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 Introduction 

 Viruses are ubiquitous parasites of all cellular life 
forms. As a group, they are united by their intracellular 
reproduction and reliance on the host cell translation sys-
tem, but not necessarily by common origin  [1] . Indeed, 
not a single gene is represented in the genomes of all 
known viruses, although a small group of ‘viral hallmark 
genes’ encoding some of the key proteins involved in ge-
nome replication and virion structure formation are 
shared by extremely diverse subsets of viruses  [2, 3] . Thus, 
viruses as a class of biological agents are not monophy-
letic, at least not within the traditional concept of mono-
phyly. Nevertheless, several large groups of viruses in-
fecting diverse hosts do appear to share common ances-
try in the strict sense – that is, to have evolved from a 
single ancestral virus – which is indicated by the conser-
vation of sets of genes encoding proteins responsible for 
many functions essential for virus reproduction.

  One of the most expansive apparently monophyletic 
viral divisions currently includes six families of eukary-
otic viruses with large DNA genomes that are collec-
tively denoted nucleo-cytoplasmic large DNA viruses 
(NCLDV;  table 1 )  [4, 5] . The best known of these viral 
families, Poxviridae, is a large assemblage of animal vi-
ruses that includes a major human pathogen, the small-
pox virus, important animal pathogens, such as rabbit 
myxoma virus, as well as vaccinia virus, one of the best 
characterized models of molecular biology  [6–8] . Anoth-
er family of the NCLDV that recently became the focus 
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 Abstract 

  Background/Aims:  The nucleo-cytoplasmic large DNA vi-
ruses (NCLDV) constitute an apparently monophyletic group 
that consists of 6 families of viruses infecting a broad variety 
of eukaryotes. A comprehensive genome comparison and 
maximum-likelihood reconstruction of NCLDV evolution re-
veal a set of approximately 50 conserved genes that can be 
tentatively mapped to the genome of the common ancestor 
of this class of eukaryotic viruses. We address the origins and 
evolution of NCLDV.  Results:  Phylogenetic analysis indicates 
that some of the major clades of NCLDV infect diverse ani-
mals and protists, suggestive of early radiation of the NCLDV, 
possibly concomitant with eukaryogenesis. The core NCLDV 
genes seem to have originated from different sources in-
cluding homologous genes of bacteriophages, bacteria and 
eukaryotes. These observations are compatible with a sce-
nario of the origin of the NCLDV at an early stage of the evo-
lution of eukaryotes through extensive mixing of genes from 
widely different genomes.  Conclusions:  The common an-
cestor of the NCLDV probably evolved from a bacteriophage 
as a result of recruitment of numerous eukaryotic and some 
bacterial genes, and concomitant loss of the majority of 
phage genes except for a small core of genes coding for pro-
teins essential for virus genome replication and virion forma-
tion.  Copyright © 2010 S. Karger AG, Basel 
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of much attention and fascination is the Mimiviridae, 
which so far includes two closely related giant viruses iso-
lated from Acanthamoeba – Mimivirus and Mamavirus. 
With their genomes being slightly larger than 1 mega-
base, these viruses are undisputed genome size record 
holders in the virosphere, exceed numerous parasitic bac-
teria, and approach the genome size of the simplest free-
living prokaryotes  [9–13] .

  The NCLDV infect animals and diverse unicellular 
eukaryotes, and either replicate exclusively in the cyto-
plasm of the host cells, or possess both cytoplasmic and 
nuclear stages in their life cycle ( table  1 ). The NCLDV 
typically do not strongly depend on the host replication 
or transcription systems for completing their replication 
 [6, 14] . In line with this relative independence of virus 
reproduction from the host cell functions (apart from 
translation, of course), the NCLDV encode several con-
served proteins that mediate most of the processes essen-
tial for viral reproduction. These key proteins include 
DNA polymerases, helicases and primases responsible 
for DNA replication, Holliday junction resolvases and 
topoisomerases involved in genome DNA processing and 
maturation, transcription factors that function in tran-
scription initiation and elongation, ATPase pumps medi-
ating DNA packaging, chaperones involved in capsid as-
sembly, and capsid proteins themselves  [4, 5, 15] . Al-
though several viral hallmark genes  [3]  are shared by 
NCLDV and other large DNA viruses, such as herpesvi-
ruses and baculoviruses, the conservation of the entire 
set of core genes clearly demarcates the NCLDV as a dis-
tinct class of viruses  [5] .

