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Abstract
A sequential three-component synthesis of functionalized benzisothiazoline-3-acetic acid 1,1-
dioxides utilizing a domino Heck-aza-Michael pathway is reported. This one-pot procedure rapidly
assembles functionalized benzylsulfonamides, which undergo a palladium-catalyzed, domino, Heck-
aza-Michael transformation in an experimentally straightforward manner. This attractive protocol
has been utilized to synthesize three combinatorial sub-libraries (I-III) comprising a total of 95
compounds in high purities (≥95% for 75 compounds), yield and quantities.
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Introduction
Advances in high-throughput screening and the need for new pharmaceutical leads have
prompted the development of new protocols to generate diverse libraries of drug-like
compounds. In recent years, a number of facilitated protocols that utilize both solid-phase and
solution-phase chemistry have emerged to meet this challenge. Despite success in this area,
there are limited examples of protocols that take advantage of cross-reaction functionality to
allow domino/tandem processes to occur in a multi-component one-pot procedure.i

Recently, we reported a one-pot, sequential three-component approach towards the synthesis
of 1,2-benzisothiazoline-3-acetic acid 1,1-dioxides (Scheme 1).ii The key step in this protocol
was the utilization of a domino Heck-aza-Michael (HaM) reaction for both the mode of
cyclization and as a pathway for the incorporation of an additional point of diversification.

Utilizing the (HaM) protocol, a small proof of concept demonstrative library of 1,2-
benzisothiazoline-3-acetic acid 1,1-dioxides and subsequent derivatives was reported.ii
Building on this work, the application of a domino, HaM protocol in the synthesis of three
combinatorial sub-libraries (I-III) utilizing a variety of reaction platforms (Figure 1) is herein
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reported. Additionally a wider range of coupling partners was utilized to ultimately afford
structural diversity around the central core. In order to maximize their potential drug-like
properties, the subsequent libraries feature a multi-faceted design scheme as well as in-silico
screening against Lipinski's rule of five criteria. The in-silico data ranges include a molecular
weight range under 500 g/mol, no more than 5 hydrogen bond donors and/or 10 hydrogen bond
acceptors, and a partition coefficient log P (clogP) less than 5.0.iii Overall, the application of
a domino Heck-aza-Michael (HaM) allows for rapid incorporation of functionality via the
manipulation of the three individual components, allowing for the design of a library of diverse
drug-like small molecules.

Sultams (cyclic sulfonamide analogues) have emerged as important targets in drug discovery
due to their extensive chemical and biological profiles.iv Though not found in nature, a number
of benzofused sultams have recently surfaced in the literature, which display potent activity
across a variety of biological targets. Such reports include inhibition of a variety of enzymes,
including COX-2 (Ampiroxicam),v,vi HCV NS5b RNA-dependent RNA-polymerase,vii HIV
integrase,viii cysteine proteases involved in the progression of maleriaix and lipoxygenases.x
In addition, sultams have also shown antimycobacterial activity against M. Tuberculosis,xi and
inhibition of melanin-concentrating hormone [MCH] (Figure 2).xii

This aforementioned biological profile is augmented by a number of inherent chemical
properties possessed by both sultams and their sulfonamide precursors, including facile
coupling/allylation pathways for sulfonamide and sultam formation, hydrolytic stability,
polarity and their crystalline nature. Traditionally, sultams have been synthesized utilizing a
variety of classical cyclization protocols such as Friedel-Craft,xiii dianion,xiv [3+2]
cycloadditions,xv, Diels-Alder reaction,xvi and recently the application of an oxa/aza-Michael
reaction.xvii However, recently there have been a number of transition metal-catalyzed
protocols reported utilizing ring-closing methathesis (RCM),xviii Heck,xix as well as
Au-,xx Cu-xxi and Rh-catalyzedxxii cyclization protocols for the generation of diverse sultams.

Results and Discussion
A 56-member library I was initially designed to expand on the prototype library previously
reported,ii demonstrating the capability of the HaM protocol in a library format. The method
allows for the generation of sultams with three points of diversification starting from
commercially available α-bromobenzenesulfonyl chlorides coupled with a range of aromatic,
cyclic and alkyl amines (Figure 3).xxiii,xix

