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Microvascular barrier dysfunction is implicated in the initiation and progression of inflammation, posttraumatic complications, sepsis,
ischaemia–reperfusion injury, atherosclerosis, and diabetes. Under physiological conditions, a precise equilibrium between endothelial
cell–cell adhesion and actin–myosin-based centripetal tension tightly controls the semi-permeability of microvascular barriers. Myosin
light chain kinase (MLCK) plays an important role in maintaining the equilibrium by phosphorylating myosin light chain (MLC), thereby
inducing actomyosin contractility and weakening endothelial cell–cell adhesion. MLCK is activated by numerous physiological factors and
inflammatory or angiogenic mediators, causing vascular hyperpermeability. In this review, we discuss experimental evidence supporting
the crucial role of MLCK in the hyperpermeability response to key cell signalling events during inflammation. At the cellular level, in vitro
studies of cultured endothelial monolayers treated with MLCK inhibitors or transfected with specific inhibiting peptides have demonstrated
that induction of endothelial MLCK activity is necessary for hyperpermeability. Ex vivo studies of live microvessels, enabled by development of
the isolated, perfused venule method, support the importance of MLCK in endothelial permeability regulation in an environment that more
closely resembles in vivo tissues. Finally, the role of MLCK in vascular hyperpermeability has been confirmed with in vivo studies of animal
disease models and the use of transgenic MLCK210 knockout mice. These approaches provide a more complete view of the role of
MLCK in vascular barrier dysfunction.
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1. Introduction
Myosin light chain kinases (MLCK) are a family of soluble protein
kinases that function principally to phosphorylate the 20 kDa regulat-
ory myosin light chain (MLC-2) and thereby induce ATPase driven
actin–myosin contraction.1,2 In most cells, MLCK is a transducer for
signalling MLC phosphorylation in response to Ca2+ binding to
MLCK-associated calmodulin. MLCK-mediated MLC phosphorylation
and actomyosin contractility is important in muscle contraction, cell
migration, and endo/exocytic processes, and is recognized for its
central role in signalling endothelial cell–cell adhesion and barrier
function. In this review, we discuss the molecular physiology of
MLCK, and the biochemical basis for actin–myosin contraction in
the context of vascular endothelial permeability. We use an exper-
imental approach that incorporates molecular information from cul-
tured endothelial cell monolayers into physiological responses in
intact microvessels, ex vivo and in vivo, providing a more complete
understanding of the control of endothelial permeability by MLCK
in pathophysiological conditions.

2. MLCK structure and molecular
physiology
MLCK contains a C2 immunoglobin domain that binds to unpho-
sphorylated MLC, a catalytic site for kinase activity,3 and a calmodulin-
binding regulatory domain that functions as an autoinhibitory domain
to suppress constitutive activity in the absence of calmodulin.4,5 By
way of binding to calmodulin, Ca2+ is an essential regulator of
MLCK activity. While the structures required for MLCK activity and
binding to MLC are conserved across species and tissue types,6

there are differences in the components required for regulation of
MLCK variants in different cell types. For example, in smooth
muscle cells, Ca2+ binding to calmodulin is sufficient to activate
MLCK and induce actin–myosin contraction. In other cell types,
Ca2+ binding to calmodulin is necessary for MLCK activity, but
alone is not sufficient to elicit an actin–myosin contractile response.7

Differences in regulation are pronounced in muscle vs. non-muscle
MLCK.
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2.1 Muscle MLCK isoforms
There are three types of muscle MLCK: skeletal (skMLCK), cardiac
(cMLCK), and smooth muscle (smMLCK), products of genes mylk2,
mylk3, and mylk1, respectively.1,8,9 MLCK is activated in response to
Ca2+ released from intracellular stores. Ca2+ binding to calmodulin
induces MLCK to phosphorylate MLC on serine 19, which increases
the actomyosin contractile response. In skeletal or cardiac myocytes,
Ca2+-binding troponin triggers actomyosin contraction, and MLCK
activation increases contractile strength.1,10 In smooth muscle,
smMLCK induces actin–myosin contraction. The smMLCK isoform
differs markedly in structure from skMLCK or cMLCK, having
greater similarity to non-muscle MLCK (discussed below).11 In con-
trast to skMLCK or cMLCK, smMLCK bears an additional C-terminal
insert, and a long N-terminus that contains a fibronectin domain, two
immunoglobin domains, and numerous putative phosphorylation
sites.1,6,10 The smMLCK has 1147 amino acids 12 and is also called
MLCK108 based on its predicted molecular weight of 108 kDa.
MLCK108 shows apparent weights ranging 125–155 kDa,4 compared
with 77–103 kDa for skMLCK.13