  Recently, a novel giant virus, denoted Marseillevirus, 
has been isolated from Acanthamoeba. Genome analysis 
of Marseillevirus indicated that it represents a putative 
new family of NCLDV that appears to be distantly related 

to iridoviruses and ascoviruses  [16] . In addition, compar-
ative genomic analysis revealed probable gene exchange 
between Marseillevirus and Mimiviruses, an observation 
that suggests a role of amoeba as a ‘melting pot’ of giant 
virus evolution. 

  We performed a new comparison of the updated col-
lection of NCLDV genomes and constructed clusters of 
orthologous NCLDV genes (NCVOGs), 177 of which 
were represented in two or more viral families  [15] . The 
NCVOGs were employed for phylogenetic analysis and 
for reconstruction of the ancestral viral gene set. Here we 
review the results of these analyses in the context of the 
origin and evolution of the NCLDV, and attempt to deci-
pher the origins of the NCLDV genes that are mapped to 
the last common ancestral virus. 

  Cross-Mapping of the Phylogenetic Trees of NCLDV 

and Eukaryotes 

 As in the major divisions of cellular life forms  [17, 18] , 
very few genes are represented in all sequenced NCLDV 
genomes. The original comparative genomic analysis re-
vealed 9 universal NCLDV genes  [4] , and the latest update 
that took into account the newly discovered viral families 
showed that 5 genes remained common to all known 
NCLDV  [15]  ( table 2 ). In order to derive a maximally ro-
bust phylogeny of the NCLDV, we analyzed phylogenetic 
trees of both the universal and the nearly universal genes. 
These trees had somewhat conflicting topologies; howev-
er, given the results of previous studies that pointed to an 
origin of the NCLDV from a single ancestral virus ( [4, 5]  
and see below), we assumed that the discrepancies be-
tween the tree topologies of the highly conserved NCLDV 
genes were caused by phylogenetic analysis artifacts rather 

Table 1. T he six families of NCLDV

Virus family Hosts Genome size 
range, kb

Replication site

Phycodnaviridae Green algae; algal symbionts of paramecia and hydras 150–400 Nucleus and cytoplasm
Poxviridae Animals: insects, reptiles, birds, mammals 130–380 Cytoplasm
Asfarviridae Mammals 170 Cytoplasm
Asco- and Iridoviridae Invertebrates and non-mammalian vertebrates 100–220

Ascoviridae Insects, mainly noctuids 150–190 Nucleus and cytoplasm
Iridoviridae Insects, cold-blooded vertebrates 100–220 Nucleus and cytoplasm 

Mimiviridae Acanthamoeba; algae (probably); corals (possibly) 1,180 Cytoplasm
Marseillevirus Acanthamoeba; algae (probably) 370 Nucleus and cytoplasm (?)
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than genuinely different evolutionary trajectories of these 
genes (although some exceptions are possible  [15] ). Thus, 
to produce a ‘species tree’ of the NCLDV, we derived a con-
sensus of the trees for individual conserved genes ( fig. 1 ). 
The best supported consensus tree topology reveals three 
major divisions of the NCLDV: (1) the recently discovered 
Marseillevirus clustered with iridoviruses and ascovirus-
es, with the latter confidently placed inside the family Iri-
doviridae; (2) Mimiviruses clustered with phycodnavirus-
es, and (3) poxviruses clustered with asfarviruses.

  When an NCLDV tree was constructed using a com-
pletely different approach that was based on the compar-
ison of the patterns of representation (phyletic patterns) 
of viruses in NCVOGs  [19] , the resulting tree topologies 
were generally compatible with the topology of the se-
quence-based consensus tree, indicating that evolution of 
the gene repertoire of the NCLDV largely mirrored the 
evolution of the conserved core genes  [15, 16] . There was 
one notable exception to this congruence, namely, clus-
tering of Marseillevirus with the Mimivirus that suggests 
extensive gene exchange between these viruses that re-
produce in the same amoebal host  [16] .

