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ABSTRACT Differentiation from a multipotent stem or progenitor state to a mature cell is an essentially irreversible process.
The associated changes in gene expression patterns exhibit time-directionality. This ‘‘arrow of time’’ in the collective change
of gene expression across multiple stable gene expression patterns (attractors) is not explained by the regulated activation,
the suppression of individual genes which are bidirectional molecular processes, or by the standard dynamical models of the
underlying gene circuit which only account for local stability of attractors. To capture the global dynamics of this nonequilibrium
system and gain insight in the time-asymmetry of state transitions, we computed the quasipotential landscape of the stochastic
dynamics of a canonical gene circuit that governs branching cell fate commitment. The potential landscape reveals the global
dynamics and permits the calculation of potential barriers between cell phenotypes imposed by the circuit architecture. The
generic asymmetry of barrier heights indicates that the transition from the uncommitted multipotent state to differentiated states
is inherently unidirectional. The model agrees with observations and predicts the extreme conditions for reprogramming cells
back to the undifferentiated state.
INTRODUCTION
During cell differentiation, the gene regulatory network

governs a unidirectional progressive change of the cell’s

gene expression pattern through which the cells adopt the

expression pattern that implements the cell type-specific

phenotype (1–4). Whereas in equilibrium systems time-irre-

versibility is a direct reflection of the second law of thermo-

dynamics, the cell’s gene regulatory network represents

a nonequilibrium system (far from thermodynamic equilib-

rium) and time-irreversibility of development is not a direct

manifestation of thermodynamics. As in most metazoa,

differentiation is not associated with the irreversible loss of

genes (5) but instead, each gene can be reversibly turned

on and off. This raises the question: What is the origin of

the macroscopic directionality of the temporal evolution of

the gene expression pattern during development, if, at the

microscopic level, the activation and repression of individual

genes are reversible?

To address this question, one can formalize the problem

by studying a gene regulatory network of N genes (X1, X2,

., XN) that governs differentiation of a cellular state S.

Then the gene expression profile of these N genes, represent-

ing the phenotypic state S, is a time-dependent state vector

S(t) ¼ [x1, x2, ., xN] ¼ x(t), where the values xi represents

the activation levels of gene i at time t. The dynamical

behavior of the network is described as an N-dimensional

dynamical system with rate equations for the vector x(t),
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namely: dx(t)/dt ¼ F(x), where the vector F is the force

that drives the movement of S(t). But what causes the direc-

tionality in the time evolution of S(t) across fate decisions?

The standard evaluation of such dynamical systems relies

on linear stability analysis around fixed-points (stable steady

states, or attractors) that represent cell types. Directionality

of change in gene expression pattern is simply explained

by the local relaxation toward a stable steady state (i.e.,

attractor) due to dissipative dynamics (6) or by hysteresis

around bifurcations (7). While these effects arise from

circuits as dynamical systems considered in isolation, such

nonlinear phenomenon can stem from often-neglected inter-

action with host physiology. Indeed, a recent work reveals

a new mechanism of generating bistability that underscores

the need to account for host physiology (8).

We summarize in the following the most salient existing

but disparate concepts that implicitly explain directionality

of cell differentiation (see also Fig. S1, A–D, in the Support-

ing Material):
Linear regulatory cascades and gene expression
avalanches

The simplest explanation of directionality of cellular differ-

entiation relies on the traditional notion in molecular biology

of signaling cascades that drives development (9). In this

view, the gene expression changes S(t) associated with

development is governed by a chainlike gene regulatory

pathway, such as GeneA / GeneB / GeneC / GeneD,

etc. (Fig. S1 A). Models of such circuits may exhibit branch-

ing and feed-forward loops, but typically contain few or are
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devoid of feedback loops. The almost circular network struc-

ture naturally affords the system a directionality, as the gene

activation avalanches propagate, akin to the domino-effect,

through the network down the cascade of one-way gene

interactions. Regulatory interactions fanning out from master

genes to large numbers of differentiation gene batteries (9)

then establish the cell type-specific gene expression profiles

S. This idea of activation avalanche is best elaborated for the

development of sea urchin (9).

Development in higher organisms, such as vertebrates,

however, exhibits features that are not compatible with this

picture of avalanchelike progression.

First, the architecture of the gene regulatory network is

replete with positive and negative feedback control loops.

Moreover, many developmental control genes, such as

BMPs, GATAs, STATs, Wnt, Notch, etc., are reused at

multiple stages and in multiple lineages of development.