2.2 Non-muscle MLCK isoforms
Earlier work by Garcia’s group has identified and cloned a single gene
of human non-muscle MLCK (nmMLCK) that encodes four high mol-
ecular weight MLCK isoforms (MLCK1-4).6 Non-muscle MLCK differs
from smMLCK mainly in that nmMLCK contains an additional stretch
of 922 amino acids spliced into the N-terminus, with multiple sites for
protein–protein interactions including p60Src-mediated tyrosine
phosphorylation.14,15 All nmMLCK isoforms are splice variants
derived from the mylk1 gene on human chromosome 3
(3qcen-q21).9,16,17 MLCK1, previously known as endothelial MLCK
(eMLCK), was originally cloned from human endothelial cells,7 and
believed to have a predominantly endothelial tissue distribution.
Recent evidence shows that MLCK1 is also expressed in other
tissues including gut epithelium, and more recently was observed in
neutrophils. MLCK isoforms 1 and 2 are the most highly expressed
in endothelium.6 MLCK1 is the highest molecular weight MLCK
variant with 1914 amino acids (predicted 210 kDa), also known as
MLCK210.6 MLCK2 is identical to MLCK1, but lacks a stretch of
69-amino acid containing two tyrosine residues necessary for phos-
phorylation and activation of MLCK1 by p60Src.6,14 MLCK 3a and
3b are identical to MLCK1 and 2, respectively, but bearing an
additional distal deletion (exon 30) corresponding to a stretch of
51 amino acids. The complete sequence information for MLCK4 is
not yet known, but has similar tissue distribution to other nmMLCK
isoforms: human lung, liver, brain, and kidney tissues, as well as endo-
thelial cells. The remainder of this review is dedicated to the role of
MLCK in regulating permeability of vascular endothelial barriers.

3. Endothelial barriers
The microvascular endothelium consists of a layer of closely apposed
endothelial cells, forming a semi-permeable barrier between blood
and tissue to control exchange of fluids, electrolytes, and proteins.18

The integrity of this barrier is crucial in maintaining circulatory
homeostasis and physiological organ function. Pathological aberration
of endothelial barrier function leads to microvascular hyperpermeabil-
ity and plasma extravagation, resulting in tissue oedema and organ
dysfunction.18 –21 The problem is associated with inflammatory

disease, traumatic or thermal injury, diabetes mellitus, myocardial
infarction, and tumorigenesis.21–24 Although transcellular transport
of albumin does occur, it is now clear that leakage of fluid and macro-
molecules across the endothelial barrier during the aforementioned
disease processes occurs in a largely paracellular fashion via cell–
cell junctions.25 –27

The cell–cell junctional structures of the vascular endothelium
include tight junctions and adherens junctions. Tight junctions are
detected primarily in blood-brain, blood-retinal, or blood-testis
barrier microvasculature.26,28 Tight junctions are zipper-like struc-
tures formed of homophilic interactions between occludin, claudins,
and junction adhesion molecule (JAM) A. In vivo, tight junctions
exhibit high transendothelial electrical resistance (TER)29,30 and are
exceptionally impermeant to the passage of solutes.31 Adherens junc-
tions are found in nearly all vascular beds, especially in the peripheral
microvasculature.25,26,32 Adherens junctions are mainly composed of
homophilic interactions of the junctional adhesion protein
VE-cadherin, as well as JAM A, B, and C.

