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Abstract
It is of great practical interest to simultaneously identify the important predictors that correspond
to both the fixed and random effects components in a linear mixed-effects model. Typical
approaches perform selection separately on each of the fixed and random effect components.
However, changing the structure of one set of effects can lead to different choices of variables for
the other set of effects. We propose simultaneous selection of the fixed and random factors in a
linear mixed-effects model using a modified Cholesky decomposition. Our method is based on a
penalized joint log-likelihood with an adaptive penalty for the selection and estimation of both the
fixed and random effects. It performs model selection by allowing fixed effects or standard
deviations of random effects to be exactly zero. A constrained EM algorithm is then used to obtain
the final estimates. It is further shown that the proposed penalized estimator enjoys the Oracle
property, in that, asymptotically it performs as well as if the true model was known beforehand.
We demonstrate the performance of our method based on a simulation study and a real data
example.
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1 Introduction
Linear mixed-effects (LME) models (Laird and Ware, 1982) are a class of statistical models
used to describe the relationship between the response and covariates, based on clustered
data. Examples of clustered data are repeated measures and nested designs. By introducing
subject-specific random effects, the LME model allows flexibility to model the means as
well as the covariance structure.

As a motivating example, consider a recent study of the association between total nitrate
concentration in the atmosphere and a set of measured predictors (Lee and Ghosh, 2008;
Ghosh et al., 2009). Nitrate is one of the major components of fine particulate matter
(PM2.5) across the United States (Malm et al., 2004). However, it is one of the most difficult
components to simulate accurately using numerical air quality models (Yu et al., 2005). An
alternate approach is to identify empirical relationships that exist between nitrate
concentrations and a set of observed variables that can act as surrogates for the different
nitrate formation and loss pathways (Ghosh et al., 2009). To formulate these relationships,
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data obtained from the U.S. EPA Clean Air Status and Trends Network (CASTNet) sites are
used. The CASTNet dataset consists of multiple sites with repeated measurements of
pollution and meteorological variables on each site. The data enables us to identify these
relationships which can allow for more accurate simulation of air quality. Further details of
this data and associated analysis using our methods are described in Section 6.

To fix notation, denote the number of subjects by m, with response from each subject i = 1,

2 . . . , m measured ni times, and let . For the CASTNet data described above,
each site is considered as a subject. Let yi be an ni × 1 response for subject i. Let Xi be the ni
× p design matrix of explanatory variables, and β = (β1, · · · , βp)′ be the regression

parameter vector. Let  be a q × 1 vector of subject-specific random effects

with , and assumed independent across subjects. Denote Zi as the ni × q design
matrix corresponding to the random effects. Often one sets Zi = Xi, but it is not necessary.
Then, a general class of LME models can be written as

(1.1)

where the errors εi's are independently distributed N(0, σ2Ini) and independent of the .

Lange and Laird (1989) showed that underfitting the covariance structure would lead to bias
in the estimated variance of the fixed effects. On the other hand, including unnecessary
random effects could lead to a near singular random effect covariance matrix. The main goal
of this paper is to simultaneously identify the subsets of important predictors that correspond
to the fixed and the random components, respectively.

The problem of selecting variables has received considerable attention over the years, and a
large number of methods have been proposed (see for example, Miller, 2002, for a review).
Traditional methods, such as forward selection and backward elimination can be unstable
due to the inherent discreteness (Breiman, 1996). More recently, penalized regression has
emerged as a successful method to tackle this problem, for examples see Tibshirani (1996),
Fan and Li (2001), Efron, Hastie, Johnstone and Tibshirani (2004), Zou and Hastie (2005),
Zou (2006), Bondell and Reich (2008). However, the selection of random effects together
with the fixed effects in the LME model has received little attention. Typical methods select
fixed effects with the random effect structure unchanged. Few procedures have been
proposed to select the random effects as well. Model selection criteria such as AIC (Akaike,
1973), BIC (Schwartz, 1978), GIC (Rao and Wu, 1989), and conditional AIC (Vaida and
Blanchard, 2005) have been used to compare a list of models. However, the number of
possible models increases exponentially with the number of predictors, as it is given by
2p+q, which for the CASTNet data is over 4 billion models.