Second, the development of cell types proceeds through

a succession of intermediate phenotypes that are discrete

and stable, such as the multipotent stem and progenitor cells,

that can be physically isolated as distinct entities. In contrast,

the avalanche model would instead produce a continuum in

time and would not account for the stability of gene expres-

sion profiles of discrete cell types, including those represent-

ing intermediate stages, such as tissue stem cells.
Molecular fixation of S(x) by covalent modification

Cell types, and hence their associated circuit states S(t), are

maintained even after the action upstream regulators have

subsided (often referred to by biologists as the memory

effect). We denote here such stable stationary expression

profiles with an asterisk: S*. To explain the stability and

terminal character of cell type-specific, stationary gene

expression profiles, S*, molecular biologists commonly

invoke covalent modifications, including methylation of

DNA and histones, at specific residues (10). These modifica-

tions are thought to affect gene expression by controlling

chromatin structure and hence, the access of transcription

factors to their binding regions on the genomic DNA.

Because they are chemically stable and appear to perma-

nently control the reading of the genomic DNA without

altering the gene sequence, they have been interpreted as

epigenetic marks that remember the activation status of indi-

vidual genes once cells have differentiated (10).

However, it is clear that such molecular marks need to be

erased at each generation when gametes fuse to produce

pluripotent embryonic stem cells. Similarly, the successful

reprogramming of nuclei of somatic, differentiated cells by

transfer into oocyte cytoplasm (11) or by genetic manipula-

tion (12–14) demonstrates the inherent reversibility of

genetic programs. Moreover, from the accumulating charac-

terization of chromatin modifying enzymes, notably those

controlling histone lysine (de)methylation (10,15–17), it is

increasingly recognized that the covalent epigenetic modifi-
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cations are bidirectional (reversible). Thus, the epigenetic

marks invoked to explain the irreversible sealing of cell fates

are actually reversible. Moreover, as chromatin modifying

enzyme complexes are not locus specific, ultimately, TFs

have to guide these modifying machineries. In fact, the

picture is emerging that DNA and chromatin modifying

enzymes are recruited by TFs to specific gene loci, thus

they are themselves subjected to the control by a network

of transcription factors (18,19). This underscores the funda-

mental role of transcriptional network dynamics in cell fate

control.
Nonlinear dynamics and bifurcations

At the center of differentiation control by gene circuit

dynamics is the idea that each distinct cell phenotype S*

corresponds to an asymptotically stable state of the network,

or attractor (20–23). This concept solves the difficulties of

relying on linear cascades and covalent molecular marks to

explain stability and the discontinuous nature of cell fates,

lineages, and cell types, as well as the existence of tempo-

rally stable, discrete immature states (stem cells, progenitor

cells). In brief, gene regulatory circuits that contain at least

one positive feedback loop (or a composite positive feedback

loop consisting of an even number of sequential negative

regulation) exhibit multistability (24). This is the coexistence

of multiple stable steady states S*i, in which dS*i/dt ¼ 0 and

S*i are at least linearly stable in the sense that when the

circuit state S(t) is perturbed by being kicked slightly away

from S*i, the circuit will spontaneously return to S*i.

In this framework, each observable distinct cell phenotype

i that can be identified biologically maps into an attractor

state S*i. The attractors naturally explain the discreteness

and stability of individual cell phenotypes, such as cell types

(20–23). Then, differentiation is the macroscopically quasi-

discontinuous process by which a cell transitions from one

attractor state S*1 to another attractor at a different state

space position S*2. Although accumulating evidence points

to the presence of attractor states (23,25,26), it remains

unclear how the actual differentiation process, or the motion

of S in state space between different stable states, is to be

conceptualized, and what would account for the direction-

ality.

In a first class of dynamical models, the transition occurs

as a parameter of the dynamical system is altered, so that the

system undergoes a bifurcation, i.e., a sudden change of the

structure of the state space. For instance, the one-dimen-

sional system dx/dt ¼ F(x, l) with the variable x and param-

eter l can undergo a (supracritical) pitchfork bifurcation in

which an attractor S* in a monostable system becomes

unstable as the parameter l crosses a critical value lc. At

this point, the stable state branches into two new stable states

that correspond to different values of S, and hence, represent

different stable gene expression programs (Fig. S1 B). It has

been postulated that development is a succession of multiple
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such bifurcations that generate an increasing diversity of

stable states (26–29). Importantly, in this model direction-

ality in time hinges upon the external, explicit change of

a control parameter as a function in time, e.g., l ¼ f(t),
thus, is not reduced to a natural elementary and intrinsic

process. Reversion of the control parameter would play the

tape of development backward, so to speak, and allow the

system to reoccupy the original stable branch.

