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Abstract
Dual-energy (DE) X-ray computed tomography (CT) has been found useful in various
applications. In medical imaging, one promising application is using low-dose DECT for
attenuation correction in positron emission tomography (PET). Existing approaches to sinogram
material decomposition ignore noise characteristics and are based on logarithmic transforms,
producing noisy component sinogram estimates for low-dose DECT. In this paper, we propose
two novel sinogram restoration methods based on statistical models: penalized weighted least
square (PWLS) and penalized likelihood (PL), yielding less noisy component sinogram estimates
for low-dose DECT than classical methods. The proposed methods consequently provide more
precise attenuation correction of the PET emission images than do previous methods for sinogram
material decomposition with DECT. We report simulations that compare the proposed techniques
and existing approaches.
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Introduction
A. Background

THE combination of positron emission tomography (PET) and X-ray computed tomography
(CT) in a single scanner has provided a variety of significant advantages in nuclear medicine
[1]. First, PET/CT provides reasonably accurate alignment of functional and anatomical
information. In oncology imaging, for example, PET/CT improves the identification and
localization of lesions. Second, CT transmission images can be used for attenuation
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correction of PET emission images. CT-based attenuation correction (CTAC) for PET
provides several benefits over the conventional attenuation correction by PET transmission
scans [1]–[3]. For instance, low noise attenuation correction factors (ACFs) are provided by
CTAC without lengthy transmission scans, and post-injection biases are avoided.

For CTAC, since X-ray source spectra for CT transmission scans typically have a broad
range of energies (30 keV ~ 140 keV), one must transform CT values to the linear
attenuation coefficients (LACs) evaluated at the PET energy (511 keV). Various approaches
to this transformation have been suggested in the literature and these can be roughly
categorized into two groups [4]: segmentation based methods and scaling methods.
Segmentation based approaches first separate the CT image into regions associated with
different material types such as soft tissue and bone and then replace the segmented areas
with proper LACs evaluated at 511 keV based on the material types. It is difficult to make a
clear segmentation of some material types [5], hampering the acceptance of the
segmentation based methods.

In linear scaling, CT values are multiplied by the ratio of the LACs of water: at the CT
energies and at the PET energy. However, linear scaling provides poor estimates for the
LACs of bone minerals at 511 keV. Bilinear scaling resolves this problem by using two
different scaling factors for different ranges of CT values [6]. One scaling factor considers
water–air mixtures whereas the other considers water–bone mixtures. For objects containing
materials with high atomic numbers such as iodine contrast agents, bilinear scaling can
introduce quantitative errors in ACFs and these errors propagate into the reconstructed PET
images [3], [7].

The classical CTAC approaches reviewed above use a single X-ray source spectrum.1 As
alternatives, dual-energy (DE) CT-based methods, also known as dual-kVp methods, that
use two different X-ray spectra have drawn attention in the literature. DECT exploits the
energy dependence of LACs for the basis material characterization by collecting two sets of
transmission scans [8]. Requiring no segmentation or scaling, DECT can eliminate one
potential source of errors in CTAC unlike SECT. For attenuation correction of single photon
emission computed tomography (SPECT), similar ideas were suggested in [9]–[11]. In
DECT based methods, estimates of separate component images associated with two basis
materials are reconstructed first from sinogram measurements and combined then to form
ACFs at 511 keV. We now review previous methods for DECT imaging and also the use of
DECT for attenuation correction in PET.

B. Literature Review
Early methods for exploiting two different energies in X-ray CT decomposed the energy
dependence of LACs into two components corresponding to two types of interactions of
photons: photoelectric absorption and Compton scattering [8], [12]–[14]. For the same
decomposition, by singular value decomposition (SVD), [15] showed that complete energy
dependent information can be achieved by collecting two sets of measurements using two
different incident source spectra when the scanned object contains no k-edge materials near
the effective energies of the source spectra.

Prior to the 1990s, reconstruction methods based on filtered backward projection (FBP)
were predominant in DECT. In the early 1990s, a few algebraic iterative algorithms such as
[16]–[18] were proposed for DECT. However, these methods did not account for noise
statistics. Since additional X-ray scans in DECT introduce higher radiation doses than a

1We call the conventional CTACs single-energy computed tomography (SECT) based methods to distinguish them from DECT based
methods.
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single transmission scan, it is desirable to reduce the radiation dose as much as possible for
clinical purposes. Statistical image reconstruction methods built on appropriate physical and
statistical models can suppress noise, enabling the use of lower radiation doses for DECT.

Statistical approaches to reconstructing DECT images have been explored for
monochromatic measurement models. For instance, [19]–[22] proposed penalized weighted
least square (PWLS) methods in DECT to reconstruct soft tissue and bone mineral images
with constraints in the object domain. These monochromatic methods did not fully exploit
the energy dependence of LACs and required additional beam hardening corrections. Some
maximum likelihood (ML) algorithms for image reconstruction in DECT were derived from
measurement models considering the polychromatic nature of X-ray spectra in [23]–[25].
For attenuation correction in PET, iterative reconstruction algorithms based on PWLS
approaches from polychromatic measurement models were developed recently [3], [7].
CTAC based on statistical image reconstruction in DECT provides more accurate
attenuation corrections for PET than CTAC by bilinear scaling in SECT and by the FBP
image reconstruction in DECT [7].

