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Abstract. Peptides perform many roles in cell–cell signaling; examples include neuropeptides, hormones,
and growth factors. Although the vast majority of known neuropeptides are produced in the secretory
pathway, a number of bioactive peptides are derived from cytosolic proteins. For example, the
hemopressins are a family of peptides derived from alpha and beta hemoglobin which bind to the CB1
cannabinoid receptor, functioning as agonists or antagonists/inverse agonists depending on the size of the
peptide. However, the finding that peptides derived from cytosolic proteins can affect receptors does not
prove that these peptides are true endogenous signaling molecules. In order for the hemopressins and
other peptides derived from cytosolic proteins to be considered neuropeptide-like signaling molecules,
they must be synthesized in brain, they must be secreted in levels sufficient to produce effects, and either
their synthesis or secretion should be regulated. If these criteria are met, we propose the name “non-
classical neuropeptide” for this category of cytosolic bioactive peptide. This would be analogous to the
non-classical neurotransmitters, such as nitric oxide and anandamide, which are not stored in secretory
vesicles and released upon stimulation but are synthesized upon stimulation and constitutively released.
We review some examples of cytosolic peptides from various protein precursors, describe potential
mechanisms of their biosynthesis and secretion, and discuss the possibility that these peptides are
signaling molecules in the brain, focusing on the criteria that these peptides would have to fill in order to
be considered non-classical neuropeptides.
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INTRODUCTION

Cells communicate via a range of signaling molecules,
including classical neurotransmitters, non-classical neuro-
transmitters, hormones, growth factors, and other molecules.
A large number of signaling molecules have well-established
roles, and many additional molecules have been proposed to
function in signaling but are still being validated. For a
molecule to be considered a bona fide cell–cell signaling
molecule, it must fulfill several criteria. First, the molecule
must be secreted from the signaling cell. Second, it must
interact with a target cell to induce a change in cellular
activity. Typically, this is accomplished by the binding of the
molecule to a receptor on the target cell, although some
signaling molecules interact with other targets such as enzymes
or transcription factors. Third, the signaling molecule must be
regulated in either a temporal or spatial way; temporal

regulation is more common for neurotransmitters while spatial
regulation is generally found during development. Finally,
there must be a mechanism for the signaling molecule to be
terminated, either via uptake into cells and/or degradation (1).
This review is focused on signaling molecules in brain and
specifically a class of peptide that we have termed “non-
classical neuropeptides.” Major emphasis is placed on the
criteria that need to be met for these molecules to be accepted
as genuine signaling molecules.

CLASSICAL AND NON-CLASSICAL
NEUROTRANSMITTERS

Classical neurotransmitters are released from neurons
and act on neighboring cells (1). These neurotransmitters are
often referred to as “small-molecule transmitters.” In general,
they are synthesized in the presynaptic terminals of neurons
and are packaged into synaptic vesicles. Upon stimulation of
the neuron (usually by an action potential), these vesicles fuse
with the presynaptic membrane and release neurotransmit-
ters into the synaptic cleft, where neurotransmitters can travel
to the postsynaptic cell and elicit their effect (Fig. 1).
Termination of the signal is usually accomplished by reuptake
of the neurotransmitter into the presynaptic cell where it is
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recycled back into the secretory vesicles. Examples of small-
molecule transmitters include amino acids such as glutamate
and monoamines such as dopamine and serotonin (1).

In contrast to the classical neurotransmitters, the non-
classical neurotransmitters are synthesized upon stimulation
of the signaling cell. These molecules, also termed neuro-
modulators, are not packaged in vesicles or secreted via a
regulated pathway (Fig. 1). Instead, non-classical neuro-
transmitters are rapidly synthesized in the cytosol and diffuse
out of the cell, often in the absence of specific transporters
(1). For example, nitric oxide is produced from arginine by
nitric oxide synthase and diffuses out of the cell into
neighboring cells where it has a number of functions including
activation of guanylate cyclase (2). Other non-classical neuro-
transmitters include the CB1 cannabinoid receptor ligands
anandamide and 2-arachidonoylglycerol; these are produced
by the action of lipases on lipids present in brainmembranes (3).