Reversibility of differentiation due to time reversibility of

control parameters is avoided in another type of dynamical

model where differentiation occurs in a hysteresis loop and

corresponds to the transition (i.e., the jump) from the lower

branch to a higher branch as the critical parameter value lc

is crossed (Fig. S1 C). Because of hysteresis, partial revers-

ibility is naturally achieved, as reversal of the parameter to

below the lc point does not cause a return to the lower stable

branch until the another critical value, l0c. Because the

hysteresis loop is not structurally stable, appropriate choice

of other parameters can create a fully irreversible situation

when the critical point for the return jump l0c is shifted out

of the physically accessible state space, as shown in

Fig. S1 D. Such irreversible state transitions due to extreme

hysteresis have been observed in various enzymatic reactions

(30) and described for hormone-induced differentiation of

Xenopus oocytes (7).
Stochastic systems

Although extreme hysteresis with an open loop can impose

a directionality, all the deterministic dynamical models

above still require an external, explicitly modeled monotonic

change of a control parameter, such as l¼ f(t), to impose the

arrow of time (even with time invariant l) (6). Therefore, it is

still hard to explain the spontaneity of a time-irreversible

process. In reality, the dynamics of regulatory circuits is sub-

jected to stochastic fluctuations caused, in part, by gene

expression noise (31). Thus, a second class of dynamical

model treats differentiation as a noise-induced transition

from one stable attractor to another, which corresponds to

a hopping, from one stable branch to another, in the bifurca-

tion diagram, without the need for a parameter change.

Ample experimental findings indicate stochastic state transi-

tions during metazoa cell differentiation (32,33). The notion

of noise-driven state transitions obviates the need for an

externally imposed, explicitly introduced directionality,

because the noise term introduces an odd variable (6) that

can impose time-asymmetry—equivalent to entropy in clas-

sical thermodynamics.

If we expand this analogy to the idea of attractors as

nonequilibrium stable stationary states, we will need an

equivalent of free energy to address the following question:

given two attractor states, S*1 and S*2, and noise-induced

transitions, how does one determine an asymmetry of transi-

tion probability for the transitions in either direction? In

dynamical systems, the identification of attractor states is
based on linear stability analysis, i.e., the exploration of

the immediate neighborhood around the attractor state.

Such local stability analysis does not relate attractors in

a multistable system to each here.

These explanations address only behaviors near attractors

or require an explicit external influence, such as the delib-

erate change of a control parameter in one direction. In

contrast, irreversibility of development pertains to sponta-

neous processes taking place at a larger scale, in state space,

encompassing transitions between multiple attractors in

a multistable nonequilibrium system (34). Thus, explaining

directionality requires analysis of the global dynamics of

the network as a nonequilibrium system by computing an

equivalent of the potential (35,36) that would permit

answering specific question: Given two stable attractor states

S*1 and S*2 (far from equilibrium), and noise-induced state

transition, what is the relative transition rate in either

direction?

One can not obtain a global potential function as one

would for an equilibrium system because F(x) is, for more

than one-dimensional system in general, nonintegrable.

Here we show that a generalized global nonequilibrium land-

scape (6,37–47) can be applied to a simple canonical regula-

tory circuit that exhibits a multistability which can describe

the fate decision of a bipotent progenitor cell. Using this

system, we show that directionality of differentiation is

a system-immanent feature that emerges from such a gene

regulatory circuit that is wired to produce the diversification

of one stable cellular state S(t) into two distinct ones.
RESULTS AND DISCUSSIONS

The canonical gene regulatory circuit module shown in

Fig. 1 A, consisting of the mutual regulation of two opposing

fate determining master transcription factors (TF) X1 and X2,

has been shown to control cell fate decision and commitment

in several instances of multipotent stem or progenitor cells

(26,29,48). X1 and X2 are coexpressed in the multipotent

undecided cell, and commitment to either one of the two

alternative lineages leads to expression patterns in which

they are, then, expressed in a mutually exclusive manner

(49–51). Importantly, note that, in many cases, the genes

X1 and X2 also positively autoregulate themselves (Fig. 1 A).

The circuit can be described by the following minimal

system equations (26),

dx1

dt
¼ a1xn

1

Sn þ xn
1

þ b1Sn

Sn þ xn
2

� k1x1 ¼ F1ðx1; x2Þ; (1)

dx2

dt
¼ a2xn

2

Sn þ xn
2

þ b2Sn

Sn þ xn
1

� k2x2 ¼ F2ðx1; x2Þ; (2)

or, in vector form, dx/dt ¼ F(x) ¼ [F1(x1, x2), F2(x1, x2)]

where x1 and x2 are the cellular expression or activation

levels of the two lineage-determining transcription factors
Biophysical Journal 99(1) 29–39



FIGURE 1 Dynamics of the canonical gene regulatory circuit of two mutually opposing transcription factors that positively self-regulate themselves. (A)

Circuit architecture for the two genes X1 and X2. (B) Bifurcation diagrams indicating the stable position of S(x1, x2) where x1 ¼ x2 for the symmetric case