Previous DECT based methods for CTAC first reconstruct component CT images and then
estimate ACFs for the PET emission images by synthesizing the obtained CT images.
However, if the primary purpose of DECT is PET attenuation correction, then component
images are not necessary. A synthesized sinogram at 511 keV suffices. In addition, since
PWLS and PL methods are derived from proper statistical models, they provide less noisy
component sinogram estimates than the classical sinogram decomposition, producing more
precise ACFs in low-dose DECT [26]. Our PWLS method in Section III is straightforward
to develop but is based on a simple model of the statistical properties of measurements in the
projection domain, providing a suboptimal solution in terms of noise reduction for a given
low radiation dose. Thus as an alternative, we also propose a PL method to estimate
component sinograms. Our proposed methods generalize the previous sinogram restoration
approaches developed in [27] for SECT to methods for DECT.

The remainder of this paper is organized as follows. We first introduce physical model
formulations for polychromatic measurements and the object being scanned in Section II.
We then review conventional approaches to decomposing component sinograms and
propose two statistically motivated methods: PWLS and PL to estimate component
sinograms from multiple-kVp measurements in Section III. Section IV discusses the design
of regularization penalties for achieving approximately uniform spatial resolution and for
matching the resolutions of component sinogram estimates. Simulations to compare the
proposed DECT based methods and existing approaches are provided in Section V. Finally
conclusions and discussions are presented in Section VI. Mathematical details are given in
Appendix I and II.

II. Physical Model Formulations
A. General Measurement Model

We consider a general measurement model where multiple sets of polychromatic
measurements are collected for M0 different incident spectra and forward projections (line
integrals) are recorded for Nd radius-angle pairs for each incident spectrum, forming M0
sinograms.2

2For simplicity, we focus on the 2-D static cases in this paper. The developed techniques can be extended to the helical and cone-
beam cases.
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For m = 1,..., M0 and i = 1,..., Nd let ymi denote the measurement for the mth incident
spectrum and the ith ray. We assume that ymi is a random variable whose ensemble mean
y̵mi is defined by the following underlying physics:

(1)

where  denotes the product of the mth incident source spectrum and the detector gain

for the ith ray, and  is the line integral along the ith ray.  denotes the LAC of
the object being scanned at the spatial location  and the photon energy  denotes
additive background contributions, for example room background, dark current, and scatter.
We also can use rmi to model electronic noise in a shifted Poisson approach. We treat 
and rmi as known (or separately calibrated) nonnegative quantities by methods proposed in
[28]–[30]. By modeling the polychromatic source spectra in (1), the sinogram restoration
methods in Section III can correct for beam hardening artifacts. Therefore separate beam

hardening correction steps are not needed [23], [31]. We refer to  as the sinogram

measurements for the mth incident source spectrum. The LAC  is the property we
want to estimate in a CT scan, but that for PET imaging it is a confounding aspect (albeit
monochromatically at ) that we want to remove [4].

B. Basis Material Decomposition
Since the number of measurements is finite whereas the LAC of the scanned object is a

continuous function of  and , we parameterize  using a basis material
decomposition. We model the LAC using a set of basis functions that are separable in the
space and energy domains [19], [22], [32] as follows:

(2)

where  denotes mass attenuation coefficient (MAC) and  is the unknown density
map of the lth material type. L0 is the number of material types comprising the object being
scanned. In DECT, we usually have L0 = 2, e.g., soft tissues and bone minerals. Other
material decompositions are possible, e.g., [8], and could be used in our approaches. The

goal in DECT is to estimate  from  for M0 = 2 incident spectra.

C. Measurement Model Reformulation
Combining the measurement model in (1) and the object model in (2) yields the following
simplified expression for the ensemble mean of measurements:

(3)

for m = 1,...,M0 and i = 1,...,Nd, where

(4)

(5)
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The nonlinear function fmi(si) characterizes the beam hardening caused by polychromatic
source spectra and it can be measured using calibration phantoms [33], [34]. We define the
total intensity Imi for the mth incident spectrum and the ith ray, and the sinogram vector si as
follows:

(6)

(7)

The nonlinear function fmi(si) is monotonically increasing and concave. These two
properties play key roles in the development of our sinogram restoration algorithms as
shown in Appendix I.

III. Component Sinogram Restoration

Usually in DECT, we reconstruct the component density images, and  and 
from the DE sinograms. For the purpose of PET attenuation correction, however, it is

sufficient to have sinogram-domain estimates of the component material integrals .

Therefore we focus on estimating  hereafter.

We discuss methods to recover component sinograms, i.e.,  for L0 material types from

noisy measurements, i.e.,  for M0 incident source spectra in this section. We first
review classical material sinogram decomposition, and then propose two statistically
principled approaches, PWLS and PL, for estimating component sinograms with improved
accuracy and/or precision.

A. Conventional Sinogram Decomposition
Given the noisy measurement ymi, the conventional method for estimating values of the
nonlinear function fmi is to invert (3) as follows:

(8)

where smoothing in the radial (detector) direction is often applied to reduce noise [35].
Equating (4) and (8) yields a system of M0 nonlinear equations and L0 unknowns for the ith
ray, where the lth unknown variable is sli. Since we usually have the same number of source
spectra and material types, that is M0 = L0, solving this nonlinear system of equations
produces the following estimate of component sinograms:

(9)

where . This is called the conventional sinogram decomposition or
sinogram preprocessing approach in DECT. Note that the measurement noise was ignored in
(8) and (9), yielding noisy estimates of component sinograms and hampering their
acceptance for low-dose DECT.