Intracellularly, tight junction proteins are connected to actin fila-
ments via zona occludens-1/2 (ZO-1/2); adherens junction proteins
are connected via catenins (a, b, g, and p120).32 –35 By way of
these connections, endothelial cytoskeletal contractile forces strongly
influence cell–cell junctions and thus paracellular permeability. In
addition, the vascular endothelium is anchored to extracellular
matrix through focal adhesions, mediated by transmembrane integrins
and actin-linking proteins, e.g. focal adhesion kinase, talin, paxillin, and
vinculin.35,36 Cell–cell and cell–matrix adhesion structures act coor-
dinately with cytoskeleton proteins to maintain the integrity of the
endothelial barrier and a low basal permeability.33

4. Actomyosin contractile
machinery
The contractile machinery of cells is driven by a mechanochemical
interaction between actin and myosin.37 In vascular endothelial cells,
the actin–myosin interaction is regulated by the phosphorylation
status of MLC, and activation of MLCK is a key step in the develop-
ment of actomyosin-based contractile forces.38,39 Upon activation
by Ca2+/calmodulin or by tyrosine kinase-mediated phosphorylation
at Tyr-464 and Tyr-471, MLCK phosphorylates MLC at Ser-19 and
subsequently at Thr-18, resulting in a change in the myosin tertiary
structure favouring contractile movement against actin (Figure 1).40– 42

Opposing MLCK, myosin light chain phosphatase (MLCP) depho-
sphorylates MLC, decreasing tension and relaxing the cytoskeleton.43

Therefore, optimal control of the contractile status arises from the
balance between MLCK and MLCP activity. RhoA, a member of
Rho family small GTPases, plays a critical role in regulating MLCP
activity. Once activated in a GTP-bound form, RhoA can activate its
downstream Rho kinase (ROCK) that subsequently phosphorylates
and inhibits MLCP, resulting in increased MLC phosphorylation and
actomyosin contraction (Figure 1).32,44,45 There is also evidence that
ROCK directly phosphorylates MLC in vitro,46 or increases endothelial
permeability by inducing VE-cadherin phosphorylation, though the
relative importance of these events is unclear.46,47 In many cases,
endothelial paracellular permeability is controlled by
MLCK-dependent processes; however, endothelial hyperpermeability
can also occur through MLCK-independent mechanisms.48,49 This
review is focused on control of MLCK activity and actomyosin
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contractility in endothelial hyperpermeability, which is central to the
pathophysiology of vascular barrier dysfunction.

5. MLCK in cultured endothelial
cells
Endothelial cell monolayers are powerful tools for investigating mol-
ecular mechanisms that control cell junction structure and per-
meability. Many studies employ endothelial cells of macrovascular or
arterial origin, such as human umbilical vein endothelial cells
(HUVECs) or aortic endothelial cells. These are useful models for
studying cell morphology or signalling; however, permeability
responses in these cell lines may not resemble the microvascular
exchange process in vivo, because these cells are derived from non-
exchange vessels. Even cultured cells of microvascular origin do not
retain all physiological barrier properties present in the microvascula-
ture. Adamson et al. have pointed out that FITC-albumin leakage in
intact microvessels occurs at less than 5% of endothelial cells,49 there-
fore cultured endothelial cells (especially clonal populations) may not
retain the complete phenotype observed in intact microvessels.
Despite this limitation, however, we have gained much information
about the molecular mechanisms underlying the MLCK-dependent
permeability response by studying cultured cells.

Our laboratory and others have shown that the phosphorylation
status of MLC is critical in the barrier response to histamine, throm-
bin, oxygen radicals, and activated neutrophils.20,40,50– 53 Also, the
pattern of hyperpermeability response varies depending on agonists.
Histamine exposure increases MLC phosphorylation and actomyosin
contraction, manifest as rapid and transient (5 min) hyperpermeability
in HUVEC monolayers.53–55 Similar effects are seen in endothelial
cells from carotid artery and aorta, with hyperpermeability beginning
within 10 min and lasting for up to 2 h.56 Thrombin also induces MLC
phosphorylation, cellular contraction, and intercellular gap formation;
however, in HUVEC monolayers, the hyperpermeability response to

thrombin is sustained (up to 5.5 h) relative to the transient effect of
histamine.55,57 This indicates either that different stimuli activate
different signalling processes, or that different resolution mechanisms
are involved. A pattern of response similar to that of thrombin is seen
with the serine/threonine phosphatase inhibitor calyculin-A,
suggesting that sustained hyperpermeability may be due to the
inability to dephosphorylate MLC.40,57 Conversely, inhibition of
serine/threonine MLC phosphorylation reduces the hyperpermeabil-
ity elicited by these agonists.40,50,51,53