(vertical axis), during the symmetric change of a ¼ a1 ¼ a2 over the indicated range of values (horizontal axis), for the other parameter values b1 ¼
b2 ¼ 1, k1 ¼ k2 ¼ 1, and S ¼ 0.5, n ¼ 4. (C) Force field in the X1 – X2 state space for two parameter values for parameter a on both sides of the respective

critical point in the bifurcation diagram. (D and F) Steady-state probability distribution Pss(S) calculated from the Fokker-Planck equation (Eq. 1) as function of

the parameter a in panel D or the noise parameter D in panel F. Colors indicate the probability P as shown in the color bar. (E and G) The corresponding

quasipotential landscape where the elevation of the landscape (quasipotential) represents –ln(P(S)).
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X1 and X2, and a1, a2, b1, b2, and k1, k2 are positive param-

eters that denote the strength of the following interactions

or processes: The first expression represents, in the common

formalization (26), a self-activation of strength a1, a2 that

obeys a sigmoidal transfer function. The second term repre-

sents mutual inhibition, given a basal expression of strength

b1, b2. The last term is the first-order inactivation (degrada-

tion) of either factor with the rate k1, k2. For our purpose,

it will suffice to consider the symmetric situation a ¼
a1 ¼ a2; b ¼ b1 ¼ b2; and k ¼ k1 ¼ k2.

Such circuits robustly generate a tristable dynamics with

three asymptomatically stable attractor states (see bifurcation

diagram in Fig. 1 B): the two outer asymmetric attractor

states S*A and S*B representing the differentiated states

with almost mutually excluding expression of X1 and X2,

and a third central symmetric attractor state, S*C, character-

ized by approximately equal levels of X1 and X2 expression:

x*1 ~ x*2 (Fig. 1 C) (26,29). This central attractor represents

the multipotent state that exhibits the characteristic balanced

or promiscuous expression of the two opposing, fate-deter-

mining TFs (49)—a hallmark of the indeterminacy of the

undecided multipotent stem cell.

Commitment of progenitor cells at S*C to the two differen-

tiated cells (S*A and S*B) is thought to involve two mecha-

nisms:

1. Destabilization of the central progenitor attractor S*C due

to a subcritical pitchfork bifurcation as parameter values

are gradually changed, for instance, as self-activation
Biophysical Journal 99(1) 29–39
a is decreased (roughly symmetrically for both equations)

(Fig. 1 B) (26); and

2. Noise-driven transition from the S*C attractor into either

one of the asymmetric attractors.

The observed direction of state transitions, representing

fate commitment is indeed S*C / S*A or S*C / S*B.

Once in S*A or S*B (¼ committed cell), spontaneous rever-

sion to the S*C (immature progenitor) state does not occur.

Experimental evidence supports the role of both destabiliza-

tion of the progenitor attractor (26,52,53) and of gene

expression noise-induced state transitions (52,33,25). If

directionality of attractor transitions is to be intrinsic, it

must come from the noise-driven component, as the bifurca-

tion requires an explicit externally driven parameter change.
Potentials for nonequilibrium and nonintegrable
systems

We first evaluated the global dynamics of this circuit so that

we can assign potentials to the attractor states and determine

their distinct relative depth within the same frame of refer-

ence. The idea of a potential landscape describes how forces

acting in a system relate to its global behavior. They are

particularly useful for systems of interacting components,

such as chemical reactions and protein dynamics, motion,

and folding (54–56). However, these applications deal with

equilibrium systems where the potential function is a priori

knowable. For nonequilibrium systems, such as gene circuits
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that exhibit stable stationary states in higher (N > 1) dimen-

sional state space, the intuition of some form of a potential is

still warranted and widely used metaphorically (36),

however, its functional form is not easy to obtain (6,37–

47). In the gene circuit dx/dt ¼ F(x), exemplified in Eq. 1,

the vector F(x) is the force that drives the system. However,

F(x) cannot, in general, be written as a gradient of a potential

U: F(x) s –grad(U) for systems of more than one dimen-

sion. In other words, F(x) is not a pure gradient of a potential,

but there is another force, Fc, stemming from the nonintegr-

ability that contributes to the dynamics (46) as

FðxÞ ¼ Fc � D�gradðUÞ; (3)

where D is the diffusion coefficient tensor. Here D appears in

front of the gradient accounting for the most general case

when the system is inhomogeneous and anisotropic. It is not

easy to separate these two components of the driving force,

i.e., to calculate Fc and grad(U). However, in a stochastic

system in which each state x is described probabilistically,

the information about the probability in time and state space

position x, P(x, t) can be found by solving the corresponding

probabilistic equation or through Monte Carlo simulations. It

allows one to correlate information provided by the steady-

state probability distribution with the dynamics (46).

Although in nonequilibrium systems, at steady state, the

divergence of the probability flux Jss vanishes, the flux itself

need not vanish. When local flux is equal to zero, the detailed

balance is preserved and the system is in equilibrium state.