To reduce the noise in the classical sinogram decomposition, one could estimate  by
minimizing the following function:
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(10)

where a possible choice of the weight matrix for the ith ray is . Its
approximation can be found by the method proposed in [36]. The L0 × Nd sinogram matrix s
is obtained by concatenating si long the ray index and R(s) is a roughness penalty function
for the component sinograms. Although (10) could reduce the noise somewhat, the main
source of noise amplification is the inverse performed in (9). We present next two
alternative approaches that consider noise characteristics and avoid the inverse in (9), thus
providing better estimates of component sinograms.

B. Penalized Weighted Least Square
Instead of solving the M0 nonlinear equations, we propose to estimate component sinograms

from the  values in (8) by minimizing a PWLS cost function. Subject to the nonnegativity
constraint on the entries of si, we have

(11)

and

(12)

where  denotes the L0 × Nd sinogram matrix. For the ith ray,  is
the M0 × M0 weight matrix. If the measurements approximately follow Poisson distribution
and rmi is small, then the above Di is a reasonable choice since an approximate variance of

 is [36], [37]

(13)

For the roughness penalty function R(s) in (12), we use

(14)

where γl denotes a regularization parameter controlling the tradeoff between data fidelity
and roughness penalty. C is a second-order difference matrix and the column vector 

denotes the lth component sinogram, i.e., . We choose C to regularize
component sinograms only in the radial direction [38]; thus K ≈ Nd.

We use the optimization transfer principle (OTP) [39] to minimize Φ(s). In the framework
of OTP, we design a sequence of separable quadratic surrogates (SQSs) satisfying the
surrogate conditions.3 Nonnegativity constraints on the sinogram matrix s are easily
imposed since the surrogates for PWLS data fitting term and the roughness penalty term are

3These are also known as majorization conditions [40], [41].
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additively separable. The SQSs allow a simultaneous update of sli for l = 1,...,L0 and i =
1,...,L0. After applying OTP, we arrive at the following equation for updating an estimate of
component sino-grams in the nth step:

(15)

where  enforces the nonnegativity constraint on sli, and  denotes the
estimate of sli in the nth iteration. The curvature hli is defined in (44) of Appendix I-A. We
precompute it before iterating. It can be shown that the associated surrogate function
satisfies the surrogate conditions. Thus the update provided by (15) decreases the PWLS
cost function every iteration. Appendix I-A gives the detailed derivations.

C. Penalized Likelihood
Although the PWLS approach described in the previous section is statistically motivated, it

requires the logarithmic transformation in (8) to obtain . Thus the solution provided by
(12) is based on an incomplete model of the data statistics and can be suboptimal in terms of
noise reduction for a given radiation dose [26]. To further improve the estimated component

sinograms, we now propose a PL method that uses the raw measurements, i.e., .

For simplicity, we assume that the measurement ymi obeys a Poisson distribution with the
ensemble mean in (1), i.e.,

(16)

One can easily generalize this to include additive electronic noise via the shifted Poisson
approach [28], [42]. Based on (16), we define the PL cost function as follows:

(17)

where denotes the sinogram matrix. The negative log-likelihood is given by

(18)

where constants independent of si are ignored and  is a convex function
with respect to x.

With the same form of the roughness penalty function, R(s), as (14), we estimate component
sinograms by performing the following PL minimization:

(19)

subject to the nonnegativity of the entries of si. We exploit OTP to achieve a sequence of
SQSs for . Since the PL data fidelity term L(s) and penalty term are additively separable,
SQSs can be derived and the nonnegativity constraint is easily imposed in the framework of
OTP. After applying OTP, we arrive at the following equation for updating an estimate of
component sino-grams in the nth step. For any l and i, we have
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(20)

The curvature dli is derived in (62) of Appendix I-B

There is no straightforward way to show that the updates provided by (20) monotonically
decrease the PL cost function Ψ(s) at every iteration because of the approximations used to
make the PL curvature dli precomputable. However, if the approximations used are
reasonably accurate or if dli provides a sufficiently large curvature that ensures the surrogate
conditions, we can expect monotonicity of Ψ(s) when we implement (20). This can be
empirically checked by evaluating Ψ(s) in each iteration for given data. In Section V, the
simulations corresponding to the PL method exhibited empirical monotonicity with the
iteration in (20).

After estimating all component sinograms for L0 material types, i.e.,  for l = 1,..., if
desired, one can use the sinogram estimates to reconstruct L0 component images, e.g., soft
tissue and bone mineral in DECT. A straightforward approach is to apply FBP to each

component sinogram for estimating the corresponding basis material image . This
approach usually gives less noisy estimates of component images than the classical
sinogram decomposition combined with FBP [26]. In addition, it is less computationally
expensive than fully iterative methods for reconstructing component images, e.g., [3], [7],

[23]. However, in this paper, we focus on using the estimated component sinograms 
to compute ACFs, enhancing the quality of the PET emission images.

IV. Regularization Design
Matching the resolution of ACFs to that of the PET images is important to avoid artifacts
[43] and requires appropriate regularization parameters in (14). We analyze the local
impulse response (LIR) of the proposed PL component sinogram estimates, showing that the
component sinograms do not have spatially uniform resolution, and do not have matched
spatial resolutions. Therefore, we design modified regularizing penalty functions that
provide approximate resolution uniformity and match, extending the ideas in [44] to DECT
transmission tomography.