NEUROPEPTIDES

Peptides represent a large class of cell–cell signaling
molecules. In the endocrine system, many hormones are
peptides; examples include insulin and oxytocin. The term
neuropeptide is usually reserved for peptides secreted from
neurons that signal nearby cells, although the term has been
used to refer to peptides secreted from a range of neuronal
cells and not specifically neurons. Neuropeptides take part in
a wide array of functions such as body weight regulation,
pain, anxiety, memory, and more (4). They are produced by
selective cleavage of precursors at specific well-defined sites,
usually containing basic amino acids (5). The precursors,
usually referred to as prohormones, generally have no
biological activity until cleaved into the mature peptide
forms. Initially, an endopeptidase such as prohormone con-
vertase 1/3 or prohormone convertase 2 cleaves after basic
residues (Lys, Arg) and then carboxypeptidase E removes the
C-terminal basic amino acids (6,7). Neuropeptide precursors
are synthesized in the rough endoplasmic reticulum and
transported to the trans-Golgi network, where they are
cleaved into intermediate neuropeptides, packaged into
secretory vesicles, and further processed into the mature
forms. Like the classical neurotransmitters, the neuropeptides
are secreted in an activity-dependent manner upon depolari-
zation of the cell (Fig. 1). However, unlike classical neuro-
transmitters, neuropeptides do not go through reuptake;
rather, the secreted molecules are broken down by extrac-
ellular peptidases (1). Examples of neuropeptides include
enkephalin, dynorphin, and neuropeptide Y. Because the
well-known neuropeptides are analogous to classical neuro-
transmitters, we refer to them as “classical neuropeptides”
(Fig. 2) to distinguish them from another category of
bioactive peptides, the “non-classical neuropeptides,” which
are described below.

BIOACTIVE PEPTIDES FROM CYTOSOLIC
PROTEINS

Over the past several decades, numerous bioactive
peptides have been reported that arise from cytosolic or
mitochondrial protein precursors (8,9). In general, the

scientific community has not accepted these as bona fide
endogenous signaling molecules because of the dogma that
neuropeptides are produced in the secretory pathway and
released from cells upon stimulation. However, these intra-
cellular protein fragments may represent a new non-classical
type of neuropeptide that is synthesized and released from
the cytosol, in an analogous fashion to the non-classical
neurotransmitters (Figs. 1 and 2). There are examples of
bioactive peptide hormones that are regulated via biosyn-
thesis rather than regulated by secretion. For example,
angiotensin II, a peptide that causes vasoconstriction, is
derived from circulating angiotensinogen by the action of
renin and angiotensin converting enzyme (10), and bradyki-
nin, which causes vasodilation, is produced from circulating
kininogen by plasma kallikrein and tissue kallikreins (11).
Thus, there is precedent for the idea that bioactive peptides
can be generated “on demand” and not just synthesized in
advance and secreted on demand. Several bioactive peptides
that are present in brain and derived from cytosolic or
mitochondrial proteins are described in this section; these
may represent non-classical neuropeptides.

Hemopressin and Other Hemoglobin-Derived Peptides

The two main chains of hemoglobin, α and β, are
precursors of many peptides, some of which have been found
to have biological activity. Hemoglobin is a well-known
cytosolic protein. Although α and β hemoglobin are the main
constituent of red blood cells, hemoglobin mRNA and/or
protein have recently been found in many other cell types
including activated macrophages, lens cells, lung epithelial
type II and Clara cells, kidney messangeal cells, and
endometrial epithelial and stromal cells (12–18). Most
recently, α and β hemoglobin mRNA and protein have been
found in brain, including nigral and mesencephalic dopami-
nergic, striatal GABAergic, and cortical pyramidal neurons
and glial cells (19,20). Also, cultured neurons express
hemoglobin mRNA (19,20). Because many of the hemoglo-
bin-derived peptides found in brain are different from those
found in blood or heart, it is likely that the brain hemoglobin
peptides are produced in brain and not a reflection of blood
contamination (21).