  Although viruses of unicellular eukaryotes are still 
poorly characterized, the hosts of known NCLDV span 
much of the phylogenetic diversity of eukaryotes. The 
best current representation of eukaryotic phylogeny ap-
pears to be a multifurcation of five (or possibly four) ma-
jor supergroups ( fig. 1 ). The earliest events of eukaryotic 

radiation and, accordingly, the root of the tree remain 
murky  [20–22] . Cross-mapping of the NCLDV and eu-
karyotic trees reveals a complex network structure where 
members of the same NCLDV branch often infect organ-
isms that belong to different eukaryotic supergroups 
( fig. 1 ). For instance, the phycodna-Mimivirus clade of 
NCLDV spans three eukaryotic supergroups, and the 
pox-asfarvirus clade spans at least two supergroups 
( fig. 1 ). Beyond doubt, this assessment of the diversity of 
the NCLDV host range only scratches the surface, as in-
dicated by the discovery of an extensive unexplored di-
versity of homologs of the key genes of the NCLDV in 
marine metagenomic sequences  [23–25] . The discovery 
of numerous environmental sequences that are homolo-
gous to genes of Mimiviruses, iridoviruses, phycodnavi-
ruses and asfarviruses suggests that not only the large 
divisions but even individual families of the NCLDV 
(with the possible exception of Poxviridae) infect highly 
diverse hosts including both animals and unicellular or-
ganisms from different supergroups  [25, 26] .

  The complex network connecting the different lineag-
es of the NCLDV with the host lineages ( fig. 1 ) clearly 
indicates that, on a large scale, viruses of this class did not 
coevolve with their hosts. Two possible scenarios of 
NCLDV evolution could account for the observed virus-
host mapping: 

  (1) origin of the common ancestor of the NCLDV in a 
distinct eukaryotic lineage, for instance, Amoebozoa 

ro
ot

Uniconts

Plantae

Chromalveolates

Rhizaria

Amoebozoa

Animals

Green algae

Dinoflagellates

Excavates

Haptophytes

Heteroconts

Poxviridae

Africanswine fever virus

Chloroviruses

Iridoviridae

Mimiviridae

Marseillevirus

Phycodnaviridae

Ostreococcus virus OsV5

Phaeoviruses

Coccolithovirus

Heterocapsa circularisquama virus

?

Asfarviridae

  Fig. 1.  Cross-mapping of the phylogenetic 
trees of the NCLDV and eukaryotes, the 
chordopoxvirus and chlorovirus branches 
are collapsed. The eukaryotic tree is shown 
as a multifurcation of 5 supergroups. Lines 
connect viruses with their host organisms. 
Solid lines show established virus-host re-
lationships; broken lines show putative re-
lationships inferred from metagenomic 
data. The short broken line from Iridovir-
idae is to indicate that, according to 
metagenomic results, members of this 
family probably infect marine unicellular 
eukaryotes but the exact unicellular hosts 
are not known. Adapted from  [15, 20] .  
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which are known to host diverse and complex NCLDV, 
and subsequently, diverged after acquisition by other 
hosts via horizontal virus transfer; 

  (2) the main lineages of the NCLDV radiated from the 
ancestral lineage prior to the divergence of the eukary-
otic supergroups, and this primordial virus diversity was 
subsequently ‘sampled’ by evolving hosts. 

  Of course, mixed evolutionary scenarios are also read-
ily imaginable. Given that horizontal virus transfer be-
tween taxonomically distant hosts remains a speculative 
possibility and the indications of the early origin of the 
NCLDV (see below), which was probably concomitant 
with eukaryogenesis, the ancient divergence scenario ap-
pears most plausible. 

  Reconstruction of Evolution of the NCLDV Gene 

Repertoire 

 The species tree derived as a consensus phylogeny of 
the conserved NCLDV genes ( fig. 1 ) was employed as the 
scaffold to reconstruct the core gene repertoires of ances-
tral viruses as well as gene loss and gain events during the 
evolution of the NCLDV. Original reconstructions of the 
NCLDV gene repertoire evolution were performed using 
a simple maximum parsimony approach. Recently, we 
used a more sophisticated maximum-likelihood meth-
odology developed by Csuros and Miklos  [27]  to map 47 
genes to the common ancestor of the NCLDV ( table 1 ) 
and reconstruct progressively growing gene repertoires 
for other ancestral viruses ( fig. 2 ). These are highly con-
servative reconstructions because no approach will as-
sign to ancestral forms genes that survived in only one of 
the progeny lineages let alone those that were lost in all 
extant lineages. Nevertheless, the reconstructed gene 
repertoire seems to cover most, if not all, of the core func-
tions characteristic of this class of viruses. This indicates 
that the common viral ancestor of all known NCLDV al-
ready possessed the relative autonomy from the host cell 
that is the distinguishing feature of this class of viruses. 
Such functions include the basal machineries for replica-
tion, transcription and transcript processing (such as the 
capping and decapping enzymes), enzymes required for 
DNA precursor synthesis (thymidine kinase and thymi-
dylate kinase), the two major virion proteins, the central 
enzymes of virion morphogenesis (protease and disulfide 
oxidoreductase), and even some proteins implicated in 
virus-cell interaction such as a RING-finger ubiquitin li-
gase subunit ( table 2 ).