A. Local Impulse Response of Component Sinograms
The LIR measures the changes in the estimated component sinograms induced by the
perturbation of a particular element of a component sinogram. Extending [44] to our PL
sinogram restoration problem for DECT, we define the following LIR, focusing on L0 = M0
= 2:

(21)

where  describes the responses that appear on all component sinograms when we
place an impulse at the jth element of the lth component sinogram and is a lexicographically
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ordered 2Nd × 1 vector.  denotes a 2Nd × 1 vector containing lexicographically

ordered  for m = 1,2 and i = 1,...,Nd.y is similarly defined with ymi.  and  denote
column gradient operator and row gradient operator with respect to y, respectively. Here, 
denotes the th component sinogram and si is the th column of the sinogram matrix defined as

From (14) and (17), it can be shown that (21) reduces to the following LIR in DECT, when
an impulse is placed on the first component sinogram:

(22)

where  denotes a 2Nd × 1 unit vector containing 1 at the position corresponding to the jth

element of the first component sinogram where 1 ≤ j ≤ Nd. By replacing  with  that is

similarly defined, we can also obtain . The Fisher information matrix (FIM) in the
sinogram domain and the penalty matrix in (22) have the following forms:

(23)

(24)

where C is from (14) and

and for l = 1,2,

For given  denotes a MAC vector. Appendix II provides
the detailed derivation of (22) for the PL method.

From (22), we conclude that the LIR in (22) is shift variant since the FIM contains the block
matrices  and  whose entries vary along the diagonal, i.e., as the index
for rays changes. Therefore, the PL method with conventional quadratic penalty functions in
(14) yields nonuniform spatial resolution. The LIR in (22) also reveals coupling of the two
component sinogram estimates induced by the terms,  in the FIM. Thus, a
perturbation of the soft tissue sinogram affects both the soft tissue and bone estimates. These
interactions are due to the coupling of the two component sinograms through .
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The conventional sinogram decomposition also has similar cross-coupling. We discuss next
a method to mitigate the spatial nonuniformity of the component sinogram estimates by
designing spatially variant penalty functions.

B. Spatially Variant Penalty Design
We now modify the penalty matrix R in (24) into a new spatially variant penalty matrix to
make the LIR of the PL method have approximately uniform resolution and matched spatial
resolution of the estimated component sinograms, extending [44]. This also simplifies the
choice of the regularization parameters, γ1 and γ2.

Assuming that the block matrices in the FIM vary slowly along the diagonal, we
approximate the FIM near the jth element as follows:

(25)

where, for example,  denotes the jth diagonal entry of  is an Nd × Nd
identity matrix, ⊗ denotes a Kronecker product, and the 2 × 2 matrix Sj is defined as

(26)

Substituting (25) into (22) and simplifying yield

(27)

where  denotes a square root factorization of the matrix Sj defined in (26).

Instead of a more standard penalty matrix whose nonzero block matrices are Toeplitz in
(24), we choose a new penalty matrix given by

(28)

where  and  are spatially variant second-order difference matrices for the first material
type (soft tissues) and the second material type (bone minerals), respectively. To provide

resolution uniformity of component sinogram estimates, we define  and  as follows:

(29)

(30)

By replacing the conventional penalty matrix R with the new penalty matrix , we have a

useful approximation4 to obtain 

4The off-diagonal blocks are neglected in the approximation used in (31).
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(31)

where the regularizing parameter matrix is defined as

(32)

For small and γ1 and γ2, substituting (31) into (27) yields the following approximation to
the LIR:

(33)

indicating approximately uniform resolution of component sinogram estimates since CT C is
Toeplitz. Using (33), we are able to tabulate the relationship between the spatial resolution
of a component sinogram estimate, usually quantified by full-width half-maximum
(FWHM), and the regularizing parameter γl. For a given target FWHM, we can then
determine the corresponding regularizing parameter. The assumption that γ1 and γ2 are
small values is reasonable since we will use a hybrid approach combining the penalizing
methods with small regularizing parameters and postsmoothings in Section V as
recommended in [45].

V. Simulation Studies
We performed several simulations to evaluate the proposed PWLS and PL component
sinogram estimates for attenuation correction of the PET emission images. First, we
compared the classical DECT sinogram decomposition and the statistically motivated PWLS
and PL using a NCAT phantom consisting of soft tissues and bone minerals [46]. Second,
we compared the classic bilinear scaling with a single-kVp spectrum, and the PWLS and PL
methods with dual-kVp spectra using the same NCAT phantom but containing iodine
contrast agents. In all the results below, we used the modified regularizer in (28) for the
PWLS and PL methods.