Specific combinations of the three-components were chosen to evaluate the robustness of this
protocol to peripheral functionality. In addition, Lipinski's rule of five also guided in-silico
efforts in the selection of combinations. Based on previous work, it was anticipated that these
substrates would be well tolerated under the reaction conditions, carrying out the preparation
of library I in 1-dram vials on an aluminum reaction block.xxiv To this effect, α-
bromobenzylsulfonyl chlorides (S1-3) were coupled with amines (A1-9) and stirred for 2 hours
at room temperature. After such time, Et3N, Bu4NCl, Pd2(dba)3·CHCl3 and the corresponding
Michael acceptors (M1-4) were added to the reaction mixture, which was heated to 110 °C
and subjected to workup after 14 hours. Workup consisted of removal of DMF, suspension of
the crude reaction mixture in EtOAc and filtration through a SiO2 SPE to remove inorganic
salts and spent palladium. The crude material was analyzed by HPLC (UV 214 nm) and
submitted to purification by mass-directed fractionation (MDF) to yield the anticipated
products in modest to good yield and high purity (Table 1).xxv

Overall, a total of 56 reactions afforded product in variable yield and purity, validating the
scope and economy of the HaM strategy. Specifically, out of the 56 reactions carried out, 44
had a final purity of 95% or greater with reactions yielding good overall mass recovery.xxvi
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Having established the viability of the HaM protocol in the generation of libraries, we set out
to design a library (Library II) of 1,2-benzisothiazoline-3-acetic acid 1,1-dioxides utilizing the
Bohdan MiniBlock® platform. Under this premise, a library of compounds was prepared in
parallel using a 26-member Bohdan MiniBlock. In an attempt to design more drug-like
molecules a new collection of amines (A10-15) was employed (Table 2). In addition, reactions
were carried out using stock solutions to streamline the process thereby granting it the potential
for future automation. As with sub-library I, crude compounds were analyzed by HPLC (UV
214 nm) and submitted to purification by MDF. Overall, with the exception of compounds
60 and 81, all reactions worked with good yield and high purity. Notably, 20 out of the 24
reactions had a final purity of 95% or greater. Having validated the methodology, the protocol
was implemented for the generation of 1,2-benzisothiazoline-3-acetic acid 1,1-dioxides
84-95 bearing both saturated and unsaturated side chains as previously reported (Table 3). The
addition of one more point of diversification was accomplished by utilizing commercially
available 2,5-dibromosulfonyl chloride. In this regard, 12 parallel reactions were carried out
in a Radley Carousel®, utilizing stock solutions for the quick generation of the desired products
in a sequential three-component coupling. Crude material was analyzed via HPLC (UV 214
nm) and submitted to purification by MDF. As expected, all reactions resulted in good yields
and high purities yielding the desired compounds with good mass recovery.

In conclusion, the successful demonstration of a sequential three-component synthesis of
functionalized benzisothiazoline-3-acetic acid 1,1-dioxides utilizing a domino Heck-aza-
Michael pathway has been accomplished. This one-pot, three step procedure, rapidly assembles
functionalized benzylsulfonamides, which undergo a palladium-catalyzed domino Heck-aza-
Michael transformation in an experimentally straightforward manner. This protocol was
demonstrated on a variety of platforms (Reaction blocks, Bohdan MiniBlock® and Radley
Carousel®) producing overall three combinatorial sub-libraries (I-III) comprising a total of
95 pure compounds in high purities (≥95% for 75 compounds) and good quantities. The
evaluation of biological activities of the compounds reported herein in high-throughput screens
is currently underway. Future efforts will continue to focus on the development of new
methodology for the synthesis of diverse, functionalized libraries and their biological
evaluation.

Experimental Section
General procedures: All air and moisture sensitive reactions were carried out in flame- or oven-
dried glassware under argon atmosphere using standard gas tight syringes, cannula, and septa.
Stirring was achieved with oven-dried, magnetic stir bars. CH3CN was purified by passage
through the Solv-Tek purification system employing activated Al2O3 (Grubbs, R. H.; Rosen,
R. K.; Timmers, F. J. Organometallics 1996, 15, 1518-1520). Et3N was purified by passage
over basic alumina and stored over KOH. Flash column chromatography was performed with
SiO2 from Sorbent Technology (30930M-25, Silica Gel 60A, 40-63 um). Thin layer
chromatography was performed on silica gel 60F254 plates (EM-5717, Merck). Deuterated
solvents were purchased from Cambridge Isotope laboratories. 1H and 13C NMR spectra were
recorded on a Bruker DRX-400 NMR spectrometer operating at 400 MHz and 100 MHz
respectively; or a Bruker Avance operating at 500 MHz and 125 MHz respectively. High-
resolution mass spectrometry (HRMS) and FAB spectra were obtained in one of two manners:
(i) on a VG Instrument ZAB double-focusing mass spectrometer and (ii) on a LCT Premier
Spectrometer (Micromass UK Limited) operating on ESI (MeOH). All library syntheses using
block technology were performed using a 24-position Mettler-Toledo Bohdan MiniBlock XT
under an argon atmosphere in oven-dried Autochem 17 × 100 mm round bottom tubes. Parallel
evaporations were performed using a GeneVac EZ-2 plus evaporator. Automated preparative
reverse-phase HPLC purification was performed using a Waters 2767 Mass-Directed
Fractionation system (2767 sample manager, 2525 Binary Pump, 515 Make-up pump) with a
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Waters ZQ quadrapole spectrometer and detected by UV (270 nm, Waters Xterra MS C-18
column, 19×150 mm, elution with the appropriate gradient of CH3CN in pH 9.8 buffered
aqueous ammonium formate at 18 mL min-1 flow rate). Purity was determined by reverse-
phase HPLC with peak area (UV) at 214 nm using a Waters Alliance 2795 system (Waters
Xterra MS C-18 column, 4.6×150 mm, elution with a linear gradient of 5% CH3CN in pH 9.8
buffered aqueous ammonium formate to 100% CH3CN at 1.0 mL/min flow rate).