The necessity of activated MLCK in MLC phosphorylation and
endothelial permeability was confirmed using a protein transference
technique.58,59 Briefly, proteins or engineered peptides can be trans-
fected directly into endothelial cells using the polyamine transfection
reagent transIT, without apparent toxicity, producing protein transfec-
tion efficiencies of up to 90%.59,60 Furthermore, transIT transfection
of endothelial cells with a protein kinase C (PKC)-specific inhibiting
peptide dramatically reduced intracellular PKC activity to the same
extent as application of the PKC inhibitor to cell lysates in vitro, illus-
trating the effectiveness of this method for perturbing specific
elements of cell signalling in live cells. To determine that activated
MLCK is sufficient to elicit endothelial hyperpermeability, we intro-
duced purified, constitutively active MLCK protein into coronary
venular endothelial cells (CVEC) as a polyamine-conjugated
complex.58 Transfected MLCK significantly increased the phosphoryl-
ation level of MLC (�60%), and was accompanied by an increase in
transendothelial flux of albumin across the CVEC monolayer.
Similar to the effect of calyculin-A on MLC, MLCK transfection exclu-
sively induced the diphosphorylated form of MLC. This is significant in
that Thr-18/Ser-19 diphosphorylation of MLC generates higher
myosin ATPase activity than does monophosphorylation,61 and also
speaks to the complexity of signalling to MLC. Fluorescent
microscopy studies further revealed that increased MLCK activity
led to widespread intracellular gap formation in the monolayer, loss
of peripheral catenin, and contractile cytoarchitecture.58 All of these
MLCK-mediated effects on MLC phosphorylation, endothelial cell

Figure 1 Control of actin–myosin contraction in endothelium. Increased MLC phosphorylation in response to MLCK activation by Ca2+-
calmodulin binding and src kinase activity, or to inhibition of MLCP by ROCK activation downstream of RhoA, increases MLC ATPase-driven
force generation relative to actin.
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morphology, and barrier function are abrogated by inhibition of
MLCK. Thus, accumulating evidence indicates that abnormally acti-
vated MLCK is a major determinant in microvascular barrier dysfunc-
tion in response to many signalling mediators and in a variety of
pathophysiological processes.

PKC activation and NO production are important for the
MLCK-dependent vascular endothelial hyperpermeability responses
to thrombin, histamine, and vascular endothelial growth factor
(VEGF).62– 65 There is significant controversy over the effects of
nitric oxide (NO) on endothelial hyperpermeability, as some groups
have reported barrier enhancing effects of NO and others have
reported hyperpermeability-inducing effects of NO.66 The reasons
for these differences are not clear, however may be due to heteroge-
nous responses to different experimental conditions, differential
expression of nitric oxide synthase (NOS) isoforms, or to cell type-
specific effects of NO on a multitude of cellular processes including
impaired Ca++ homeostasis, or interaction with reactive oxygen
species.67–70 In general, activation of endothelial nitric oxide synthase
(eNOS) and NO production induce vascular endothelial permeability
through activation of guanylate cyclase (GC), production of cyclic gua-
nosine 3′,5′-cyclic monophosphate (cGMP), and activation of protein
kinase G (PKG) (Figure 2).20,21,60,71 In addition, the hyperpermeability
response to these agents or to NO donors is prevented by MLCK
inhibitors, indicating that NO-cGMP signalling lies upstream of
MLCK activation. Also, NO may activate MLCK by elevating intra-
cellular calcium levels.70 In HUVEC cells, treatment with VEGF
causes activation of NO, PKG and subsequent activation of Raf-1,
mitogen-activated protein kinases, and extracellular regulated kinase
(ERK1/2).72,73 This suggests that NO- and PKG-dependent activation
of MLCK is signalled through MAP/ERK (MEK) kinases (Figure 2). PKC
is also an important signalling molecule in endothelial hyperpermeabil-
ity responses. Treatment of bovine pulmonary artery endothelial
monolayers with the phorbol ester 12-phorbol,13-myristate acetate
(PMA) causes a dose-dependent increase in PKC activation
accompanied by increased transendothelial albumin flux.63 In
HUVEC monolayers, PKC activation worked synergistically with
elevated intracellular Ca2+ to increase MLC phosphorylation and
hyperpermeability,40 demonstrating that MLCK-dependent and
-independent signalling pathways contribute to MLC phosphorylation
and hyperpermeability. Furthermore, both pathways may be modu-
lated by PKC.