When local flux is not equal to zero, the detailed balance is

broken and the system is in nonequilibrium state. We found

(see Supporting Material) that (46) Fc ¼ Jss/Pss reflects the

additional force linking the divergence-free steady state

(long time limit) probability flux Jss (velocity current) and the

steady-state probability Pss (density). Divergence-free flux

has no place to start or end. It is in this sense that the flux has

a ‘‘curl’’ nature. Importantly, in Eq. 2, we have decomposed

the force driving the dynamics of the system into two terms,

the curl force Fc and the gradient of the potential U where U
is linked with the steady-state probability by U ¼ –ln(Pss).
Nonequilibrium landscape

The above discussion allows us to naturally introduce the

nonequilibrium landscape U as U ~ –ln(Pss), analogous to

the equilibrium situation. The difference between equilib-

rium systems (i.e., protein folding; local detailed balance

preserved) and general nonequilibrium systems (i.e., gene

regulatory circuit; local detailed balance broken) is that

although the potential is linked to the steady-state probability

in a similar way, the dynamics of the former follows

a gradient of the potential whereas the dynamics of the latter

is governed by both the gradient of the potential plus the curl

flux (46). The origin of the nonzero flux is the energy pump

to the open system (through, for example, ATP hydrolysis or

phosphorylation). The presence of the nonzero curl flux
breaking the detailed balance introduces a direction that

can cause the asymmetry in time series, which is unique

for nonequilibrium systems. This provides a physical foun-

dation for arrows or directions in times for the underlying

nonequilibrium process (57).

To obtain the stochastic time evolution of the probability

distribution, P(x,t) and hence, U(x), we solved the Fokker-

Planck diffusion equation for the system (Eq. 1; see also

details in the Supporting Material) (58). With certain initial

conditions and taking the long time limit, we obtained the

steady-state solution using a finite difference method. The

probability distribution Pss(x) is shown as a function of the

parameter a ¼ a1 ¼ a2 (Fig. 1 D) or of noise D (Fig. 1 F),

with other parameters fixed. Consistent with the vector field

and the bifurcation diagram (Fig. 1, B and C), at high values

of the parameter a (strong positive feedback) the system has

one central maximum (highest probability), corresponding to

the central attractor S*C.

As the parameter a is gradually decreased, this central

maximum is destabilized (decreasing probability) as the

two marginal states with locally higher probability S*A and

S*B appear. The probability was converted to an elevation

over each state space position x to obtain a landscape picture

using

UðxÞ ¼ �lnPssðx; t/NÞ;

as shown in Fig. 1, E and G, where the z axis represents the

dimensionless potential U(x). Here the attractor states appear

as valleys—reminiscent of Waddington’s ‘‘epigenetic land-

scape’’ (36). At the critical point, acrit, the metastable central

attractor S*C flattens, disappears, and is converted to a hill-

top—corresponding to the bifurcation point (Fig. 1 B) near

which minimal stochastic fluctuations can drive the fate deci-

sion into either attractor S*A and S*B as soon as they become

reachable.
Differentiation dynamics on the potential
landscape

By applying the experimentally confirmed interpretation that

the central attractor state S*C represents the uncommitted bi-

potential progenitor state with its characteristic equal, inter-

mediate expression levels of X1 and X2 (x1 ~ x2) (25,26)

and can differentiate into either cell fates (attractors S*A or

S*B), we next evaluated the dynamics of circuit states S.

We consider a scenario where the differentiation is achieved

when a1 and a2 are decreased at the same timescale as the

dynamics of x, hence, destabilizing the progenitor attractor

S*C while at the same time stochastic fluctuations drive the

circuit into either one of the two attractors S*A or S*B as

soon as they become reachable during the bifurcation,

when a < acrit (see Fig. 1).

To evaluate the dynamics of circuit states S, mimicking

noise-driven and signal-induced cell lineage commitment, we

numerically computed the probabilistic temporal evolution
Biophysical Journal 99(1) 29–39
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FIGURE 2 Dynamical behavior of the probability P(S, t) and flux vectors during fate decision of a stem cell in the multipotent state S*C. P(S, t) is evaluated

during bifurcation from tristable to the bistable regime as the parameters a1 and a2 are decreased according to a1 ~ exp(–l1*t) and a2 ~ exp(–l2*t) with

l1 ¼ 0.01 and l2 ¼ 0.015. In panel A, the initial state is near the central attractor S*C, P(S ¼ (0.3, 0.3), t ¼ 0) ¼ 1, whereas in panel B, the initial state is

near the attractor S*A, i.e., P(S(1.0, 0.0), t ¼ 0) ¼ 1. Other parameters are the same as Fig. 1.
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of the progenitor state S*C driven by the dynamical system