  Some of the core functions are prone to non-ortholo-
gous gene displacement  [28]  among the NCLDV, some-
times showing complex patterns of evolution. A case in 
point is the DNA ligase that is an essential activity for 
DNA replication. The reconstruction of the ancestral 
NCLDV gene repertoire tentatively defines the ATP-de-
pendent ligase as an ancestral gene; however, Mimivirus-
es, entomopoxviruses and some iridoviruses lack the 

Marseillevirus

48 98
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  Fig. 2.  Reconstruction of the evolution of the NCLDV gene reper-
toire. Numbers at internal nodes indicate the number of genes 
assigned to the given ancestral form with high confidence  [15] . 
Amsmo = Amsacta moorei entomopoxvirus; Melsa = melanoplus 
sanguinipes entomopoxvirus; Helvi = heliothis virescens asco-
virus 3e; Trini = trichoplusia ni ascovirus 2c; Spofr = spodopte-
ra frugiperda ascovirus 1a; Afrsw = African swine fever virus; 
Aedta = aedes taeniorhynchus iridescent virus (Invertebrate iri-
descent virus 3); Invir = invertebrate iridescent virus 6; Lymdi = 
lymphocystis disease virus 1; Lymch = lymphocystis disease virus 
isolate China; Infsp = infectious spleen and kidney necrosis virus;
Singr = Singapore grouper iridovirus; Frovi = frog virus 3; Amb-
ti = ambystoma tigrinum virus; Acapo = acanthamoeba poly-
phaga mimivirus; Mamav = Mamavirus; Emihu = emiliania hux-
leyi virus 86; Felsp = Feldmannia species virus; Ectsi = ectocarpus 
siliculosus virus 1; Ostvi = ostreococcus virus OsV5; Marvi = 
Marseillevirus. 
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ATP-dependent ligase and instead encode an NAD-de-
pendent ligase that is characteristic of bacteria and also 
found in some bacteriophages. In addition, a considerable 
number of NCLDV from different families, including 
some poxviruses and the majority of iridoviruses, encode 
no DNA ligase at all. Phylogenetic analysis of ATP-de-
pendent and NAD-dependent ligases yielded unexpected 
results: the NAD-dependent ligases of the NCLDV, al-
though quantitatively less prevalent than the ATP-depen-
dent ligases, turned out to be monophyletic, whereas the 
ATP-dependent ligases showed diverse phylogenetic af-
finities, with monophyly confidently rejected. The most 
likely interpretation of these findings seems to be that the 
ancestral NCLDV encoded an NAD-dependent ligase, 
probably of bacteriophage origin, but this ancestral gene 
was repeatedly and independently lost and replaced with 
the gene for an ATP-dependent ligase in several viral lin-
eages ( table 2 )  [29] . This case study reveals the remarkable 
complexity of the NCLDV evolution that is augmented by 
the possibility of complementation of some of the viral 
functions by cellular analogs, as recently demonstrated 
experimentally for the poxvirus DNA ligase  [30] , and is 
only partially captured by reconstructions based on pat-
terns of gene presence-absence. 

  Given the inherent conservative character of the re-
construction and the complications caused by non-or-
thologous gene displacement, the actual genome size and 
complexity of the ancestral NCLDV is a wide-open ques-
tion. The 47 genes mapped to the ancestral genome in the 
present reconstruction comprise only the core of most 
highly conserved, essential viral genes involved in key 
functions. The ancestral NCLDVs undoubtedly repro-
duced in unicellular eukaryotes, and this type of hosts 
support the propagation of extant giant viruses, such as 
the Mimiviruses  [13, 31] , that actively absorb genes from 
the eukaryotic hosts as well as bacterial endosymbionts 

 [32, 33] . Thus, it cannot be ruled out that the common 
ancestor of all extant NCLDV was a highly complex, pos-
sibly even a giant virus  [16] .