A. DECT Based Attenuation Corrections
Fig. 1 shows two true component densities: soft tissues and bone minerals of the NCAT
phantom used in simulations. This phantom contains 512 × 512 pixels and the pixel size is
0.1 × 0.1 cm2. Fig. 2 shows two source spectra that are incident on the NCAT phantom

having 80 kVp and 140 kVp, where two dashed vertical lines at  and

 denote their effective energies in (61), respectively. For simplicity, we used
the same incident spectra for each ray, i.e., Imi = Im, which ignores the effects of bow tie
filters. Since clinical SECT scans have in the order of 106 photons per ray [47], [48], to
simulate DECT with low radiation dose, we set the number of incident photons per ray for

 and  to be 2.8 × 104 and 2 × 105, respectively. This very low value for 
helps contain the extra dose of the lower energy scan. Using the true component densities in
Fig. 1, we synthesized DECT measurements using Poisson random variables whose
ensemble means follow the physical measurement model in (1) in a parallel-beam geometry.
After generating measurements with a high spatial resolution in the projection domain, we
downsampled them to make a typical resolution in PET/CT sinogram, producing 256 (radial
direction) × 200 (angular direction) samples with 0.2 cm radial spacing.
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To provide approximately uniform spatial resolution of the component sinogram estimates,
we used the proposed penalty matrix  in (28) with small amount of regularization by
choosing γ1 = γ2 = 2−8 for the PWLS and PL methods. We then applied a postsmoothing
filter to the restored component sinograms so that the three DECT based methods have
matched spatial resolution [45]. The cost functions of the PWLS and PL methods were
checked at every iteration, verifying that the algorithms in (15) and (20) monotonically
decreased the corresponding cost functions, respectively. After estimating the component
sinograms, we computed the PET ACFs as follows. For the ith ray

(34)

We applied these ACFs to the PET sinogram and applied FBP to reconstruct the emission
images as shown in Fig. 3. The normalized root mean squared error (NRMSE) of the PET
image with ACF by conventional DECT decomposition was 12%, whereas the DECT-
PWLS and DECT-PL methods yielded a lower NRMSE of 7.4%. These are global values
over the whole PET image. Fig. 4 shows the component CT sinograms (soft tissue and bone)
restored by DECT-PL and the corresponding FBP reconstructed component CT images.
Further comparisons of the component CT sinograms and reconstructed images are reported
in [26].

B. Comparison With Bilinear Scaling
To compare the classical bilinear scaling with a single-kVp spectrum and our PWLS and PL
methods with dual-kVp spectra, we placed a small amount of iodine contrast agents in three
areas of the NCAT phantom. Two of them were added into regions in the heart and one was
placed near the border of the left lung. Fig. 5(a) shows the resulting true CT density image.
We assumed that the contrast was diluted and one of them, in the anterior part of the heart, is
indistinguishable from the soft tissues surrounding it in the true PET emission image shown
in Fig. 5(b). To quantify the effects of errors in the estimated ACFs on the reconstructed
PET emission images, we again used the noiseless PET image. The same regularizing
parameters and spatially variant penalty matrices were applied and the same postsmoothing
filters were used as in the previous section.

In SECT based methods combined with bilinear scaling, sinograms were first restored by
three different approaches: 1) the standard sinogram preprocessing, 2) PWLS method, and
3) PL method. CT images were then reconstructed by FBP before performing bilinear
scaling. We call these three approaches SECT-BS, SECT-PWLS-BS, SECT-PL-BS,
respectively. For the SECT based methods, we used a spectrum with 140 kVp whose shape
is the same as . To ensure that we would not bias the results in favor of the DECT
based approaches, we set the number of incident photons per ray to be 5 × 105 for generating
the SECT data, more than twice the total photons in the DECT scans.

After compensating for attenuation in the PET images by six competing methods, three of
which are based on DECT and the remaining three are based on SECT and bilinear scaling,
FBPs produce the reconstructed PET emission images shown in Fig. 6 with their NRMSEs
given in Table I. The DECT-PWLS and DECT-PL methods yielded lower NRMSE values
than the classical DECT sinogram decomposition in the attenuation correction of the PET
images when iodine contrast agents are present. Similarly, the statistically motivated SECT
based approaches, SECT-PWLS-BS and SECT-PL-BS, provide better attenuation
corrections for the PET images than the standard sinogram preprocessing in SECT. Table I
also shows that the DECT methods have lower NRMSE values than their SECT
counterparts.
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We also compared the local NRMSEs of four selected local regions in the reconstructed
PET emission images. Fig. 7 shows these four local areas chosen from the true PET
emission image. Table II shows that the DECT-PWLS and DECT-PL provided the lowest
NRMSEs. Note that Region 2 contains the area where diluted iodine contrast agent was
indistinguishable from local soft tissues in the true PET emission image and Region 4
contains soft tissues only.

We conducted additional simulations to investigate the bias and variance of the
reconstructed PET images corrected by the DECT based methods. We synthesized 50
Poisson distributed realizations of two sets of CT measurements in the projection domain
from the NCAT phantom having iodine contrast. After correcting attenuation by CTACs and
reconstructing the PET emission images by FBPs for all realizations, we evaluated two
quantities: normalized root mean squared bias (NRMSB) and normalized root mean variance
(NRMV) of the reconstructed PET emission images, summarized in Table III. Recall that
the noiseless PET image was used for the simulations, producing small NRMVs. Without
increasing variances, the PWLS and PL methods based on DECT yielded PET
reconstructions having lower biases than did the other competing methods: DECT sino-gram
material decomposition and SECT based approaches.