Hemopressin is a 9 amino acid peptide (Table I) derived
from α hemoglobin that was originally identified using an
enzyme-substrate capture approach with endopeptidase
24.15, a cytosolic enzyme (22,23). The 9-residue form of
hemopressin is an inverse agonist of CB1 cannabinoid
receptors. Hemopressin is orally active and is antinociceptive
(24,25). Hemopressin has been shown to decrease blood
pressure by lowering the systemic vascular resistance through
the endogenous release of nitric oxide (26,27). Recently,
longer forms of hemoglobin have been discovered (Table I);
RVD-hemopressin-α and VD-hemopressin-α are both
derived from the α chain of hemoglobin, and VD-hemopres-
sin-β is from the β chain (28). All three of these hemopressins
are agonists of the CB1 cannabinoid receptors, and VD-
hemopressin-β is also an agonist of the CB2 cannabinoid
receptors (28). Both RVD-hemopressin-α and VD-hemopres-
sin-α were shown to be upregulated in mouse brain following
ischemia (28) and in Cpefat/fat mice (21).
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Fig. 1. Schematic of classical and non-classical neurotransmitters and neuropeptides. Top
panel Classical neurotransmitters are typically synthesized in the presynaptic cell and
packaged into synaptic vesicles. Upon stimulation, vesicles fuse with the membrane and
release the neurotransmitters into the synaptic cleft where the neurotransmitters can bind
to postsynaptic receptors to elicit their effects. Neurotransmitters in the synaptic cleft are
removed by reuptake or are degraded. Classical neuropeptides are derived from precursors
synthesized in the rough endoplasmic reticulum (ER). Proteolytic processing begins in the
trans-Golgi network or immature secretory vesicles and continues in the maturing vesicles.
Classical neuropeptides are packaged into dense core vesicles, which can also contain
classical neurotransmitters. Upon stimulation, vesicles fuse with the membrane to release
their contents. Classical neuropeptides typically elicit their effects on G-protein coupled
receptors and are eliminated by extracellular peptidases. Bottom panel Non-classical
neurotransmitters and the proposed pathway of non-classical neuropeptides. Non-classical
neurotransmitters are synthesized from their precursors upon stimulation of the signaling
cell and are not stored in vesicles. Examples such as anandamide and 2-arachidonoylgly-
cerol are derived from lipid precursors while nitric oxide is produced from arginine. Once
produced, non-classical neurotransmitters are rapidly secreted and act upon receptors or
other targets which can be membrane-bound or intracellular. Non-classical signaling can
proceed in a retrograde manner as it does not require synaptic transmission. In our
proposed model, non-classical neuropeptides are derived from intracellular proteins by the
action of proteases. The peptides are then secreted by an unknown mechanism, and elicit
their effects on receptors or other targets. Although some of these targets may be distinct
from the targets of classical neurotransmitters, some may also be common. For example,
the hemopressins, a family of putative non-classical neuropeptides, bind to CB1 receptors
which are also the target of the non-classical neurotransmitters anandamide and 2-
arachidonoylglycerol
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The hemorphins are peptides derived from the β chain of
hemoglobin which bind and stimulate opiate receptors
(29,30). The first of the hemorphins, hemorphin-4 (YPWT),
was isolated from enzyme-treated bovine blood (31). Hem-
orphins were then found to be endogenous in the brain, and
more sequences of this group have been discovered using
conventional approaches (30,32–34) and also by peptidomics
analyses (Table I). The hemorphins inhibit the actions of
angiotensin converting enzyme, thereby lowering arterial
blood pressure and are antinociceptive (35,36). They also
have bradykinin-potentiating activity (37) and can bind to
and inhibit insulin-regulated aminopeptidase, which was
previously named the angiotensin-4 receptor (38). LVV-
hemorphin-7 has recently been shown to be secreted from
stimulated synaptoneurosomes (39).

Neokyotorphin (Table I) is derived from the C terminus
of the α hemoglobin chain (40). Neokyotorphin binds to
angiotensin receptors and has been shown to exhibit analgesic
activity (40). Kyotorphin, the two amino acid peptide YR, has
also been shown to have analgesic activity (41). Neokyotor-
phin is secreted from erythrocytes and stimulates prolifer-
ation of tumor cells and fibroblasts (42,43).

Other peptides derived from hemoglobin have also been
shown to have biological activities. For example, peptides
corresponding to residues 110–125 and 129–134 of the α
hemoglobin sequence have been shown to exhibit bradykinin
potentiating activity (Table I) (44,45).