Endothelial hyperpermeability may also mediated by
MLCK-dependent activation of stores operated Ca++ (SOC)
channels.74,75 In pulmonary artery or brain capillary endothelial cells,
MLCK activates stores-operated membrane transient receptor
potential (TRPC) Ca++ channels, thereby increasing junctional per-
meability.76,77 Application of the MLCK inhibitor ML-9 prevents
activation of TRPC and vascular leakage.76,78 This suggests that
activation of TRPC channels depends upon MLCK activity, and that
MLCK-dependent endothelial hyperpermeability depends upon
Ca++ entry following MLC phosphorylation. On the other hand,
activation of MLCK and subsequent MLC phosphorylation is also
dependent upon intracellular Ca++.79

The neutrophil is an important inducer of endothelial
hyperpermeability.80,81 Although the signalling events involved in
neutrophil-endothelial cell interaction have been extensively studied,
the molecular mechanisms by which neutrophils cause microvascular
leakage have not been fully established. Conventional theories in this
area emphasize neutrophil migration-mediated mechanical disruption

of endothelium, which is dependent on proteases released from neu-
trophils 82– 84 during transendothelial migration via paracellular and/or
transcellular routes.85 Fluorescence microscopy images of transcellu-
lar diapedesis indicate that transendothelial pore formation only
occurs at surfaces in close contact with invading leucocytes,
suggesting that leucocyte transcellular migration is not accompanied
by serum leakage.86,87 In addition, convincing ultrastructural evidence
by Lewis and Granger88 demonstrates paracellular neutrophil transmi-
gration across microvessel endothelium in the absence of serum
protein extravasation. Therefore, neutrophil transmigration may not
necessarily cause hyperpermeability.

Neutrophil adhesion to vascular endothelial cells (CVEC or
HUVEC) induces tyrosine phosphorylation of adherens junction pro-
teins, and increases cytosolic Ca2+-dependent opening of intercellular
junctions, and endothelial hyperpermeability.89,90 Because Ca2+-
calmodulin activates MLCK,10,33 we investigated MLCK-mediated
MLC phosphorylation and the contractile cytoskeleton in microvascu-
lar endothelial cells in response to activated neutrophils. In CVEC
monolayers, exposure to C5a-activated neutrophils induced
MLCK-dependent transendothelial albumin flux.91 Activated

Figure 2 MLCK activation in endothelial hyperpermeability. Endo-
thelial MLCK is activated in response to multiple cell signalling events
including elevated intracellular Ca++, protein kinase C (PKC) acti-
vation, and signalling through nitric oxide synthase (NOS)- depen-
dent production of NO, and guanylate cyclase (GC)-dependent
production of cGMP. Activation of cGMP-dependent protein
kinase (PKG) activates MLCK through activation of MEK1 and
ERK1/2. Possible direct activation by PKC, PKG, or ERK1/2 is rep-
resented by question marks.
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neutrophils induced a concentration- and time-dependent phos-
phorylation of MLC at Thr-18/Ser-19 shown on urea gels, which
was significantly abrogated by pre-treatment with ML-7 or by trans-
ference of an MLCK-inhibiting peptide.91– 93 Further, exposure of
endothelial cells to activated neutrophils resulted in increased con-
tractile stress fibre formation and intercellular gaps as shown by
immunocytochemical staining. Both the neutrophil-induced MLC
phosphorylation and stress fibre formation are substantially attenu-
ated through inhibition of MLCK with ML-7.91 This suggests that inhi-
biting MLCK-mediated MLC phosphorylation improves vascular
barrier function during inflammatory injury. We have seen that
increased isometric force is generated in confluent CVEC monolayers
in the presence of activated neutrophils that closely parallels
decreased TER, and that both effects are abrogated by ROCK inhibi-
tors.93 We also found that activated neutrophils potentiate the hyper-
permeability effect caused by MLCK transference.91 Therefore,
mechanisms in addition to MLCK activation may be involved in
neutrophil-induced microvascular barrier dysfunction, including
RhoA-ROCK-mediated MLCP inhibition (Figure 2).18,35