Since the true CT density in Fig. 5(a) and PET image in Fig. 5(b) contain three different
material types; soft tissues, bone minerals, and iodine whereas the object model for the
DECT based CTACs in (2) assumed two basis materials, there may exist bias caused by
model mismatch. To scrutinize this effect induced by iodine contrast, we increased the sizes
of the three iodinated regions and repeated the simulations without Poisson noise. Fig. 8
shows horizontal profiles obtained from DECT-PL and SECT-PL-BS at two different
vertical locations, one of which corresponds to the iodine contrast agent placed in the
anterior part of phantom's heart [red arrow in Fig. 8(a)] and the other is associated with the
posterior one of the heart [red arrow in Fig. 8(b)]. The green arrow in Fig. 8(b) marks the
iodine contrast agent in the left lung. Other two DECT based CTACs and two SECT based
CTACs had very similar results to those of DECT-PL and SECT-PL-BS, respectively, so are
not shown. Fig. 8(a) and (b) suggest that, although the DECT based CTACs cause some
biases in the reconstructed PET emission images, they are more robust to model mismatch
than their SECT based counterparts. We will explore image domain statistical approaches
for DECT based CTACs in the future to mitigate these biases caused by model mismatch
around iodinated contrast agents.

VI. Conclusion and Discussion
Errors in X-ray CT-based attenuation correction of PET emission data will propagate into
the reconstructed PET emission images. Such errors can arise from several sources, one of
which is the inability of a SECT scan to reliably distinguish materials of differing densities
and effective atomic numbers, e.g., bone and iodinated contrast agents. Although these
materials can have the same reconstructed values in a CT image in terms of Hounsfield units
(HU), they will have significantly different LACs at the annihilation photon energies of 511
keV used for PET. It has been recognized for some time [8] that two CT scans acquired with
different spectral distributions can be used to estimate spatial density patterns of two basis
functions or material components, albeit at a significant amplification of image noise. This
increase is not surprising given the large overlap of two spectra. For attenuation correction
of PET emission data, however, the increase in noise in some ways is not as critical due to
the generally larger noise levels in PET relative to CT. In addition, there is noise reduction
for CTAC due to two different forms of signal averaging. First, we do not need the separate
component sinograms (or images), but rather just the sum of the two components after
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scaling to 511 keV. Second, while CT images are typically reconstructed on a 512 × 512
grid, PET images use a 128 × 128 grid for the same field of view (FOV).

With the considerations listed above, it becomes feasible to use DECT for attenuation
correction of PET emission data although noise amplification is still an issue. In addition, an
important consideration in PET/CT imaging is radiation dose to the patient. Thus methods
that further reduce noise in the DECT scan components are essential for a low radiation
dose.

We proposed novel PWLS and PL methods for statistical sinogram restoration in DECT
used for attenuation correction in PET. The goal is to reduce bias when materials with
higher atomic numbers such as iodine or metallic objects are present in the patient, which
are scaled incorrectly by the standard SECT bilinear scaling approach. We also designed
spatially variant penalty functions that generate component sinograms with approximately
uniform spatial resolution. These methods produced more accurate ACFs than conventional
approaches, reducing the overall NRMSE compared to CTAC estimates using conventional
SECT and DECT methods. In addition, the statistically motivated DECT methods reduced
bias when iodine is present without unduly increasing noise in the final PET image (Tables
II and III). From the simulations, there did not seem to be a significant difference between
the results for the DECT-PWLS and DECT-PL methods. This may be due to the level of
noise and the relatively simple model used in the simulations.

In the simulations of Section V, after downsampling, the two sets of CT rays synthesized in
a parallel-beam geometry matched those of the PET sinogram. To cope with more practical
CT scans, e.g., axial or helical CT scans, the proposed DECT based CTACs can be modified
as follows. First, the component sinograms are decomposed in the CT projection domain by
the PWLS or PL method, and then the estimated sinograms are combined to synthesize a
monochromatic CT sinogram at 511 keV. Second, this sinogram is reconstructed using
conventional axial or helical FBP to form an attenuation map at 511 keV. Third, this
attenuation map is reprojected to produce ACFs that match any PET geometry. Such
backprojection/reprojection steps are routinely used in CTAC for PET.

Several important considerations are not addressed in this study. One that is well known is
the potential for patient motion between two sets of CT scans, which could lead to
significant artifacts. Using simultaneous or near-simultaneous acquisition of the two CT data
sets, e.g., by fast kVp switching [49], can mitigate these artifacts. Furthermore, CTAC for
PET requires a lower spatial resolution than diagnostic CT images, so some effects of small
motions might be reduced by downsampling the CT sinograms to PET resolution. However,
such downsampling might not completely suppress these motion-related artifacts because of
the nonlinearities of polychromatic CT, and it is possible that effects akin to the exponential
edge-gradient [50] might persist. In addition, patient motion between the CT scans and the
PET scan is well known to cause other artifacts in the reconstructed PET emission images,
but this problem occurs even for SECT based CTACs and is beyond the scope of this work.
Another consideration is that knowledge of the X-ray spectrum for each ray or
measurements of the function  in (4) is needed, which may be challenging to
determine. Finally, the cases where improved accuracy in PET/CT imaging is necessary
have to be delineated. There are clinical scenarios where accurate estimation of tracer uptake
is not needed for PET imaging. Cases where improved estimation of PET tracer up-take by
CTAC with DECT will most likely improve patient outcomes are with evaluation of
responses to therapy where bone is involved and/or contrast agent is used and reduction of
artifacts from prostheses and other objects.
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Appendix I

Algorithm Derivations
This appendix derives (15) and (20). To obtain surrogates for the PWLS cost function 
and PL cost functions , we consider the data fidelity terms and penalty terms separately.
We first derive the algorithm for PWLS and then move to the algorithm for PL.

