
Targeting ischemic penumbra: part I - from pathophysiology to
therapeutic strategy

Shimin Liu, M.D., PhD1,*, Steven R. Levine, M.D1, and H. Richard Winn, M.D2
1 Department of Neurology, Mount Sinai School of Medicine, NYU
2 Department of Neurosurgery, Mount Sinai School of Medicine, NYU

Abstract
Penumbra is the viable tissue around the irreversibly damaged ischemic core. The purpose of acute
stroke treatment is to salvage penumbral tissue and to improve brain function. However, the majority
of acute stroke patients who have treatable penumbra are left untreated. Therefore, developing an
effective non-recanalizational therapeutics, such as neuroprotective agents, has significant clinical
applications. Part I of this serial review on “targeting penumbra” puts special emphases on penumbral
pathophysiology and the development of therapeutic strategies. Bioenergetic intervention by massive
metabolic suppression and direct energy delivery would be a promising future direction. An effective
drug delivery system for this purpose should be able to penetrate BBB and achieve high local tissue
drug levels while non-ischemic region being largely unaffected. Selective drug delivery to ischemic
stroke penumbra is feasible and deserves intensive research.
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Introduction
Each year, approximately 795 000 people experience a new or recurrent stroke. On average,
every 40 seconds, someone in the United States has a stroke. Overall stroke prevalence during
2003 to 2006 is around 2.9%. Of all strokes, 87% are ischemic. (Lloyd-Jones et al.) Due to
stroke's high incidence and prevalence rates and the lack of effective treatment, stroke remains
one of the major diseases causing most mortality and disability. Stroke is the third leading
cause of death, behind diseases of the heart and cancer, and is a leading cause of serious, long-
term disability in the United States. Although treatments for ischemic stroke have been
rigorously investigated for two decades, up to now there is only one FDA-approved
pharmacological treatment for ischemic stroke, the intravenous thrombolytic treatment using
recombinant tissue plasminogen activator (r-tPA).(Jahan and Vinuela 2009), which can only
be available to a very limited number of patients (Kleindorfer et al. 2004).

Acute stroke causes an irreversibly damaged ischemic core and salvageable surrounding tissue.
“Penumbra” is the term used for the reversibly injured brain tissue around ischemic core; which
is the pharmacological target for acute ischemic stroke treatment (Astrup et al. 1981a). The
goal to treat ischemic stroke is to salvage the penumbra as much and early as possible. It has
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been reported that roughly half of all acute ischemic patients show penumbra on MRI (Rivers
et al. 2006) and are potentially treatable. However, only 8% of all ischemic stroke patients
eligible for treatment with recombinant tissue plasminogen activator (r-tPA) (Kleindorfer et
al. 2004). Effective pharmacological treatment with or without recanalization could be used
for the majority of stroke patients, having invaluable clinical significance. The development
of neuroprotective treatment for ischemic stroke is obstructed by the blood-brain barrier and
reduced blood supply to ischemic brain tissue, facing repeated translational failure in recent
20 years. Drug delivery to brain tissue, especially the ischemic brain tissue has long been the
technical bottleneck limiting acute stroke treatments. A breakthrough in this area will possibly
bring in numerous related applications. The technology to be developed in this field may also
be extended to other fields, such as traumatic brain injury, brain tumor, and CNS inflammatory
diseases. This review summarizes advances for ischemic stroke penumbra, and puts special
emphases on strategy development from a metabolic point of view for effective drug delivery
to ischemic penumbra.

Penumbra and infarct expansion: the “time is brain” concept
In animal studies, the dynamic changes of penumbra area and infarct expansion can be better
illustrated based on the data obtained from experimental strokes, in which the timing of
occlusion and reperfusion was precisely controlled. After middle cerebral artery (MCA)
occlusion, the infarct evolves rapidly in the first few hours, supporting the interventional
concept that “time is brain” (Saver 2006). For an example, in a 300 g rat, 2-h MCA occlusion
(MCAO) produces a big infarct of 400-450 mm3 that is close to the infarct caused by 24-h
permanent MCAO (Greco et al. 2007; Masada et al. 2001). Ninety minute transient MCAO
results in a smaller infarct about 250–380 mm3 (Eschenfelder et al. 2008; Liu et al. 2006) whilst
60-min MCAO only produces approximately 170 mm3 infarct (Han et al. 2008). Therefore, in
a 300g rat, at 1-h post-MCA occlusion approximately 170 mm3 brain tissue has already been
irreversibly injured. At this moment the occlusion has caused approximately 230 mm3 tissue
in danger. Roughly 140 mm3 of this 230 mm3 in-danger brain tissue will die in 30 min, and
the left 90 mm3 will die in 60 min. If we assume the specific gravity of rat brain is 1.0 mg/
mm3, the average speed of infarct expansion for a 300g rat is approximately 3.3 mg/min after
MCA occlusion.