(Eq. 1) by solving the corresponding Fokker-Planck diffu-

sion. In the model, as time evolves, a1 and a2 are also

reduced according to a1~exp(–l1*t) and a2~exp(–l2*t)
(25,26). Fig. 2 shows the probability flux vectors mapped

onto the state space with the probability distribution P(x, t),
indicated by the colors, for constant noise, D ¼ 0.05. Note

that the vector field does not reflect the probability gradients

as in equilibrium systems. This is manifest in the curl flow

rotating out of and into attractors because the driving force

F(x) is not –D$grad(U(x)), but F(x) ¼ Fc –D$grad(U(x))

(Eq. 2). The evidence of a circular flow out of the progenitor

attractor predicted by the potential landscape was hinted in

the experiments for the differentiation in common myeloid

progenitor cells in the PU.1/GATA1 state space in the

PU.1/GATA2 state space (26).

As time progresses and the landscape undergoes a change

according to the bifurcation driven by the reduction of a1 and

a2, the maximum probability is redistributed from the initial

state S0 ¼ (1, 1) around the central attractor S*C to the two

marginal ones (Fig. 2 A). If we assume artificial asymmetry,

namely, l1 ¼ 0.01 and l2 ¼ 0.015 for the sake of instructive

fate commitment (26) (i.e., for a2 decreasing faster than a1,

hence favoring the deepening of the attractor S*B over that

of S*A), then the system tends to preferentially first occupy

the attractor S*B (x2>> x1) after the bifurcation, as expected.

This corresponds to a biased bifurcation and may represent

the influence of specific fate-determining differentiation

signals, such as Epo and G/CM-CSF in the case of myeloid

progenitor cells (2,26), which introduce the symmetry

breaking. However, stochasticity still plays a role in fate
Biophysical Journal 99(1) 29–39
determination by instructive signals. In the model, after the

landscape change has reached stationarity, noise-driven tran-

sitions between S*A and S*B equilibrate the two states. A

similar scenario but with a different initial state, S0 ¼ (1, 0)

(i.e., closer prospective site of the attractor S*A; Fig. 2 B),

will, under otherwise identical conditions, also end with

a similar two-population steady state despite transient domi-

nance of S*B occupancy.
Transition between attractors-barrier height
and transition dynamics

Although the computation in Figs. 1 and 2 exhibits sponta-

neous occupation of the two differentiation attractors S*A

and S*B, this was achieved by the explicit directional change

of the parameter a, in combination with noise-induced state

transition. Thus, we have so far not formally demonstrated

directionality. What prevents the circuit from noise-driven

jumping, back from the differentiated states S*A and S*B,

to the restored progenitor state S*C? Time asymmetry at

the scale of interattractor dynamics only exists if the noise-

driven, nonphysiological back-transitions S*A / S*C (or

S*B / S*C) are less probable than the physiological forward

transitions S*C / S*A (or S*C / S*B).

To demonstrate the directionality of interattractor

dynamics conferred by the noise-driven component, we

calculated the relative probability for hopping between the

stable branches at various parameter values a. The global

potential landscape now offers a framework for comparing

the relative stability of any state S(x), and hence, for

computing the apparent height of the potential barriers U
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FIGURE 3 Relative barrier height as a function

of parameter a accounts for directionality of state

transitions around the bifurcation. (A) The bifurca-

tion diagram for same parameters as in Fig. 1 B
with large arrows representing the transitions across

the respective barriers USC and USA that separate the

central stem cell attractors S*C and the differenti-

ated cell attractors S*A and S*B. (B) Computed

heights of the barriers USC and USA as a function

of a ¼ a1 ¼ a2 (for noise level D ¼ 0.05). Here

acrit ¼ bifurcation point, a0¼ value of a at which

the relative barrier heights reverse. (C) Sections

through the potential landscape illustrating the

barriers at the three indicated values of a (dashed

arrows). (D) The transitions mean first passage

times t for S�C/S�A (tCA) and S*A / S*C (tAC).

(E) Direct comparison of U and t as function of a:

log-scale relative barrier heights or transition times

for the transitions S*A / S*C and S*C / S*A,

respectively. Other parameters are the same as

Fig. 1.
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for individual transitions, such as the physiological transi-

tions S*C / S*A (or S*C / S*B) versus the reverse transi-

tions, S*A / S*C (or S*B / S*C). Fig. 3, A–C, shows the

landscapes reflecting the barrier heights for various values

of the parameter a around the bifurcation. From the link

between barrier height and steady-state probability distribu-

tion of the states, we can then infer that lower potential

basins correspond to larger cell populations while higher

potential basins correspond to smaller populations.