6. MLCK in isolated, intact
microvessels
In order to interrogate the molecular mechanisms of endothelial per-
meability in exchange microvessels under physiologically relevant con-
ditions, we developed an isolated and perfused venule model.94

Briefly, this model entails dissection of postcapillary venules 20–
50 mm in diameter from living tissues. The vessel is cannulated with
a pipette-in-pipette system and is perfused with a physiological salt
solution containing fluorescently labelled albumin under a selected
perfusion pressure and flow rate. The apparent permeability coeffi-
cient of albumin (Pa) is determined based on the ratio of albumin
flux to its transmural concentration difference.95 This approach
enables quantitative assessment of the permeability of intact micro-
vascular endothelium in its native environment, where physical
forces and chemical conditions are tightly controlled, and extrinsic
confounding factors are eliminated.94 Other applications include
direct observation and real-time quantification of neutrophil–
endothelium interactions. This model has advantages over cultured
endothelial cells in that microvessels isolated from living tissues
behave with permeability characteristics that more closely resemble
in vivo systems. On the other hand, in vivo studies do not provide
specific information needed to understand the molecular bases for
physiological phenomena. The isolated microvessel preparation is
better suited to address mechanistic questions about vascular
endothelium-specific processes because there is limited interference
from other cell types or systemic factors as would occur in vivo.

Using the isolated microvessel technique, we have examined the
effects of MLCK activity on endothelial barrier function in porcine
coronary venules as well as microvessels from rodent skeletal
muscle and mesentery.51 An interesting finding is that the MLCK
inhibitor ML-7 significantly reduced basal permeability to
FITC-albumin. The inhibitory effect of ML-7 was dose-dependent
and persisted in the presence of this inhibitor. In contrast, treatment
with calyculin-A increased MLC phosphorylation and significantly
increased the basal vascular permeability.51,58 We postulate that
MLCK-mediated actomyosin activity plays a role in maintaining basal
barrier function in intact microvascular endothelium.

We have previously shown that NO production and cGMP mediate
shear stress- and agonist-induced hyperpermeability responses.94,96,97

In isolated venules, increasing intraluminal flow velocity induces
hyperpermeability, which is abrogated by the NOS inhibitor
NG-monomethyl-L-arginine (L-NMMA) or mimicked by the NO pre-
cursor L-arginine.94 In a similar fashion, histamine increases coronary
venular permeability through a phospholipase C (PLC)-NOS-cGMP
signalling cascade (Figure 2).96 VEGF also increases microvascular per-
meability via increased NO synthesis and subsequent PKG acti-
vation.97 VEGF binding to its membrane receptor KDR initiates
PLC-mediated cytosolic Ca2+ elevation and PKC activation, activating
eNOS and inducing venular hyperpermeability.62 In as much as the
cytoskeleton is a ubiquitous structural end point for intracellular sig-
nalling events, this indicates the possibility that MLCK activity is down-
stream of the NO-cGMP cascade. Using isolated microvessels, we
have demonstrated that activated MLCK is a critical mediator of
NO- or cGMP-induced microvascular hyperpermeability.51 Venule
hyperpermeability in response to the NO donor sodium nitroprus-
side (SNP), or the PKG activator 8-bromoguanosine 3′,5′-cyclic
monophosphate (8Br-cGMP) is substantially attenuated by MLCK
inhibition. It is not clear how PKG activates MLCK, however, in
isolated coronary venules, VEGF-, histamine-, SNP-, or
8Br-cGMP-induced hyperpermeability are attenuated by treatment
with U0126 or PD98059, indicating signalling through MEK1 and
ERK1/2.98

To study the MLCK-dependent mechanism in PKC-induced endo-
thelial dysfunction, which is known to occur in the early stages of dia-
betes,99 we treated coronary venules with the PKC activator PMA.51

PMA-induced hyperpermeability was considerably reduced by ML-7 in
a dose-dependent manner, reinforcing the notion that activated
MLCK is a common downstream effector in executing the hyperper-
meability effects of many signalling mediators.