Imaging penumbra
For identifying the salvageable brain tissue in acute stroke, the direct method is to image
penumbra. In acute ischemic stroke, the viability and size of penumbra change dynamically
(Kuge et al. 2001; Shimosegawa et al. 2005) in response to regional cerebral blood flow,
pathophysiological environment and treatment. Penumbra can be imaged using different
technologies, such as MRI, CT (Kumar et al.), PET, and SPECT (Meerwaldt et al. 2009). For
targeting penumbra in stroke patients, imaging penumbra is necessary for monitoring treatment
response as well as for patient screening. The “mismatch” of perfusion-weighted and diffusion-
weighted images (PWI-DWI mismatch) is the most commonly used method for imaging
penumbra and may serve for this purpose (Ebinger et al. 2009; Rivers et al. 2006). The
diffusion-weighted image may represent reversibly injured tissue in the early hours after stroke
(Muller et al. 1995; Sakoh et al. 2001) whereas the perfusion-weighted image may include area
of benign oligemia (Sobesky et al. 2005). The mismatched tissue represents “tissue-at-risk”,
not “tissue-doomed-to die”; therefore it does not identify lesion growth by itself (Rivers et al.
2006). (For infarct expansion see the following paragraph.) Penumbra may resolve
spontaneously (Koga et al. 2005), either by merging with the ischemic core, or becoming
normal tissue. When recanalizational therapy started early enough, the mismatched tissue, the
penumbra, may be salvaged, which has been observed using both CT (Murphy et al. 2006) and
MRI (Olivot et al. 2008) methods.
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Penumbra in stroke patients: the majority of potentially treatable patients are
not treated

The use of imaging modalities detecting the existence of penumbra in stroke patients brought
in new lights in patient management. Theoretically, all patients having penumbra zone should
be treated. However, the number of patients treated by recanalizational intervention is only a
small portion of all acute stroke patients who have a salvageable penumbra. When further
looking into the subtypes according to the Trial of Org 10172 in Acute Stroke Treatment
(TOAST) classification (Adams et al. 1993), the existence of penumbral tissue significantly
correlates to stroke subtypes. The majority (about 94%)of intracranial large artery
atherosclerotic (IC-LAA) stroke patients had perfusion-diffusion mismatch, whereas in
cargioembolic strokes the penumbra existed in 35.7% patients (Boomer et al. 2009). Although
the initial penumbral volume is similar among large-vessel stroke, cardioembolic stroke and
cryptogenic embolic stroke, the mean perfusion defect in IC-LAA stroke was less severe than
in other groups. This finding may indicate that the penumbral tissue in intracranial large artery
atherosclerotic stroke may be more responsive to acute treatment. When an infarct involves
white matter, it is associated with a relatively greater penumbral zone than in gray matter
because white matter is more resistant to cerebral ischemia (Arakawa et al. 2006; Bristow et
al. 2005; Koga et al. 2005) possibly due to the difference in constituent cell population and
NMDA receptor dexpression‥ Lacunar infarction is caused by occlusion of perforating artery,
which is end-artery without collateral circulation; and its occlusion is thought not to result in
a penumbral zone. Because of the small volume of lacunar infarcts, the finding of a perfusion-
diffusion mismatch in lacunar stroke is affected by MRI technical issue. Studies using a 1.5-
T scanner (Gerraty et al. 2002; Ohashi et al. 2005), or CT perfusion imaging and CT
angiography (Vergoni et al. 2000), found no PWI abnormality in patients with a final diagnosis
of lacunar infarct. In a most recent study of lacunar infarcts using a 3-T scanner that provide
a higher spatial resolution, only 68.2% patients was found having abnormal PWI at the site of
the diffusion-weighted imaging lesion (Poppe et al. 2009).