Diazepam-Binding Inhibitor

Diazepam-binding inhibitor (DBI), also known as acyl-
CoA-binding protein, is the precursor of endozepines, com-
pounds that are able to displace diazepam from its binding
sites (46). Two of these peptides, octadecaneuropeptide
(ODN) and triakontatetraneuropeptide (TTN), have greater
biological activity than the parent protein (Table I). DBI and
its products ODN and TTN are capable of modulating a cell’s
response to γ-aminobutyric acid (GABA) (47–49). The
peptides displace diazepam binding to GABAA receptors
and thereby inhibit GABAergic transmission (46,50). ODN
acts as a ligand for central-type benzodiazepine receptors,
and TTN acts through the peripheral-type benzodiazepine
receptors to stimulate the biosynthesis of neurosteroids (51).

Both ODN and TTN also act in vivo to elicit proconflict
action (47,49).

Hippocampal Cholinergic Neurostimulating Peptide

Hippocampal cholinergic neurostimulating peptide
(HCNP) is the N-terminal fragment of phosphatidylethanol-
amine-binding protein (Table I). It enhances the differ-
entiation of hippocampal neurons and can also modulate
cardiac response (52–55) HCNP also plays a role in activating
acetylcholine release by stimulating choline acetyltransferase
secretion (56). Recently, it has been suggested that HCNP
plays a role in Alzheimer’s disease and hypoxia (56,57). Both
HCNP and its precursor protein have been found to be
secreted, but it is not yet known how this secretion occurs
(58).

Mitocryptides

Mitocryptide-1 is a fragment of cytochrome C oxidase
subunit 8. It activates neutrophils via Gi2-type G proteins and
stimulates β-hexosaminidase secretion and chemotaxis
(59,60). Mitocryptide-2 is derived from mitochondrial cyto-
chrome b and also activates neutrophils, leading to chemo-
taxis and β-hexosaminidase release (61). Sequences of the
peptides are shown in Table I.

Thymosins

Beta thymosins are actin sequestering peptides (62).
Thymosin β4 inhibits inflammation and stimulates wound
healing by promoting angiogenesis (63,64).

Thymosin β4 and smaller peptides are secreted from
tissues and have been implicated in controlling apoptosis
(62,65,66). The 10 amino acid C-terminal fragment of
prothymosin α (Table I) is generated by caspase cleavage
and stimulates lymphocytes (67). Thymosin alpha 1, a 28
amino acid peptide derived from prothymosin α (Table I),
plays a role in stimulation of the immune response and
enhances the antitumor response (68–70).

Fig. 2. Summary of the key properties of classical and non-classical
neurotransmitters and neuropeptides. Examples of molecules in each
category are listed
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CRITERIA FOR NEUROPEPTIDES

Many of the peptides described above have been studied
for years by a number of investigators but are not universally
accepted as signaling molecules because they are produced
from cytosolic proteins. However, it is possible that they
represent non-classical neuropeptides. Based on established
criteria for the acceptance of classical neurotransmitters and
neuropeptides, we propose the following criteria for non-
classical neuropeptides:

1. The peptide is synthesized in brain cells.
2. The peptide is secreted from brain cells in physiolog-

ically relevant levels.
3. The peptide is either synthesized or secreted in a

regulated fashion.
4. The peptide is able to influence the function of

another cell.

Another criterion for neurotransmitters is the demon-
stration of a mechanism for termination of action, often
uptake. However, neuropeptides are thought to be degraded
by extracellular peptidases with broad specificities; therefore,
selective peptidases or other mechanisms of elimination are
not needed for secreted peptides.

All of the peptides described above have met the 4th
criteria, and some such as LVV-hemorphin-7 have been
shown to be present in brain and secreted in response to
stimulation. Further proof of the proposed role as non-
classical neuropeptides requires demonstration of a physio-
logical effect when the peptide is removed from a biological
system. For classical neuropeptides, this can be achieved by
gene knockout or mRNA knockdown approaches. However,
for peptides derived from cytosolic proteins, these techniques
will be difficult to interpret because the proteins have
additional roles. Alternative approaches, such as blocking
the biosynthesis and/or secretion, can be used to help
demonstrate the proposed biological role of these peptides.
For this, it is essential to understand the mechanism of
synthesis and secretion. The rest of this review will focus on
the possible mechanisms for synthesis and secretion of non-
classical neuropeptides, and consideration of how these
processes can be regulated.