As indicated above, neutrophil binding to endothelium causes elev-
ated intracellular Ca2+, and hence Ca2+-calmodulin in vitro.89,90

Because Ca2+-calmodulin increases MLCK activity,10,33 we investi-
gated the microvascular endothelial responses to activated neutro-
phils focusing on MLCK-mediated MLC phosphorylation and
contractile cytoskeleton. In isolated coronary venules, we found
that perfusion of microvessels with C5a-activated neutrophils
induced a time- and concentration-dependent increase in albumin
permeability.91 Inhibition of MLC phosphorylation by treatment
with ML-7 significantly attenuated neutrophil-induced hyperperme-
ability. Based on the endothelial cell transfection technique, we have
further developed the technique with an enhanced capacity to trans-
fect large molecules or proteins into intact microvessels.100 We
demonstrated inhibition of neutrophil-induced hyperpermeability in
microvessels transfected with either an MLCK-inhibiting peptide or
dominant negative (purified, inactivated by proteolysis) MLCK.91

Taken together, these results confirm the importance of MLCK
signalling in neutrophil-mediated hyperpermeability at the microvascu-
lar level.

7. MLCK and hyperpermeability
in vivo
In vivo studies are regarded as the most realistic representations of
actual biological conditions. Models used to study microvascular
permeability include intravital microscopy in mesenteric tissues that
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are semi-transparent, displaying well-defined vessels.95,101 Using such
preparations, it is possible to spread the tissue across the microscope
visual field, to measure fluorescent tracer flux out of the vessels, while
the tissue remains connected to a live anaesthetized animal. The
hamster cheek pouch is another commonly used model, where the
time-dependent tracer distribution in the intravascular vs. extravascu-
lar space is monitored and tracer flux measured as an indicator
of permeability.102 In hamster cheek pouch vessels, agonists that
elevate endothelial intracellular NO/cGMP and increase paracellular
permeability include platelet activating factor (PAF),103 ADP,104 and
bradykinin. By inhibiting eNOS or its downstream signalling, microvas-
cular permeability to water and macromolecules is significantly
reduced. Therefore, NO production and cGMP are important for
inducing hyperpermeability in vivo, as we have shown in isolated
microvessels and in cultured cells.

Our in vivo studies have focused on rodent models of full-thickness
burns covering 25–40% total body surface area. Severe burns are a
common form of trauma that often induces a systemic inflammatory
response affecting multiple organs.23,105 –107 The reaction is initiated
by overproduction of inflammatory mediators, many of which target
the microvasculature leading to impaired blood-tissue perfusion and
exchange. As a cardinal component of systemic inflammation, micro-
vascular leak occurs not only at the local wound, but also in distal
tissues, especially in the splanchnic microvessels.108,109 Plasma fluid
loss and accumulation in tissues result in hypovolemic shock, pulmon-
ary oedema, abdominal compartment syndrome, and generalized
tissue malperfusion that ultimately lead to multiple organ
failure.109,110 Our previous in vivo studies show that plasma extravasa-
tion in the splanchnic microvasculature is significantly increased fol-
lowing burns.111 Consistent with the in vivo observation, our
experiments with endothelial monolayers and isolated microvessels
show that endothelial permeability is increased by circulating factors
released during burn injury.18,112 However, clinical studies have
shown that targeting specific inflammatory pathways has limited effi-
cacy in treating burn oedema. Likewise, we have seen that pharmaco-
logical inhibition of signalling molecules generally considered to lie
upstream of the hyperpermeability response, such as Src and PKC,
has negligible inhibitory effects on burn-induced microvascular
leakage.111 This is not surprising considering the wide spectrum of
extracellular inflammatory mediators and intracellular signalling inter-
mediaries that cause endothelial hyperpermeability,113 –118 notwith-
standing that there is crosstalk between parallel signalling pathways.
These events can compensate for each other such that selective inhi-
bition of individual pathways may not be sufficient to block the
massive, collective detrimental response. We believe that a better
therapeutic strategy for treatment of burn oedema is one that specifi-
cally targets common terminal effectors of these signalling pathways.
Our studies show that treatment with ML-7 blocks MLC phosphoryl-
ation and significantly attenuates burn-induced venular hyperperme-
ability in a dose-dependent manner.111 This finding supports our
hypothesis that MLCK is a common endpoint effector for multiple sig-
nalling pathways triggered by circulating inflammatory factors that
induce endothelial hyperpermeability in trauma.