  Origins of Ancestral NCLDV Genes 

 All the complications notwithstanding, the recon-
struction of the gene composition of the common ances-
tor of the NCLDV is a relatively straightforward task. In 
contrast, the origin of this ancestral virus remains enig-
matic. We examined homologs and phyletic patterns of 
the inferred set of ancestral genes of the NCLDV in an 
attempt to decipher their likely origins ( table 2 ). Defini-
tive inference of gene origins requires a comprehensive 
phylogenetic analysis that is beyond the scope of the pres-
ent review. However, in many cases, even examination of 
the taxonomic composition of the most similar homologs 
of a gene allows one to determine its most likely origin, 
especially when all or nearly all homologs belong to the 
same taxon [see, for instance,  34, 35 ]. We therefore com-
pared representative sequences of the 47 putative ances-
tral proteins from all NCLDV families to the non-redun-
dant protein sequence database at the NCBI  [36]  using the 
BLASTP program, with multiple PSI-BLAST iterations 
where required  [37, 38] , and manually examined the re-
sults using the Taxonomy Report feature of the NCBI 
BLAST server, in an attempt to infer the likely origin of 
each gene. For most of the putative ancestral genes, the 
taxonomic distribution of the highly conserved homo-
logs turned out to be obviously skewed, allowing confi-
dent inference of the most likely origin that, in several 
cases, was also supported by previous detailed analyses 
( table 2 ).

  The majority of the ancestral genes of the NCLDV 
showed a clear eukaryotic affinity but a substantial mi-
nority appeared to be of bacteriophage origin and a few 
genes of bacterial origin ( table 2  and  fig. 3 ). The genes of 
apparent bacteriophage origin encode some of the key 
proteins involved in viral replication, such as the DNA 
primase-helicase, NAD-dependent ligase and Holliday 
junction resolvase, and DNA packaging in the capsid, 
namely the packaging ATPase. The major capsid protein 
itself is most likely of the same origin ( table 2 ). All these 
genes, with the possible exception of the DNA ligase, are 
viral hallmark genes that are shared by diverse viruses  [3] . 
Genes of inferred eukaryotic origin encode proteins in-
volved in functions that are related to the cytoplasmic site 
of the NCLDV replication, such as the RNA polymerase 
subunits, and the specifics of eukaryotic molecular biol-

Bacteriophage

Bacterial

Eukaryotic

Uncertain
27

7 8

5

  Fig. 3.  Breakdown of the 47 genes mapped to the ancestral NCLDV 
genome by likely origin. The data are from table 2.   
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ogy, such as the capping and decapping enzymes or ubiq-
uitin ligase ( table 2 ).

  These observations are most compatible with a sce-
nario for the origin of the NCLDV under which the an-
cestral virus of this class evolved from a bacteriophage by 
replacement of many (probably most) of the phage genes, 
primarily by genes acquired from the eukaryotic hosts. 
Only a small core of phage genes encoding virus-specific 
functions for which no functional analog exists in cellu-
lar life forms survived in the NCLDV genomes. It is no-
table that even the principal enzyme of DNA replication, 
the DNA polymerase, was apparently replaced by the eu-
karyotic counterpart. Nevertheless, this scenario is com-
patible with the principle of the continuity of evolution in 
the virus world,  Omnis virus e virus   [3] . 

  Concluding Remarks 

 The recent expansion of virology into the study of vi-
ruses infecting unicellular eukaryotes resulted in the un-
expected discovery of giant viruses that belong to three 
families: Mimiviridae, Phycodnaviridae, and the putative 
novel family represented by Marseillevirus. Phylogenetic 
analysis of the expanded class of NCLDV and cross-map-
ping of the phylogenetic trees of NCLDV and their 
 eukaryotic hosts suggest an early origin and primary ra-
diation of the NCLDV, possibly concomitant with eu-
karyogenesis. Phylogenomic reconstruction maps ap-
proximately 50 genes to the last common ancestor of the 

extant NCLDV. However, this is a conservative recon-
struction. A distinct possibility is that the ancestral virus 
of this class was indistinguishable from its modern mem-
bers in terms of genetic complexity. The core NCLDV 
genes seem to have originated from different sources, 
with the majority affined with eukaryotic homologs but 
a substantial minority derived from bacteriophage genes. 
These observations are compatible with the principle of 
the evolutionary continuity of the viral world, whereby 
the common ancestor of the NCLDV evolved from a bac-
teriophage as a result of recruitment of numerous eukary-
otic and some bacterial genes, and concomitant loss of the 
majority of the ancestral phage genes. Only a small core 
of genes coding for proteins that are essential for virus 
genome replication and virion formation and which have 
no functional analogs in cellular life forms survived in 
the NCLDV. Subsequent evolution of the NCLDV includ-
ed lineage-specific recruitment of numerous additional 
genes from both the eukaryotic hosts and bacteria. Gene 
duplication was also prominent, especially in giant vi-
ruses, as well as loss of ancestral genes, especially in ani-
mal viruses with smaller genomes, resulting in the exten-
sive genomic diversity observed among the extant 
NCLDV.
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