BIOSYNTHESIS OF PEPTIDES

There are three different ways that cells make peptides.
One is to simply link amino acids together using cellular
ligases, without involving ribosomes and protein synthesis;
this is the route used to make the cellular antioxidant peptide
glutathione, a tripeptide. It is likely that this approach is also
used to make N-acetylaspartylglutamate (commonly known
as NAAG), a dipeptide that has been called a neuropeptide
although it is possible that its mechanism of action is after
hydrolysis into glutamate and not as a functional peptide.
Another approach that cells may use to make peptides is by
translation of short open reading frames within RNAs. In this
case, the peptide is made directly using protein synthetic
machinery. A possible example of this is the peptide named
humanin (from human mitochondrial 16s ribosomal RNA) or
the rat homolog, rattin (from rat mitochondrial 16s ribosomal
RNA). However, it is not clear if these peptides are truly

found in vivo or if the immunoreactive peptides detected in
many studies represent another peptide. The most common
method for the generation of peptides is by enzymatic
cleavage of proteins. Because protein precursors exist for
bioactive peptides listed in Table I, proteolytic processing is
clearly the route for the production of these peptides.

PROTEASES

Many intracellular proteases are well studied, and it is
possible that one or more of these are responsible for the
generation of the cytosolic/mitochondrial peptides described
above. Because most intracellular proteases are highly
regulated, knowledge of the enzymatic pathway will be
important in understanding the regulation of the peptides.
Below, we discuss some of the well-known proteases and
address the possibility of their involvement in the production
of the bioactive intracellular peptides.

Proteasome

The ubiquitin-proteasome system is found in all cell
types and is involved in the turnover of many intracellular
proteins. This system is a likely candidate for the formation of
the observed cytosolic peptides because many of these
peptides are produced by cleavage at sites favored by the
proteasome: hydrophobic residues (except for Ile) and basic
residues. Proteasomes are large protein complexes which
include a core particle (20S proteasome) and two regulatory
particles (19S cap). The core subunit has different activity for
substrates, chymotrypsin-like, trypsin-like, and peptidyl-glu-
tamyl peptide-hydrolyzing activity (71). Together, this com-
prises the 26S proteasome which degrades proteins in a
ubiquitin-dependent manner and produces peptides 4–25
amino acids in length. Some proteasome-generated peptides
are used for presentation on the cell surface by major
histocompatibility complex class I molecules (72). Proteasome
activity levels can be altered in response to some physiolog-
ical conditions and oxidative stress (73). Inhibition of the
proteasome can lead to cell arrest and apoptosis (74).

Calpains

Calpains are broadly expressed calcium-dependent
cysteine proteases which have 15 isoforms (75). Well-
studied calpains are µ-calpain, which is activated by low
calcium concentrations (µM range) and m-calpain, which is
activated by higher, mM concentrations of calcium (76).
Calpastatin is an endogenous protein inhibitor of calpain
(77). Both µ- and m-calpains have pH optima of 7.2–8.2 and
are found intracellularly, mostly associated with subcellular
organelles. Calpains are not known to cleave small peptides
but rather produce large polypeptides by cleaving at
specific sites within proteins (78). The specificity of calpain
cleavage is not well defined and likely represents a
combination of conformation (79) and sequence such as
hydrophobic amino acids (80). Cleavage specificity can be
affected by phosphorylation, which can also change the rate
of calpain actions (75).

Calpains may be involved in the formation of the
observed cytosolic peptides based on their intracellular
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location and preference for cleaving at hydrophobic residues.
But, because the known calpain products are generally large
polypeptides while the majority of the cytosolic peptides are
small, a role for calpains in the production of the cytosolic
peptides would represent a novel role for these enzymes.