To reduce computational demand, Pu and Niu (2006) proposed the Extended GIC (EGIC),
while Wolfinger (1993) and Diggle, Liang and Zeger (1994) proposed the Restricted
Information Criteria, where selection is first performed on either the mean or the covariance
structure while fixing the other at the full model. This results in the number of possible sub-
models considered to be 2p + 2q, which may still be large, as for the CASTNet data this
gives over 130,000 models. Jiang and Rao (2003) also proposed an alternative two-stage
procedure. Forward or Backward selection can avoid enumerating all possible models
(Morell, Pearson and Brant, 1997) however the discrete nature makes them unstable. More
recently, Jiang, Rao, Gu and Nguyen (2008) proposed a ‘fence’ method to select predictors
in a general mixed model. Although these methods may avoid the need to search through the
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entire model space, it may remain computationally intensive when the number of predictors
are large. A Bayesian method was proposed by Chen and Dunson (2003) and Kinney and
Dunson (2007) by selecting a prior with mass at zero for the random effect variances.

A difficulty in defining a shrinkage approach to random effects selection is that an entire
row and column of Ψ must be eliminated to successfully remove a random effect. This leads
to complications in how to perform the shrinkage appropriately. In this article we propose a
new method for simultaneously selecting the fixed and the random effects parameters, in
which the selection is done for both types of effects in a combined penalized procedure. Our
proposed method is based on a re-parametrization of the LME model obtained by a modified
Cholesky decomposition of Ψ (Chen and Dunson, 2003). This modified factorization aids us
in the selection of the random effects by dropping out the random effects terms which have
zero variance.

The SCAD (Fan and Li, 2001) and the adaptive LASSO (Zou, 2006) showed that
asymptotically penalized estimators can perform as well as the ‘Oracle’ estimators which
knows the true model beforehand. Motivated by the oracle properties of the adaptive
LASSO estimates, we use an adaptive penalty on the re-parameterized model that
simultaneously selects the fixed and the random effects.

The remainder of the paper is structured as follows. In Section 2, we describe the re-
parameterized linear mixed models and its properties. Section 3, describes our method
which selects the important variables for the fixed as well as the random effects. In Section 4
we show that our penalized estimators possess the asymptotic Oracle property. We illustrate
the performance of our method with a simulation study in Section 5. The proposed approach
is applied to the U.S. EPA CASTNet data in Section 6 and compared to other selection
methods. Finally, in Section 7 we conclude with a discussion. All proofs are given in the
Web Appendix.

2 The Re-parameterized Linear Mixed Effects Model
The Cholesky decomposition has been extensively used as a computational tool for
estimating the covariance matrix of the random effects (Lindstrom and Bates, 1988; Pinhiero
and Bates, 1996; Smith and Kohn, 2002). However the parameters in the Cholesky
decomposition does not allow for elimination of random effects. This is due to the fact that
the covariance matrix depends on all of these parameters from the decomposition. To
alleviate this drawback, we adopt a modified Cholesky decomposition as in Chen and
Dunson (2003), where we factorize the covariance matrix, Ψ, of the random effects as Ψ =
DΓΓ′D, where D = diag(d1, d2, · · · , dq) is a diagonal matrix, and Γ, whose (l, r)th element is
denoted by γlr, is a q × q lower triangular matrix with 1′s on the diagonal. This
decomposition in terms of D and Γ is unique, and leads to a non-negative definite matrix Ψ.
Given the decomposition, the re-parameterized LME model can be written as

(2.1)

where we assume yi has been centered and the predictors have been standardized so that,
 and  represent the correlation matrices, and bi = (bi1, · · · , biq)′ is a q × 1 vector

of independent N(0, σ2Iq). The covariance matrix of , is now expressed as a function of d
= (d1, d2, · · · , dq)′, and the q(q – 1)/2 free elements of Γ, denoted by the vector γ = (γlr : l =
1, · · · , q : r = l + 1, . . . , q)′. We denote ϕ = (β′, d′, γ′)′, a k × 1 vector of unknown

parameters, where .
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With this convenient decomposition, setting dl = 0 is equivalent to setting all the elements in
the lth column and lth row of Ψ to zero and creating a new sub-matrix by removing the
corresponding row and column. Hence a single parameter controls the inclusion/exclusion of
the random effects.