A. PWLS Algorithm
First, we express the data fidelity term of Φ in (12) as

(35)

where  is the LS term for the mth spectrum and ith ray. By a

Taylor series expansion of ϕmi(si about , we have an inequality

(36)

where Wmi is a L0 × L0 positive definite matrix satisfying the condition that 

for any si in the matrix sense5 and  is a Hessian matrix.  denote the right-

hand side of (36). Since  then majorizes ϕmi(si, we define a surrogate function for
Φ(S) in the th step, given by

(37)

where the exact form of Wmi is determined below.

Second, we consider the additively separable penalty term in (14). By applying De Pierro's
additive convexity trick [51], we define a surrogate function for the penalty term as

(38)

5For simplicity, we denote a nonnegative definite matrix A as A  0.
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where denotes the element of C at (k, i) and aki is given by  if
 if cki = 0. Then we have R(n)(s) that majorizes R(s).

By adding two surrogate functions  and R(n)(s), we have a SQS for the PWLS cost
function defined as follows:

(39)

satisfying the surrogate conditions [41]. It can be checked that is Φ(n)(s) is additively
separable with respect to the index l and i. Therefore, Φ(n) majorizes Φ(s). By differentiating
Φ(n) with respect to sli, equating it to zero, and simplifying, one arrives at the PWLS
algorithm in (15).

Finally, we need to determine Wmi. From the definition of ϕmi(si, its Hessian is given by

(40)

Since fmi(si) is nonnegative, monotonically increasing, and concave, we have an inequality

(41)

We define  and further simplify the above inequality into

(42)

where . For our spectra in Fig. 2, we found that  for any
i, but we could not prove that this will always hold. By defining Wmi from the right side of
the inequality above, we have the first piece of the curvature hli as follows:

(43)

producing

(44)

where  and cki denotes the element of C at (k, i). Now we
complete the derivation of the PWLS algorithm in (15).
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B. PL Algorithm
First, the data fidelity term of Ψ(s) is expressed as

(45)

where gmi(x) = x — ymi log x is a convex function with respect to x. By combining (1) and
(2), we have an expression for the ensemble mean of measurements

(46)

where

Note that the term inside the square bracket behaves as a probability density function (PDF)
since it is nonnegative and integrates into unity over . By Jensen's inequality and the
convexity of gmi(x), we have an inequality

(47)

on the basis of De Pierro's multiplicative convexity trick [52].  denote the

right-hand side of (47). Since  majorizes gmi(y̵mi(si)), we can define a surrogate
function for –L(s) in the nth step, given by

(48)

However, it is difficult to minimize  directly.

Second, we want to seek a quadratic surrogate for by  by applying the same idea as
(36). To do that, we focus on

(49)

where two variables are defined as  and . By a Taylor series expansion
of  with respect to a, we have an inequality,

(50)

where  is a positive constant satisfying the condition that  for any

si. Here  and  denote the first- and second-order derivatives of
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 with respect to a, respectively.  denote the right-hand side of

(50).  then majorizes . Thus we define a surrogate function for 
in the nth step, given by

(51)

where the exact form of  is discussed below. Since  is quadratic with respect to si,
we have many algorithms to minimize it, for example, the coordinate descent algorithm. An

alternative choice is finding a SQS function for  to further simplify the optimization.

Thirdly, we seek a SQS for  by applying De Pierro's additive convexity trick [51]. In

this case,  plays a key role to derive the SQS function. We express  in
the following way:

(52)

where the coefficient  can be defined as

(53)

Since  has a quadratic form with respect to a and  acts as a probability mass
function (PMF), by Jensen's inequality, we have

(54)

 denote the right-hand side of (54). Since  majorizes , we can

define a surrogate function for  in the th step, given by

(55)

Therefore, we have

(56)

and  is a SQS for –L(s) by the construction.
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Fourthly, we combine the surrogate function for the data fidelity term,  and the
surrogate function for the penalty term,R(n)(s) in (38). Then we have a SQS for the PL cost
function defined as follows:

(57)

satisfying the surrogate conditions. It can be checked that Ψ(n)(s) is additively separable
with respect to the index l and i. By differentiating Ψ(n)(s) with respect to sli, equating it to
zero, and simplifying, one arrives at the same form as the PL algorithm in (20) but having

(58)

Finally, we now discuss how to determine the curvature . When measurements are
Poisson distributed, the optimal  can be found in [53], yielding the fastest convergence.
Instead of the optimal curvature, however, we pursue a precomputable curvature to reduce
computational costs per iteration in this paper. Assuming that the curvature of Lmi(si) varies
slowly around minimizer, we have an approximation for the curvature as follows:

(59)

where a similar idea can be found in [54].

By substituting (59) into (58), the curvature dli is

(60)

We replace  with the effective energy of the mth incident spectrum at the ith ray, defined
as an expectation of energy 

(61)

This produces an approximate to the curvature dli as follows:

(62)

Now we have the PL algorithm in (20).

Appendix II

Derivation of Local Impulse Response
If we place an impulsive perturbation in the first sinogram, the LIR from (21) can be
expressed as
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(63)

First from (3), it can be checked that a first-order partial derivative of ȳmi(si) with respect to
sli is given by

(64)

for any m, l, and i( = j). Given l = 1, we have a 2Nd × 1 vector and by stacking these up for
m = 1,2 and i = 1,..., Nd

(65)

where ej denotes a Nd × 1 unit vector whose jth entry is 1.