Caspases

Caspases are cysteine proteases that are key factors in
the processes of apoptosis and inflammation. They are
synthesized as inactive precursors which are activated in
response to apoptosis and in some cases of disease (81,82).
The substrate specificity of caspases includes a requirement
for aspartic acid in the P1 position of the substrate. Also, they
have selectivity for glutamic acid in the P3 position and do not
accept charged residues in the P1′ position (83). It is unlikely
that caspases are responsible for the formation of the
cytosolic peptides because all of the bioactive peptides listed
in Table I, and most other cytosolic peptides that have been
detected, are not the products of cleavage at Asp residues.

Cathepsins

Cathepsins are lysosomal proteases. There are 15 known
cathepsins, 11 of which are cysteine proteases, two are serine
proteases, and two are aspartyl proteases (84–87) Cathepsins
are typically activated at low pH, as found in lysosomes, but
some are active at neutral pH and secreted out of the
lysosome into the cytoplasm (87–90).

There is evidence that some cytosolic peptides result
from cleavage by the cathepsins. Neokyotorphin and VV-
hemorphin-7 have been shown to be generated by incubation
of hemoglobin with cathepsin D, an aspartyl protease (91,92).
The cathepsins are, therefore, candidates for production of
the hemoglobin-derived peptides and other cytosolic/mito-
chondrial peptides. For the cathepsins to perform this
function in vivo, either the cytosolic molecules need to be
transported into lysosomes or the cathepsins need to get out
of the lysosomes into the cytosol; both of these processes are
known to occur (90,93).

Intramembrane Proteases

Since the peptides discussed in this review do not come
from membrane bound proteins, it is not likely that they are
formed by intramembrane proteases. However, intramem-
brane proteases contribute to the production of other brain
peptides. For example, beta and gamma secretases are
transmembrane proteases which cleave amyloid precursor
protein into amyloid beta peptide (94). Beta secretase
(memapsin 2) is an aspartic acid protease which consists of
a C-terminal cytosolic domain, a transmembrane domain, and
a catalytic N-terminal ectodomain (95). Gamma secretase is a
protease complex composed of nicastrin, PEN-2, APH-1, and
the catalytic subunit, presenilin (96). Gamma secretase is
involved in processing of amyloid precursor protein and
notch protein (97). Rhomboids are intramembrane serine
proteases which cleave transmembrane proteins resulting in
release of a part of the protein that was tethered to the
membrane (98,99). Signal peptide peptidases are transmem-

brane aspartyl proteases which cleave in the transmembrane
region of their substrates, signal peptides (100,101).

Mitochondrial Proteases

A variety of proteases are present in the mitochondria,
and although most of these are thought to function within the
mitochondria, some have been shown to be released into the
cytosol in an active form (102). An example is the serine
protease HtrA2/Omi, which plays a role in apoptosis (103).
HtrA2/Omi has protease activity within mitochondria and
also in the cytosol after it is released (103). Since it is secreted
to the cytosol, HtrA2/Omi may cleave cytosolic proteins to
form bioactive peptides. Furthermore, HtrA2/Omi cleaves
the amyloid precursor protein in the mitochondria to produce
the C161 fragment, which is then released into the cytosol
(104). A mechanism such as this could also be responsible for
the bioactive peptides described above, especially for the
microcryptides which are likely to be formed in the mito-
chondria and then released to the cytosol.

Oligopeptidases

A number of intracellular oligopeptidases have been
described which process peptides of ∼5–20 or ∼5–30 residues
into smaller peptides (depending on the enzyme). Although
these enzymes cannot convert proteins into bioactive pep-
tides, they may contribute to the biosynthesis of the observed
peptides following an endoprotease step. Alternatively, these
enzymes may function in the degradation of the bioactive
peptides. Thimet-oligopeptidase (endopeptidase 24.15) and
neurolysin (endopeptidase 24.16) are intracellular peptidases
which are located primarily in the cytosol in most cell types
(105,106). Endopeptidase 24.15 is known to play a role in the
processing of peptides produced by the proteasome (107).
Insulin-degrading enzyme is also active in the cytosol and can
process a range of peptides, in addition to insulin (108).
Prolyl-oligopeptidase catalyzes the cleavage of several bio-
active peptides that contain proline residues (109). Tripep-
tidyl peptidase II works downstream of the proteasome and
cleaves N-terminal tripeptides from oligopeptides (110).
Although some of these enzymes can be secreted and
function outside of the cell, all are active within the intra-
cellular compartments and are, therefore, candidates for
cytosolic peptide formation.