2.1 The Likelihood
For the re-parameterized linear model, conditioning on Xi and Zi, the distribution of yi

follows a normal distribution with mean Xiβ, and variance .
Dropping constant terms, the log-likelihood function is given by

(2.2)

where  a block diagonal matrix of Vi's, and ,

 are the stacked yi and Xi, respectively.

By treating  as observed, and again dropping constants, we can write the
complete data log-likelihood function as

(2.3)

where Z represents a block diagonal matrix of Zi and  and , with ⊗
representing the Kronecker product.

We now maximize the conditional expectation of (2.3) along with a penalty function on β
and d, to decide whether to include or exclude a predictor. Dropping out the terms which do
not involve either β or d is then equivalent to minimizing the conditional expectation of

 plus the penalty term.

3 Penalized Selection and Estimation for the Re-parameterized LME model
3.1 The Shrinkage Penalty

Recently, Zou (2006) proposed the Adaptive LASSO where adaptive weights are used to
penalize different regression coe cients in the L1 penalty. That is, we wish to have a large
amount of shrinkage applied to the zero-coefficients while smaller amounts are used for the
non-zero ones which then results in an estimator with improved efficiency and selection
properties. The Adaptive LASSO estimate for the linear regression model is defined as

(3.1)

where λm is a non-negative regularization parameter, w̄j are adaptive weights, typically

 with  the ordinary least squares estimate. As λm increases, the coefficients are
continuously shrunk towards zero and, due to the L1 form, some coefficients can be exactly
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shrunk to zero. We adopt this adaptive penalty, coupled with the re-parameterization, to
perform the selection.

Given the LME model (2.1) and the complete data log-likelihood (2.3), we can define our
penalized criterion under the L1 penalty with the adaptive weights, jointly for the fixed and
random effects as

(3.2)

Here  is the generalized least squares estimate of β, and d̄ is obtained by decomposition of
the estimated covariance matrix obtained by restricted maximum likelihood, using the
unpenalized likelihood with standard software.

Rearranging the terms, the equation given in (3.2) can instead be written as

(3.3)

where 1q denotes a column vector of ones of length q. From (3.3), we have a quadratic form
in (β′, d′)′.

3.2 Computation and Tuning
3.2.1 The Constrained EM Algorithm—Laird and Ware (1982) and Laird, Lange and
Stram (1987) used the Expectation-Maximization (EM) algorithm in the context of the LME
model, where the complete data consists of yi plus the unobserved random parameters. We
adopt the EM algorithm, in that, we compute the conditional expectation of Qc(ϕ|y, b)
assuming the random effects are unobserved (E-step). Then we minimize to obtain the
updated penalized likelihood estimates of our parameters (M-step). This process is repeated
iteratively until convergence.

Given (2.3), the conditional distribution of b given ϕ and y is, b|y, ϕ ~ N(b̂, U) where the
mean and variance are given by,

(3.4)

respectively. Here, ω indexes the iterations and ω = 0 refers to the initial estimates, chosen
to be the REML estimates. The updated estimate for σ2 at iteration ω is given by
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Let ϕ(ω) be the estimate of ϕ at the ωth iteration. We first compute the E-step by taking the
conditional expectation of Qc(ϕ|y, b),

(3.5)

Then, for the M-step, we minimize the objective function, g(ϕ|ϕ(ω)) with respect to (β′, d′, γ
′)′. This optimization within the M-step is done by iterating between γ and the vector (β′, d′)
′. The optimization iteration for γ is closed form, while the iteration for (β′, d′)′ will be a
quadratic programming problem. Further details for computing the expectation explicitly
and performing the M-step can be found in Web Appendix B. Once we have convergence

within the M-step, we have the updated  and also σ2(ω+1), and return
to the E-step. Upon convergence of the full EM algorithm, we obtain our final estimates

.

