Skip to main content
. 2010 Jul 1;6(7):e1000837. doi: 10.1371/journal.pcbi.1000837

Table 3. Cross-learning results.

Kernel AIMed BioInfer HPRD50 IEPA LLL
AUC P R F AUC P R F AUC P R F AUC P R F AUC P R F
SL 77.5 28.3 86.6 42.6 74.9 62.8 36.5 46.2 78.0 56.9 68.7 62.2 75.6 71.0 52.5 60.4 79.5 79.0 57.3 66.4
SpT 56.8 20.3 48.4 28.6 64.2 38.9 48.0 43.0 60.4 44.7 77.3 56.6 54.2 41.6 19.6 15.5 50.5 48.2 83.5 61.2
kBSPS 72.1 28.6 68.0 40.3 73.3 62.2 38.5 47.6 78.3 61.7 74.2 67.4 81.0 72.8 68.7 70.7 86.8 83.7 75.0 79.1
cosine 65.4 27.5 59.1 37.6 61.3 42.1 32.2 36.5 71.2 63.0 56.4 59.6 57.0 46.3 31.6 37.6 66.9 80.3 37.2 50.8
edit 62.8 26.8 59.7 37.0 61.0 53.0 22.7 31.7 60.7 58.1 55.2 56.6 62.1 58.1 45.1 50.8 57.6 68.1 48.2 56.4
APG 77.6 30.5 77.5 43.8 69.6 58.1 29.4 39.1 84.0 64.2 76.1 69.7 82.4 78.5 48.1 59.6 86.5 86.4 62.2 72.3
Fayruzov et al. 72.0 40.0 70.0 31.0 75.0 56.0 68.0 29.0 74.0 39.0

Classifiers are trained on the ensemble of four corpora and tested on the fifth one. Rows correspond to test corpora. Best results are typeset in bold (differences under 1 base point are ignored). We show for reference the results with the combined full kernel of [25], taken from [38]. AUC, precision, recall, and FInline graphic-score in percent.