Other Intracellular Proteases

In addition to the well-known proteases described above,
there are a number of additional proteases that are present
within the cytosol. Autophagins are cysteine proteinases
which are activated during autophagy (111,112). Alpha
secretases are zinc metalloproteinases which cleave amyloid
precursor protein at the Lys16-Leu17 bond in a nonamyloi-
dogenic processing pathway (94,113). Separase is a cysteine
protease involved in separation of sister chromatids by
cleaving the cohesion molecule during the transition from
metaphase to anaphase in the process of mitosis (114,115).
These enzymes are limited in their specificity of substrates
thus making them unlikely candidates in the formation of the
cytosolic peptides.
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SECRETION OF CYTOSOLIC PROTEINS/PEPTIDES

Secretory proteins have N-terminal signal peptides that
are removed by a signal peptidase (116). The signal peptide is
a hydrophobic sequence which is required for proteins to be
transported out of the cell. The signal peptide promotes
translocation of the protein to the endoplasmic reticulum, and
the proteins are secreted via vesicular transport. The question
arises, how then would the cytosolic peptides be secreted if
they do not have a signal peptide? Without a signal peptide, a
protein cannot go through the usual endoplasmic reticulum
secretory pathway.

There are many examples of unconventionally secreted
proteins, and this pathway has been referred to as ER/Golgi
independent protein secretion. The annexins are calcium-
dependent phospholipid-binding proteins. Although annexins
lack signal peptides, some members of the annexin family
have been found to be secreted and function in anti-
inflammation (117). For example, annexin A1 is synthesized
and rapidly secreted in response to a stimulus or treatment
with glucocorticoids; the mechanism of secretion is unknown
(118). Annexin A2 is another intracellular protein that is
secreted and functions outside of the cell (119). Plasminogen
activator inhibitor-2 is a serine protease inhibitor which has
been shown to be secreted without cleavage of a signal
peptide (120). Some of the other well-known examples of
cytosolic proteins that are secreted include interleukins,
fibroblast growth factors, phosphatidylethanolamine-binding
protein, galectin-1, glycosylation-inhibiting factor, and macro-
phage migration inhibitory factor (121–126). These are just a
few of the many examples of cytosolic proteins that are
secreted from intact cells.

There are several possible mechanisms by which cyto-
solic proteins and peptides can be secreted (126). Trans-
location may occur directly across the plasma membrane or
through vesicle mediators such as secretory lysosomes, micro-
vesicles, or endosomal internal vesicles that are subsequently
released as exosomes (126). Fibroblast growth factor 2 is
secreted via translocation across the plasma membrane (127).
Interleukin-1β secretion is induced with monocyte activation,
and the secretion of this cytokine may involve exocytosis of
endocytic vesicles (128). Recently, P2X7 receptor activation
has been shown to be crucial for the secretion of interleukin-
1β; the mechanism is thought to involve P2X7 receptor-
regulated formation of multivesicular bodies and exosome-
mediated secretion of the interleukin (129). It is possible that
these mechanisms are used for the secretion of cytosolic
peptides or that a combination of mechanisms exist for the
different peptides.

SUMMARY

Although a number of biologically active peptides are
produced from cytosolic/mitochondrial proteins, additional
studies are needed to firmly establish these as non-classical
neuropeptides. The mechanisms for their synthesis and
secretion need to be identified. Regulation of synthesis and/
or secretion has been shown for some of the cytosolic
peptides and needs to be demonstrated for the others.
Because the cytosolic peptides do not go through the classical
ER/Golgi-mediated secretory pathway and do not get pack-

aged into conventional secretory vesicles, the synthesis of the
peptides is a likely point of regulation, as is the case with non-
classical neurotransmitters such as nitric oxide. In addition to
the handful of peptides discussed in this review, there are a
very large number of additional intracellular peptides that
have been detected in peptidomic studies, raising the
possibility that these peptides represent a large and diverse
group of cell–cell signaling molecules.
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