3.2.2 Choice of tuning parameter—The EM algorithm described above applies to a
fixed value of λm. In practice, λm is chosen on a grid and the solution is obtained for each λm.
Next, we must choose from among the candidate values of λm and obtain the final solution.
This can be accomplished via minimizing a criterion such as AIC, BIC, GIC, Generalized
Cross-Validation (GCV), or via k-fold Cross-Validation. It is known that under general
conditions, BIC is consistent for model selection if the true model belongs to the class of
models considered, while although AIC is minimax optimal, it is not consistent for selection
(Shao, 1997; Yang, 2005; Pu and Niu, 2006). We use a BIC-type criterion given by

(3.6)

where  is the obtained value of L(ϕ), as in (2.2), using the estimate  obtained for that
value of λm. We take the degrees of freedom, dfλm, as the number of non-zero coefficients in

. For the linear model this is an unbiased estimate of the degrees of freedom (Zou, Hastie
and Tibshirani, 2007), and we adopt it for this setting as well. We then choose the solution
that minimizes the BICλm criterion.

Note that in the BIC-type criterion, we use the total sample size, N, although in the mixed
model situation this is not the effective sample size as pointed out by Pauler (1998), Jiang
and Rao (2003), and Jiang et al. (2008). This criterion has worked well for tuning in our
simulations (both reported and unreported), as well as the data example. This
implementation of the BIC-type criterion was also used by Pu and Niu (2006). We also
compared tuning via AIC and HQIC (Hannan and Quinn, 1979) and found the best
performance using the proposed BIC-type criterion.

4 Asymptotic Properties

Consider again ϕ = (β′, d′, γ′)′ and let  denote an initial √m consistent estimator of ϕ. Let
Q(ϕ) denote the penalized log-likelihood function with L(ϕ) is as given in (2.2), then
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(4.1)

Denote the true value of ϕ as

(4.2)

where  is an s × 1 vector whose components are non-zero and let ϕ20 be
the (k – s) remaining components of ϕ0, so that ϕ20 = 0. In a similar manner we also

decompose ϕ itself as . We shall next state our theorems, while the proofs and
regularity conditions are given in Web Appendix A.

For the penalized log-likelihood given in (4.1), let , that is fixing ϕ2 = 0. Let L(ϕ1),
Q(ϕ1) denote the log-likelihood and the penalized log-likelihood of the first s components of
ϕ given by

(4.3)

where , is the block diagonal matrix corresponding to the non-

zero components  and X(1) and Z(1) are the corresponding design matrices.

Theorem 1. Let , and the observations follow the LME model (2.1) satisfying
conditions (i) – (iv) given in Web Appendix A. If , then there exists a local

maximizer  such that  is √m consistent for ϕ10.

Theorem 2. Let the observations follow the LME model (2.1) satisfying conditions (i) – (iv)
given in Web Appendix A. If λm → ∞, then with probability tending to 1 for any given
ϕ1 satisfying  and some constant M > 0,

(4.4)

Remark 1. From Theorem 1 we see that we are able to get into a √m neighborhood, while
Theorem 2 shows that, with probability tending to 1, there exists a local maximizer in that
neighborhood with . Hence, combining the two, we see that our penalized likelihood
estimator can identify the true model with probability tending to one.
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Theorem 3. Let the observations follow the LME model (2.1) satisfying conditions (i) – (iv)
given in Web Appendix A. Then as λm → ∞ and , we have

(4.5)

where h(ϕ10) = (w̄1sgn(ϕ10), . . . , w̄ssgn(ϕs0))′ an s × 1 vector, and I(ϕ10) is the Fisher
information knowing that ϕ2 = 0.

Remark 2. From Theorem 2 and 3 as λm → ∞ and , we can say that our
penalized estimator enjoys the oracle property in that asymptotically it performs as well as
the oracle estimators, knowing ϕ2 = 0. In particular, to first order,

.

5 Simulation Study
In order to avoid complete enumeration of all possible (2p+q) models, Wolfinger (1993) and
Diggle, Liang and Zeger (1994) recommended the Restricted Information Criterion (denoted
by REML.IC), in that, by using the most complex mean structure, selection is first
performed on the variance-covariance structure by computing the AIC and/or BIC. Given
the best covariance structure, selection is then performed on the fixed effects. Alternatively,
Pu and Niu (2006) proposed the EGIC (Extended GIC), where using the BIC, selection is
first performed on the fixed effects by including all of the random effects into the model.
Once the fixed effect structure is chosen, selection is then performed on the random effects.