Second, we consider two Nd × 2Nd matrices  and  in an augmented matrix.
Extending the trick used in [44, Sec. III], it can be shown that the Nd × Nd augmented matrix
is expressed as follows. For any measurements y(≥ 0)

(66)

where  denotes the PL cost function expressed in terms of three variables. The
Hessians are defined in terms of these three variables. For example,  is the second-
order derivative of Ψ with respect to  and  is the second-order derivative of Ψ with
respect to .  is the Hessian of Ψ in terms of  and . By expressing Ψ in terms of
the negative Poisson log-likelihood function and penalty function, and evaluating (66) at

, we now have to necessary components for the LIR.

Finally, combining these two pieces in (65) and (66) yields the following expression for

:

where L denotes the negative Poisson log-likelihood function expressed in terms of

 and all Hessians of L are evaluated at , and y = y̵. Evaluating
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all necessary Hessians of L by chain rules allows the LIR in (22). The following three partial
derivatives are useful to obtain this final expression for the LIR:

(67)

(68)

(69)

where l,ĺ = 1,2, i = 1,...,Nd, and m = 1,2. To obtain , one can follow the same
procedure as above.
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Fig. 1.
Two component densities of the NCAT phantom used in simulations: (a) the density map of
soft tissues and (b) the density map of bone minerals.
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Fig. 2.
Two incident spectra  against energy  [keV] for m = 1,2: 80 kVp (top) and 140 kVp

(bottom). The dashed vertical lines indicate the effective energies,  and , respectively.
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Fig. 3.
True PET emission image and reconstructed PET images by three DECT based attenuation
corrections: (a) true PET emission image, (b) reconstructed PET image with ACF by the
conventional DECT sinogram decomposition, (c) reconstructed PET image with ACF by the
DECT-PWLS method, and (d) reconstructed PET image with ACF by the DECT-PL
method.
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Fig. 4.
Restored component CT sinograms (top) and the corresponding component CT images
(bottom) by DECT-PL: (a) restored soft tissue CT sinogram, (b) restored bone CT sinogram,
(c) reconstructed soft tissue CT image by FBP, and (d) reconstructed bone CT image by
FBP.

Noh et al. Page 27

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
True CT density (left) and PET image (right) containing iodine contrast agents in the three
regions. Two iodine contrast agents (red arrows) in the center of the NCAT phantom
correspond to heart and the other one (green arrow) in the left side is associated with lung.
Note that one of the iodine contrast agents in the anterior part of the heart is assumed diluted
and indistinguishable from the soft tissues surrounding it in the PET emission image. (a)
True CT density with iodine contrast agents; (b) true PET image with iodine contrast agents.
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Fig. 6.
Reconstructed PET emission images by six competing attenuation correction methods in the
presence of iodine contrast agents: (a) conventional DECT sinogram decomposition, (b)
DECT-PWLS method, (c) DECT-PL method, (d) SECT-BS method, (e) SECT-PWLS-BS
method, (f) SECT-PL-BS method.
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Fig. 7.
Four selected regions for local NRMSE analysis marked by white boxes. The region
numbers were counted clockwise from Region 1 to 4.
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Fig. 8.
Horizontal profiles of the reconstructed PET emission images corrected by DECT-PL and
SECT-PL-BS at two different vertical locations: (a) the anterior part of phantom's heart and
(b) the posterior part of phantom's heart. The colored arrows correspond to the three areas
where iodine contrast agents were placed as shown in Fig. 5(a).
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TABLE I

Global NRMSEs of the Reconstructed PET Images by Six CTACs When Iodine Contrast Agents are Present

CTAC DECT-decomp. DECT-PWLS DECT-PL

NRMSE (%) 13.0 8.5 8.5

CTAC SECT-BS SECT-PWLS-BS SECT-PL-BS

NRMSE (%) 16.2 14.1 14.1
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TABLE II

Local NRMSEs of the Reconstructed PET Images When Iodine Contrast Agents are Present

CTAC DECT-decomp. DECT-PWLS DECT-PL

Region 1 (%) 22.5 18.2 18.7

Region 2 (%) 4.4 3.8 3.9

Region 3 (%) 16.1 14.5 14.8

Region 4 (%) 7.1 4.1 4.1

CTAC SECT-BS SECT-PWLS-BS SECT-PL-BS

Region 1 (%) 42.6 40.5 40.5

Region 2 (%) 7.8 7.0 7.0

Region 3 (%) 23.8 21.5 21.5

Region 4 (%) 7.5 5.7 5.7

- Four regions are shown in Fig. 7(a).
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TABLE III

Biases and Standard Deviations of the Reconstructed PET Images When Iodine Contrast Agents are Present

CTAC DECT-decomp. DECT-PWLS DECT-PL

NRMSB (%) 25.6 17.7 17.8

NRMV (%) 6.56×10–5 6.50×10–5 6.49×l0–5

CTAC SECT-BS SECT-PWLS-BS SECT-PL-BS

NRMSB (%) 33.3 29.3 29.3

NRMV (%) 6.82×l0–5 6.73×10–5 6.76×l0–5

NRMSB: normalized root mean squared bias.

NRMV: normalized root mean variance.
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