The height of barriers between two attractors is defined

here as follows: USC ¼ Usaddle – UC and USA ¼ Usaddle –

UA. (Fig. 3 C). Usaddle is the potential at the saddle point

between the two stable basins of attraction. UC and UA are

the potentials at the minima for the attractors S*C and S*A,

respectively. However, the relevant quantity for direction-

ality is the observable average transition time for the transi-

tions between the attractor states in forward (physiological)

and backward (nonphysiological) directions, tCA and tAC,

for the transitions S*C / S*A and S*A / S*C, respectively.

Importantly, for a nonequilibrium system, there is in general

no guarantee that the steady-state population ratio of cells in

state S*A (or S*B) is related to the transition times between

these states as in the equilibrium situation. Thus, we need

to see if the relative barrier heights connected to the popula-

tion ratio by definition is related to transition times. This rela-

tionship is expected to be true if in the relevant region, the

gradient force dominates the flux force or they are perpendic-

ular to each other. Fig. 4 shows (for a ¼ 1) that the apparent

barrier heights U decreased with increasing diffusion coeffi-

cient, reflecting the flattening of the landscape due to the
fluctuations (Fig. 4 A)—as does the respective transition

times reflecting the faster kinetics (Fig. 4 B)—corroborating

the physical meaning of the computed barrier heights. In

fact, the transition timescales monotonically with the barrier

height U (Fig. 4, C and D); however, it increases sharply

as barrier height exceeds some value (U > 10). Thus,

USC < USA implies the directionality for the noise-driven

transition S*C / S*A, suggesting that we can directly obtain

information on directionality from the landscape topography.

In other words, because the steady-state probability distribu-

tion is directly related to the underlying potential landscape,

a shift of dominance of the center state S*C to the outer state

S*A. (Fig. 3 C), supports the kinetic argument of time direc-

tionality from a steady-state perspective.

Note that for all values of D considered (D ¼ 0.01–0.07)

and parameter value a ¼ 1, the barrier USC is substantially

lower than the barrier USA and accordingly, tCA is shorter

than tAC, confirming that the (S*C / S*A) transition is

preferred over the (S*A / S*C) transition this regime. The

difference does diminish as noise is increased to D > 0.05

(Fig. 4 B).
Transition around bifurcation: time directionality

To examine the robustness of directionality, a detailed anal-

ysis of U and t for varying parameter a is needed. Doing so

revealed a new critical point a0, not uncovered in standard

bifurcation analysis, that delineates a regime just before

loss of the attractor S*C (namely from a0 (a0 > acrit) down

to acrit) in which USC < USA, and therefore transition times,
Biophysical Journal 99(1) 29–39
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tCA < tAC. This provides a formal confirmation of the topo-

graphic intuition that the vanishing attractor basin of S*C

must flatten (Fig. 3, B–D). In this critical zone the relative

barrier heights dictate the physiological directionality

S*C / S*A. In other words, the critical zone (a0 > a > acrit)

in which USC < USA,SB and therefore transition times

tCA < tAC holds, acts as a one-way filter protecting, to some

extent, against temporary uncontrolled (noisy) reversal of the

parameter a and guaranteeing the robustness of the arrow of

time in noise and bifurcation-driven fate decision. However,

at a > a0, deeper in the tristable regime, the relative barrier

heights reverse, with USC > USA, favoring reverse transitions

to the now much more stable multipotent state. Thus, only

with very strong positive feedback (a > a0) can there be sig-

nificant probabilistic spontaneous reverse differentiation.

Interestingly, the transition time between differentiated cells

in the postfate commitment bistable regime is, in general,

higher than that for reverse differentiation to the progenitor

state in tristable regime (Fig. 3 D).

We also note that the network system, in building its

robustness, seems to evolve so as to minimize the dissipation

cost to its stability, as characterized by the barrier heights and

transition time between the basins. Therefore, minimization

of the dissipation and increasing the barrier height might

provide an evolutionary optimization principle for the

network design.

These new dynamical features around the bifurcation

point, obtained only by computing the quasipotential land-

scape, reveal the generic and intrinsic nature of a given

gene circuit architecture. These novel properties help explain

salient observations in stem cell control beyond direction-

ality. The model presented here also defines the extreme
Biophysical Journal 99(1) 29–39
conditions under which reversal of the arrow of time is