In this section, we compare our proposed method to the REML.IC as well as the EGIC.
Given the selected random effects model by using the REML.IC, further comparisons are
also shown for selection on the fixed effects performed using the LASSO, adaptive LASSO,
and the stepwise selection procedure which allows movement in either the forward or
backward directions. We evaluate the performance by comparing them to the ‘Oracle’ model
which knows beforehand the true underlying model, i.e. the REML estimate of ϕ1 knowing
ϕ2 = 0.

Three scenarios are considered. In each example, 200 datasets were simulated from a
multivariate normal density

(5.1)

The three scenarios are given by:

1. Example 1: m = 30 subjects and ni = 5 observations per subject, where p = 9 and q
= 4. We consider the true model

(5.2)

with true values (β1, β2) = (1, 1) and true variance-covariance matrix

(5.3)
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such that there are 7 unimportant predictors for the fixed effects and 1 unimportant
predictor for the random effects. The covariates xijk for, k = 1, . . . , 9 and zijl, for l =
1, 2, 3 are generated from a uniform (–2, 2) distribution, along with a vector of 1's
for the subject-specific intercept.

2. Example 2: The setup for the second scenario is the same as the first, except we
increase the number of observation to m = 60 subjects and ni = 10 observations per
subject. This allows us to investigate the performance in a larger sample.

3. Example 3: We now set m = 60 subjects and ni = 5 observations per subject, for a
particular case where p = 9 and q = 10. The covariates xijk for k = 1, . . . , 9, are
generated from a uniform(–2, 2) distribution. We set Zi = Xi plus a random
intercept term. The true model is then given by

(5.4)

with (β1, β3) = (1, 1), and the true covariance matrix is the same as example one.

For the simulation study, in addition to selection comparsions, model comparisons and
validation are made based on the Kullback-Leibler discrepancy (Kullback and Leibler,
1951) given by

(5.5)

The joint density f(Y, X, Z|ϕ0) is given by the conditional in (5.1) evaluated at the true

parameters, along with the marginals of X and Z. The density  uses the estimate
obtained by each method. The expectation is taken with respect to the true model.

Table 1 compares our proposed method (denoted by M-ALASSO) tuned via the BIC to 5
variable selection algorithms: EGIC (Pu and Niu, 2006), REML.IC (Wolfinger,
1993;Diggle, Liang and Zeger, 1994), stepwise procedure (denoted by STEPWISE), LASSO
(Tibshrani, 1996) and the adaptive LASSO (Zou, 2006), all of which are tuned using either
AIC and/or BIC. Note that, the LASSO, adaptive LASSO and STEPWISE are used to
perform selection only on the fixed effects, given the random effects selected using
REML.IC. Comparisons are also shown for the true model (denoted by Oracle) and the full
model (denoted by Full).

Column 4 lists the median Kullback-Leibler discrepancy (KLD) along with its bootstrap
standard errors over 200 simulations. In column 5 we report the relative-efficiency (RE), i.e
the ratio of the median KLD of the ‘Oracle’ to the median KLD obtained for each method.
We see that for all three scenarios performance of the proposed method is the closest to the
‘Oracle’ with a RE upward of 0.75. We also notice that as the sample increases, the relative
KLD between our method and the ‘Oracle’ model becomes smaller, as the theoretical results
suggest. Column six (% Correct) in Table 1 gives the percentage of times the true model
(fixed and random effects combined) is selected, while columns seven (% CF) and column
eight (% CR) correspond to the percentage of times the correct fixed and the correct random
effects are selected by each method, respectively. In all examples we see that our method
outperforms the competing method by correctly identifying the true model most often.

The simulation study demonstrates that the performance of the typical methods that select
the fixed and random components separately is not as good as the proposed method which
simultaneously selects both the fixed and random components. For example, in the first
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setup, using BIC to select the random effects while keeping the full fixed effect structure
only selects the correct set of random effects 68% of the time. Now this incorrect structure
will a ect the 2nd step, i.e. the fixed effect selection, regardless of how selection is done in
this next step, whether it be enumerating all possible models, or using a LASSO or adaptive
LASSO. For the method that selects the fixed effects while leaving the random effects at the
full model (EGIC) it only selects the correct fixed effect structure 56% of the time, and this
will of course carry over to the 2nd step of selecting the random effects.