The construction of MLCK-210 knock-out mice119 has enabled
in vivo testing of the hypothesis that nmMLCK kinase activity is
necessary for microvascular barrier response to stress or injury.
The lungs are frequently involved in trauma- or sepsis-induced
inflammation,18,120 and we have observed that pulmonary microves-
sels are particularly susceptible to hyperpermeability in response to

inflammatory mediators. Studies of human populations show altered
susceptibility to acute lung injury or acute respiratory distress syn-
drome associated with single nucleotide polymorphisms in the
mylk1 gene, in the regions specifically coding nmMLCK.121,122 This
suggests that lung hyperpermeability during trauma or sepsis is specifi-
cally mediated by nmMLCK isoforms. In addition, MLCK210 knockout
animals have lowered susceptibility to septic injury, especially in the
lung tissue.119 Therefore, we investigated the specific role of
nmMLCK in microvascular hyperpermeability during severe burns
using MLCK210 knockout mice.123 When compared with wild-type
mice that show substantially increased albumin transflux and hydraulic
conductivity (Lp) after severe burns, microvascular hyperpermeability
was significantly attenuated in MLCK210 knockouts and accompanied
by improved survival.123 This study provides strong in vivo evidence
that nmMLCK mediates microvascular barrier dysfunction in response
to systemic inflammation during severe traumatic injury. Further
studies of endothelial-specific overexpression of MLCK2 in transgenic
mice shows enhanced serum protein leakage into lung tissue during
sepsis or injury, suggesting that individual nmMLCK isoforms
mediate endothelial hyperpermeability in vivo.124

8. Summary
Microvascular endothelial barriers face diverse challenges in the form
of physical forces, chemical factors, and circulating cells, and are criti-
cal for maintaining fluid/electrolyte homeostasis and physiological
organ function. As the initiator and consequence of many diseases
and disorders associated with microvascular inflammation, disruption
of endothelial integrity is a critical problem that is difficult to correct
clinically. The research efforts of several laboratories spanning
decades has revealed that endothelial barrier dysfunction is generated
by an imbalance between interendothelial adhesive forces and
actomyosin-based centripetal tension. MLCK is a central regulator
of actomyosin-based contractile cytoskeleton for a multitude of
inflammatory cell signalling pathways. In this review, we provided
experimental evidence ranging from in vitro to ex vivo and in vivo that
supports the concept that MLCK is a common mediator for microvas-
cular endothelial barrier dysfunction induced by several signalling mol-
ecules (e.g. NO/GMP and PKC), activated neutrophils, and severe
thermal injury. Notably, MLCK-mediated MLC phosphorylation
does not account for the action of all inflammatory agonists. There
is evidence that MLCK-dependent actomyosin contractile mechan-
isms do not contribute significantly to PAF- or bradykinin-induced
hyperpermeability in rat venular microvessels.49 Additionally, evidence
suggests that the role of actomyosin cytoskeletal contraction in con-
trolling endothelial permeability in vivo is different from endothelial
cell monolayers in vitro. For example, in cultured endothelial cells, inhi-
bition of the ROCK/MLC cascade exhibits a strong protective effect
on the endothelial barrier during lethal toxin-induced inhibition of
Rac1 activity, an effect believed to stabilize the endothelial barrier
at the level of VE-cadherin.125 In the same study, antagonism of acto-
myosin contractility did not prevent toxin-induced hyperpermeability.
Hence the mechanisms that mediate endothelial hyperpermeability
may be more complex for intact vessels in vivo than for cell mono-
layers in vitro. Given the central role of nmMLCK in mediating micro-
vascular leakage associated with the many inflammatory conditions
described above, targeting nmMLCK as a therapeutic intervention
may prove an effective alternative for treating these problems. Thus
far, clinical use of non-specific MLCK inhibitors such as ML-7 and
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ML-9 has not been possible, due to systemic complications and
non-specific effects on other kinases. Optimally, more specific small
molecule or peptide inhibitors of nmMLCK isoforms can be designed
that selectively target endothelial tissues and prevent oedema.
More recent evidence regarding the protective effects of
sphingosine-1-phosphate (S1P) indicate that activation of the receptor
SIPR1 or of downstream tyrosine kinases may offer other approaches
to therapeutic inhibition of endothelial nmMLCK activity, and
suppression of vascular hyperpermeability.126,127
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