General procedure (A) for the synthesis of Library I (1-56) on Reaction Blocks in 1 dram vials
Into a 1-dram vial was added amine (0.237 mmol), Et3N (0.546 mmol) and dry DMF (0.60
mL) and the reaction was stirred at RT for 15 minutes. After such time, α-
bromobenzenesulfonyl chlorides (0.237 mmol) were added and the reaction was stirred for 2
hrs. To the reaction vial was added Et3N (0.546 mmol), Bu4NCl (0.237 mmol),
Pd2(dba)3•CHCl3 (2 mol%) and dry DMF (1.4 mL). After stirring for 5 min at RT, Michael
acceptor (0.819 mmol) was added and the reaction vial was placed immediately into a preheated
reaction block. The reaction was stirred at 110 °C for 14 hrs after which time the reaction was
cooled and concentrated under reduced pressure. The crude was suspended in EtOAc, filtered
through a SiO2 SPE and analyzed by HPLC (UV 214 nm). Crude material with purity below
90% was submitted to purification by MDF.

General procedure (B) for the synthesis of Library II (57-83) in a Bohdan MiniBlock
Into a MiniBlock reaction tube, was added a stock solution of amine (0.136 mmol) in dry DMF
(0.10 mL) followed by Et3N (0.273 mmol) in dry DMF (0.10 mL) and reaction was stirred at
RT for 15 minutes. A stock solution of α-bromobenzenesulfonyl chloride (0.136 mmol) in dry
DMF (0.10 mL) was added and the reaction was stirred for 2 hrs. After such time, a stock
solution of Et3N (0.273 mmol), Bu4NCl (0.136 mmol) and Pd2(dba)3•CHCl3 (2 mol%) in dry
DMF (0.7 mL) was added to the reaction mixture. The MiniBlock was then heated to 110 °C
and the Michael acceptor (0.410 mmol) was added. After stirring at 110 °C for 14 hrs, the crude
reaction was cooled to RT and concentrated under reduced pressure. The crude was suspended
in EtOAc, filtered through a SiO2 SPE and analyzed by HPLC (UV 214 nm). Crude material
with purity below 90% was submitted to purification by MDF.

General procedure (C) for the synthesis of Library III (84-95) in a Radleys Carousel
Into a reaction tube contained within a 12-port Radley Carousel®, was added a stock solution
of amine (0.136 mmol) in dry DMF (0.10 mL) followed by Et3N (0.273 mmol) in dry DMF
(0.10 mL) and the reaction was stirred at RT for 15 minutes. A stock solution of α-
bromobenzenesulfonyl chloride (0.136 mmol) in dry DMF (0.10 mL) was added and the
reaction was stirred for 2 hrs. After such time, a stock solution of Et3N (0.273 mmol), Bu4NCl
(0.136 mmol) and Pd2(dba)3•CHCl3 (2 mol%) in dry DMF (0.7 mL) was added to the reaction
mixture. The MiniBlock was then heated to 110 °C after which time, the Michael acceptor
(0.410 mmol) was added. After stirring at 110 °C for 14 hrs, the crude reaction was cooled to
RT and concentrated under reduced pressure. The crude was suspended in EtOAc, filtered
through a SiO2 SPE and analyzed by HPLC (UV 214 nm). Crude material with purity below
90% was submitted to purification by mass-directed fractionation (MDF).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Scheme 1.
Sequential three-component domino Heck-aza-Michael
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Figure 1.
Overview of the prepared libraries
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Figure 2.
Representative biologically active sultams
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Figure 3.
Representative coupling partners for Heck-aza-Michael
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