications for the free energy of ligand

binding. We can use the Schlitter method to estimate this

from our simulation data (38). We performed a 1-ms simula-

tion of the free ligand in a box of water, saving coordinates
FIGURE 8 Polar plots to illustrate ligand tumbling. Top: orientation of

the N1-N4 vector; bottom: orientation of the C2-C6 vector.
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every nanosecond. After removing only translational motion,

we calculate the configurational entropy (TDS, without

extrapolation) to be 70 kJ/mol. If we remove rotational

motion as well, this drops to 35 kJ/mol. Repeating the

calculations for the ligand in the binding site of the protein,

we obtain values of 57 5 1 kJ/mol when just translational

motion is removed, and 34 5 1 kJ/mol if tumbling is

removed as well. Using the ideal gas approximation, the

translational component is probably on the order of 10 kJ/

mol. We predict, therefore, that binding of IBM to MUP actu-

ally results in almost no restriction of the internal motion of

the side chains, a very modest loss in rotational freedom,

and consequently an entropy penalty upon binding of only

~�22 kJ/mol. In contrast, Bingham et al. (3), who did not

consider the possibility of residual rotational freedom for

the bound ligand, predicted IBM binding to be accompanied

by an entropy penalty (TDS) of �27 to �78 kJ/mol.
CONCLUSIONS

These simulations give rise to valuable new predictions about

the dynamics of MUP in the multi-nanosecond regime, and

provide valuable insights in general into the reliability and

reproducibility of current molecular modeling methods on

this timescale. Overall, the results are very encouraging:

the simulations are stable and within the general parameters

available from experimental data, over timescales that are

orders of magnitude greater than those available at the time

the original parameters were generated and validated. We

see that even for a small, single-domain protein like MUP

with a well-defined tertiary structure, elements of the struc-

ture may require >100 ns of dynamics simulation to ensure

equilibration, and a microsecond is still not long enough to

ensure very good sampling. It is possible that some of this

slow equilibration is associated with periodicity artifacts

introduced by the particle mesh Ewald method (39).

However, the fact that this is not observed in all replicate

simulations leads us to conclude that this is probably not a

major issue. As has been pointed out by others (40), replicate

simulations clearly have enormous value for checking

sampling and reproducibility, but it is not easy to balance

the trade-off between individual simulation times and the

number of replicates. Considering the dynamical behavior
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of MUP revealed in this study, it seems likely that many of

the conclusions we have reached through three replicate

simulations of a microsecond would also have emerged

from thirty replicate simulations of 100 ns; however, some

important slow motions (e.g., loop motions and ligand

tumbling) would not have been properly characterized. One

could also argue that methods such as metadynamics could

have been used to ensure better sampling and improved

convergence. We chose not to employ such techniques in

this study, primarily because our aim was to benchmark the

behavior of unenhanced methods, and also because most

such approaches require prior identification of the coordi-

nates of interest that define the space one wishes to sample,

and we did not want to assume this.

In general, this study supports conclusions drawn from

shorter MD simulations on MUP and its ligand complexes,

but provides a much more robust analysis of the statistical

significance of certain features. The dewetting of the

ligand-binding pocket is a robust observation, as are

ligand-induced changes in two regions of the protein (loops

L2 and L3). Subtle but reproducible networks of amino acid

side-chain interactions are identified that couple ligand

binding to either the locking down (L2) or release (L3) of

surface loops. However, other dynamical changes that

were previously thought to be significant may not be. The

study also highlights the potential complexities of entropy-

entropy compensation mechanisms. Not only do these mech-

anisms involve relocalization of dynamical hotspots from

one region of the protein to another as a ligand binds, it

appears they may also involve a more subtle transfer of

entropy out of translational modes into librational ones.

This is a particular issue as regards the thermodynamic inter-

pretation of S2 data generated in NMR experiments. Future

work will include a more detailed investigation of how the

current simulations relate to NMR observables.
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