Skip to main content
. 2010 Jul 1;6(7):e1000837. doi: 10.1371/journal.pcbi.1000837

Table 2. 10-fold document-level CV results.

Kernel AIMed BioInfer HPRD50 IEPA LLL
AUC P R F AUC P R F AUC P R F AUC P R F AUC P R F
SL 83.5 47.5 65.5 54.5 81.1 55.1 66.5 60.0 80.0 64.4 67.0 64.2 81.1 69.5 71.2 69.3 81.2 69.0 85.3 74.5
ST 68.9 40.3 25.5 30.9 74.2 46.8 60.0 52.2 63.3 49.7 67.8 54.5 75.8 59.4 75.6 65.9 69.0 55.9 100. 70.3
SST 68.9 42.6 19.4 26.2 73.6 47.0 54.3 50.1 62.2 48.1 63.8 52.2 72.4 54.8 76.9 63.4 63.8 55.9 100. 70.3
PT 68.5 39.2 31.9 34.6 73.8 45.3 58.1 50.5 65.2 54.9 56.7 52.4 73.1 63.1 66.3 63.8 66.7 56.2 97.3 69.3
SpT 66.1 33.0 25.5 27.3 74.1 44.0 68.2 53.4 65.7 49.3 71.7 56.4 75.9 54.5 81.8 64.7 50.0 55.9 100. 70.3
kBSPS 75.1 50.1 41.4 44.6 75.2 49.9 61.8 55.1 79.3 62.2 87.1 71.0 83.2 58.8 89.7 70.5 84.3 69.3 93.2 78.1
cosine 70.5 43.6 39.4 40.9 66.1 44.8 44.0 44.1 74.8 59.0 67.2 61.2 75.5 61.3 68.4 64.1 75.2 70.2 81.7 73.8
edit 75.2 68.8 27.7 39.0 67.4 50.4 39.2 43.8 79.2 71.3 45.2 53.3 80.2 77.2 60.2 67.1 87.5 68.0 98.0 78.4
APG 84.6 59.9 53.6 56.2 81.5 60.2 61.3 60.7 80.9 68.2 69.8 67.8 83.9 66.6 82.6 73.1 83.5 71.3 91 78.1
APG (with SVM) 71.2 62.9 48.9 54.7 73.9 60.2 63.4 61.6 74.1 65.4 72.5 67.5 76.2 71.0 75.1 72.1 74.9 70.9 95.4 79.7
SL [23] 60.9 57.2 59.0
kBSPS [29] 67.2 49.4 44.7 46.1 76.9 66.7 80.2 70.9 75.8 70.4 73.0 70.8 78.5 76.8 91.8 82.2
cosine [22] 62.0 55.0 58.1
edit [22] 77.5 43.5 55.6
APG [17] 84.8 52.9 61.8 56.4 81.9 56.7 67.2 61.3 79.7 64.3 65.8 63.4 85.1 69.6 82.7 75.1 83.4 72.5 82.2 76.8
rich-feature-based [26] 49.0 44.0 46.0 60.0 51.0 55.0 64.0 70.0 67.0 72.0 73.0 73.0
hybrid [63] 86.8 55.0 68.8 60.8 85.9 65.7 71.1 68.1 82.2 68.5 76.1 70.9 84.4 67.5 78.6 71.7 86.3 77.6 86.0 80.1
co-occ. [17] 17.8 100. 30.1 26.6 100. 41.7 38.9 100. 55.4 40.8 100. 57.6 55.9 100. 70.3
RelEx [36] 40.0 50.0 44.0 39.0 45.0 41.0 76.0 64.0 69.0 74.0 61.0 67.0 82.0 72.0 77.0

The first two blocks contain the results of our evaluation, the third block contains corresponding results of kernel approaches from the literature, and the third block shows some non-kernel-based baselines. Bold typeface shows our best results for a particular corpus (differences under 1 base point are ignored). AUC, precision, recall, and FInline graphic-score in percent.

† instance-level CV.