6 Analysis of the U.S. EPA data
As discussed in the introduction, the U.S. EPA CASTNet (Clean Air Status and Trend
Network) data has been widely used in air quality models to inter-relate levels of various air
pollutants in the atmosphere. Recently Ghosh et al. (2009) used this data to capture the
relationship between total nitrate concentration (TNO3) and a set of measured predictors.
We used a subset of the data obtained by selecting 15 relevant sites in the eastern portion of
the United States. These sites were selected to overlap spatially with major sources of nitric
oxide (NO) and nitrogen dioxide (NO2) emission. The data and sites are further described in
Web Appendix C. We use data from the years 2000-2004 averaged to create monthly
observations. The sites vary in the number of observations that they have over a 5 year
period, yielding a total of 826 observations. The response is taken as log(TNO3) rather than
TNO3, as in previous analyses. To build the relationship, we consider the following
variables within the mixed model framework: sulfate (SO4), ammonium (NH4), ozone (O3),
temperature (T), dew point temperature (Td), relative humidity (RH), solar radiation (SR),
wind speed (WS), and precipitation (P). The responses have been centered and the predictors
have been standardized, hence the fixed intercept can be removed.

Plots of the log(TNO3) concentration for each site as a function of time (Web Appendix C)
shows seasonality. In order to allow for this periodic effect, we include trigonometric

functions  and  and j = 1, 2, 3, as potential predictors to
capture the seasonal effects. In addition there seems to be an overall downward trend over
the 5 year period. The data now consists of 9 quantitative predictors, 6 constructed
predictors, plus a covariate (denoted by l(t)) to capture a linear trend, making it a total of 16
variables (see Web Appendix C for a description of the dataset and some additional
diagnostic plots).

This data is of specific interest due to the possible heterogeneity among the 15 sites. To
achieve this, we fit a linear mixed-effects model by setting Zi = Xi along with a random
intercept. This model specification allows each regression coefficient as well as the intercept
to vary across the sites. Table 2 compares the variables selected using the different methods,
for both fixed and random effects. The selected models were compared via a 5-fold cross-
validation method. We randomly omitted 1/5 of the data and estimated the coefficients via
REML based on the structure that was chosen by each method. The likelihood using those
parameter estimates was then evaluated on the omitted data. This was repeated for 50
random splits of the data and the deviance was averaged and reported in Table 2. We note
that the cross-validated deviance is smallest for our method. Table 3 lists the penalized
likelihood estimates for the fixed effect regression coefficients and the random effect
standard deviations using the proposed method.

Although, the proposed method allows for the possibility of performing selection among all
possible choices of random slope, as in our analysis, in many applications, the practitioner
only considers a small number of possible random effects. As a second analysis, we allowed
only for random variation in the seasonal trends across the sites, and kept the slopes of the
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meteorological variables to be only fixed effects. Tables 4 and 5 show the corresponding
results for that analysis. One thing to note is that the cross-validated likelihood remains best
for the model chosen by the proposed method from the original analysis which allowed for
random effects from each covariate. Using the proposed procedure, the original analysis
included 7 fixed and 6 random effects, while the analysis that restricted to only a random
seasonality included 9 fixed and 5 random effects.

7 Discussion
In this paper we have shown that the re-parameterized LME model using the modified
Cholesky decomposition of the covariance matrix aids us in the efficient selection of the
random effects. By using simulated and real data we have illustrated that the proposed
penalized method can outperform the commonly used methods with respect to both selection
and estimation. By jointly selecting the fixed and random effects, performance is improved
over performing selection in a two-stage manner. Much of the improvement can be
attributed to the reliance of the two-stage procedure on the selection of the structure in the
first step. Variation in the structure of one part of the model can greatly affect the selection
for the other part. For example, by using the full fixed effect model and performing selection
on the random effects under that model, additional noise is added by the irrelevant fixed
effects. This can hamper the selection on the random effects, which will then also carry over
to the 2nd step of selecting the fixed effects under the chosen random effect structure. We
have also shown both theoretically as well as empirically that our penalized likelihood
estimators asymptotically performs as well as the ‘Oracle’ model.