possible, as epitomized in the reprogramming of differenti-

ated cells back to a multi- or pluripotent state. They predict

the extreme conditions needed for reverse differentiation as

recently achieved in the reprogramming of differentiated

cells into an embryonic stem-cell-like induced pluripotent

state (59). This procedure requires first the simultaneous

overexpression of the mutually regulating genes X1 and X2,

embodied by Oct4 and Nanog, which are critical to maintain

the pluripotent state. This corresponds to resetting of the S*C

state. But second, ectopic expression of a third TF, Klf4, is

also needed. Klf4 binds to the promoter region of Oct4 and

Nanog and has been suggested to enhance the transcriptional

self-stimulation autoregulation of Nanog (60,61). Thus, Klf4

would specifically increase autoregulation, corresponding to

increasing a, which the theory predicts is needed to reverse

the directionality filter around the bifurcation. In addition,

deep in the stem cell regime when the autostimulation is

strong (a >> a0) the pluripotent state behaves, in fact, like

a robust attractor (62,63). However, as predicted by our

model, it can also visit distinct, detectable, short-lived

precommitment states characterized by low Nanog (52),

and may—at least with respect to the Nanog state space

dimension—correspond to states S*A or the S*B that exist

in this regime (a >> a0) but are metastable.
CONCLUSIONS

Our potential landscape analysis here adds a new dimension

to the standard dynamical system analysis. This information

pertains to the probability for noise-induced transitions

between various attractors crucial for the differentiation
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and developmental process. We show that a change in

a control parameter is not only important for bifurcations

but also leads to directionality (of spontaneous processes

given some level of noise). This explains one-way process

of stem cell differentiation not achieved by standard dynam-

ical system analysis.

The canonical gene circuit discussed here (Fig. 1) where

the master transcription factors X1 and X2 inhibit each other

and positively regulate their own repression, appears to be

a general network motif that controls binary branch points

of cell lineage commitment during development. Examples

of X1-X2 pairs (where the positive autoregulation can also

be indirect) are widespread and include GATA1-PU.1,

PU.1-C/EBP, C/EBP-cJun, Egr2-Gfi1, Runx2-Sox9; Oct4-

Cdx2, Nanog-Gata6, and Sox2-Oct4 (61,51,50). Although

we discussed the dynamics of one individual circuit, eukary-

otic gene regulatory circuits are, in reality, coupled to each

other, forming genomewide networks whose dynamics

remains to be studied. But they certainly will generate

more complex potential landscapes that will be manifested

in the multilevel succession of branching valleys, as Wad-

dington depicted in his famous 1957 picture of an epigenetic

landscape (36).

The self-activation loops, implemented by nonzero value

of the parameter a in Eq. 1, are essential to locally stabilize

the undecided state of indeterminacy which is characterized

by the coexpression at intermediate low levels of the

opposing lineage-determining factors X1 and X2 and to

ensure that this poised state is an attractor state and not an

unstable equilibrium state (26). Such promiscuous expres-

sion of opposing fate-determining transcription factors is

a hallmark of multipotency (49). In fact, the multipotent

stem cell is, given not too-intense noise, a self-maintaining

metastable entity and has metaphorically been dubbed

a ground state (63). Importantly, our potential landscape

computation shows that near the bifurcation point where

this central attractor disappears it has a higher potential level

than the differentiated states. This explains the familiar

general tendency of embryonic stem or progenitor cells to

eventually differentiate-away in random directions when

conditions are not optimized for maintaining ‘‘stemmed-

ness’’ despite the ground state character (63).

Recent experiments show that disabling P53, an essential

tumor-suppressor protein, improves the efficiency of stem-

cell production, implying the fundamental similarity

between cancer and stem cells regulated through some

common regulators (64). The landscape here may not only

provide a new global picture and quantitative model in

understanding stem-cell development but also a possible

physical origin of cancer: the stem, cancer, and normal cells

can all be thought of as states of the gene network and thus

cancer cells result from regulation rather than gene mutation

alone (65–67). In the normal condition, the differentiated

cells are more stable, with lower basins than stem or cancer

cells (see Fig. 3 C; in our example, S*A, B at self-regulating
wiring strength a < a0), which have higher basins of attrac-

tion (S*C at a < a0). When the environment changes, and

affects certain wiring strengths (at a> a0), the stem or cancer

state S*C can become more stable than the normal state S*A,

B. Now stem or cancer states have a higher chance of occur-

ring. The increasing elevation of cancer attractor cells is the

formal basis of differentiation therapy of cancer. Although

the drug industry is engaged in developing the differentiation

therapy of cancer based on observations of rare spontaneous

differentiation (which could be explained by the exit from

the cancer state due to stochastic state transitions), it is

worthwhile to point out that this may be a too-simplistic

view—because effective therapy can only be achieved if

all cells can be stimulated to undergo the state transition.

We want to stress the importance of our specific analysis

of the gene circuitry, upon which we apply the potential

landscape approach. This type of analysis has, since the

submission of our manuscript, been popularized among

stem cell biologists (68,69). However, those discussions do

not provide a formal and quantitative explanation of the land-

scape. As our knowledge of gene network architectures

increases, the computation of their potential landscape

should become an integral part of analyzing these

networks—inasmuch as such computation exposes inherent

phenotypic behaviors encoded by the network that are not

uncovered by traditional dynamical system analysis.
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