Note that the proposed method can be applied to any fixed covariance structure on the

errors, in that one may have the within subject error structure as  for some Σi.
An example would be longitudinal data where one may place an autoregressive structure on
the correlation. Estimation would proceed as in the case for the unpenalized estimation
procedure. Letting  be the block diagonal matrix of Σi, for known , we replace

 and  in (2.5) by  and

 respectively. After this n transformation, the
remainder follows by redefining (X, Z, y). If there are unknown parameters in Σ, the process
must then iterate between estimation of the fixed and random effect parameters given Σ, and
estimation of the parameters in Σ given the fixed and random effects. This must be done
separately for each tuning parameter λm. To save on computational burden, iterating only
one or two steps will typically suffice.

Since the approach is based on the assumption of normality for both the conditional
distribution as well as the distribution of the random effects, it may suffer from a lack of
robustness to deviations from this assumption. These robustness issues have been studied in
the context of the unpenalized LME framework. Modifications to the penalized approach to
account for robustness to non-normality in the random effects deserve investigation, but are
beyond the scope of this paper.
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Table 2

Variables selected for the fixed and the random components for the CASTNet data allowing for a random
intercept and all possible random slopes. The last column corresponds to the value of the cross-validated
deviance via 5-fold CV and the methods are ordered by that value (smaller is better).

Variables Selected

Method Tuning Fixed Random CV Value

M-ALASSO BIC x2, x3, x6, x9, l(t), s1(t), c1(t) Int, x1, x2, l(t), s1(t), c1(t) −161.17

STEPWISE BIC x1, x2, x3, x6, x7, x9, l(t), s1(t), c1(t) Int, x1, x2, x3, l(t), s1(t), c1(t) −160.73

ALASSO AIC x1, x2, x3, x6, x7, x9, l(t), s1(t), c1(t), s2(t), s3(t) Int, x1, x2, x3, l(t), s1(t), c1(t) −160.09

STEPWISE AIC x1, x2, x3, x6, x7, x9, l(t), s1(t), c1(t), s2(t) Int, x1, x2, x3, l(t), s1(t), c1(t) −159.32

ALASSO BIC x1, x2, x3, x6, x7, x9, l(t), s1(t), c1(t), s2(t) Int, x1, x2, x3, l(t), s1(t), c1(t) −159.32

LASSO AIC x1, x2, x3, x5, x6, x7, x8, x9, l(t), s1(t), c1(t), s2(t), c2(t), s3(t) Int, x1, x2, x3, l(t), s1(t), c1(t) −157.85

LASSO BIC x1, x2, x3, x5, x6, x7, x9, l(t), s1(t), c1(t), s2(t), c2(t), s3(t) Int, x1, x2, x3, l(t), s1(t), c1(t) −157.55
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Table 4

Variables selected for the fixed and the random components for the CASTNet data allowing for only the
random intercept and time trend. The last column corresponds to the value of the cross-validated deviance via
5-fold CV and the methods are ordered by that value (smaller is better).

Variables Selected

Method Tuning Fixed Random CV Value

M-ALASSO BIC x1, x2, x3, x6, x9, l(t), s1(t), c1(t), s2(t) Int, l(t), s1(t), c1(t), c2(t) −160.61

STEPWISE AIC x1, x2, x3, x6, x7, x9, l(t), s1(t), c1(t), s2(t), s3(t) Int, l(t), s1(t), c1(t), c2(t) −160.53

ALASSO AIC x1, x2, x3, x6, x7, x9, l(t), s1(t), c1(t), s2(t), s3(t) Int, l(t), s1(t), c1(t), c2(t) −160.53

STEPWISE BIC x1, x2, x3, x6, x7, x9, l(t), s1(t), c1(t), s2(t) Int, l(t), s1(t), c1(t), c2(t) −160.08

ALASSO BIC x1, x2, x3, x6, x7, x9, l(t), s1(t), c1(t), s2(t) Int, l(t), s1(t), c1(t), c2(t) −160.08

LASSO BIC x1, x2, x3, x5, x6, x7, x9, l(t), s1(t), c1(t), s2(t), c2(t), s3(t), c3(t) Int, l(t), s1(t), c1(t), c2(t) −159.98

LASSO AIC x1, x2, x3, x5, x6, x7, x8, x9, l(t), s1(t), c1(t), s2(t), c2(t), s3(t), c3(t) Int, l(t), s1(t), c1(t), c2(t) −159.83
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