The fate of penumbra: role of energy state
While cerebral blood flow determines both the metabolic process (Hata et al. 2000; Hossmann
1994) and the fate of ischemic tissue (Bardutzky et al. 2007; Murphy et al. 2006; Ohashi et al.
2005), energy state of an ischemic cell determines the pathway (Eguchi et al. 1997; Nicotera
and Leist 1997; Nicotera et al. 1998) (Leist et al. 1997; Lieberthal et al. 1998) and the
destination (Galeffi et al. 2000) (Wang et al. 2000) of a cell to die or to survive. For detailed
discussion please refer to our previous publication (Liu and Levine 2008) and figure 1 and
figure 2. Cerebral ischemia causes a disturbance of energy metabolism. In global ischemia,
brain ATP levels decrease to approximately 60% of baseline in one minute (Winn et al.
1979). In focal cerebral ischemia, the ischemic core is depleted with ATP whilst the penumbra
has decreased ATP level, see figure 3. Theoretically, intervention that maintains cell energy
state may provide robust neuroprotection. Such examples can be found in some classic
neuroprotectants (Warner et al. 1996). Bioenergetic intervention could be equally important
and effective as recanalizational intervention for acute stroke treatment.

Potential of neuroprotection: view from metabolic suppression
Neuroprotection can be achieved through metabolic suppression that decreases energy demand,
therefore, maintains energy state. The human brain is metabolically highly active, and the
majority of its metabolism is for functional purposes and can be suppressed. The human brain
constitutes only about 2% of the body weight, yet the energy-consuming processes that ensure
proper brain function account for approximately 25% of total body glucose utilization. The
average ATP concentration of normal rat brain tissue is between 2.38 to 2.75 nmole/mg wet
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weight (Hsu et al. 1991; Plaschke et al. 1998; Winn et al. 1979). The main energy-consuming
process of the brain is the maintenance of ionic gradients across the plasma membrane and
function-related activities (Ames 2000). About 87% of total energy consumed reflects
function-related activities (Magistretti 2002), which could be suppressed to decrease energy
consumption. Metabolic suppression happens naturally in hibernating animals without causing
tissue injury. Hibernation and torpid state can reduce basal metabolic rate to 1-5% of resting
normothermic metabolic rate below ischemic threshold for causing irreversible injury (Geiser
2004). Decreasing energy demand by metabolic suppression is the classic method for achieving
neuroprotection. Metabolic rate could be drastically reduced by hypothermia (Astrup et al.
1981b; Berger et al. 1998; Mori et al. 1998), anesthetics and sedatives (Astrup et al. 1981b;
Warner et al. 1996); but hypothermia-related (Jian et al. 2003; Schwab et al. 2001) and drug-
related systemic complications (Coupey 1997) have limited their use in acute strokes. Recent
advances in CNS drug delivery system may provide a solution for these problems.

Direct energy delivery
ATP molecules are negatively charged and cannot freely pass membrane barriers entering
intracellular space (Gordon 1986). Because extracellular ATP are rapidly degraded by
ectonucleotidases (Winn et al. 1979), investigators have tried using nanoliposome-entrapped
ATP to deliver energy to ischemic tissue. Nanoliposome-encapsulated ATP(Arakawa et al.
1998) has shown protective effects in intestinal injury from hemorrhagic shock (Zakaria el et
al. 2005), forebrain ischemia (Laham et al. 1988; Puisieux et al. 1994), myocardial ischemia.
(Verma et al. 2005a; Verma et al. 2006; Verma et al. 2005b), and skin wound healing (Chiang
et al. 2007). ATP blood levels can be increased drastically after the administration of ATP-
loaded nanoliposomes; a similar administration of carboxyfluorescein-loaded nanoliposomes
showed that nanoliposomes can reach the ischemic cerebral parenchyma in rats (Chapat et al.
1991).

Direct energy delivery for brain ischemia
ATP molecules are highly recycled in living cells. It is not practical and neither necessary to
provide the total consumption amount of exogenous ATP because injured cells still have,
although limited, ability to regenerate ATP. Because ATP is released into, and degraded in,
extracellular space, theoretically, it could also be beneficial for ischemic cells if such loss of
intracellular ATP can be replenished through exogenous resources by targeted intracellular
ATP delivery. Administration of liposomal ATP has been shown to be promising in a forebrain
ischemia model.(Puisieux et al. 1994)

The liposomal ATP solution for in vivo experiments could reach a high concentration about
12 mg/ml (21.8 μmole/ml). (Verma et al. 2005a) With a bolus injection of serum stable pH-
sensitive liposomes, 50%, 24%, and 15% of injected dose could remain in the blood at 1-h,
10-h, and 24-h post-injection, respectively (Slepushkin et al. 1997). Considering the regional
cerebral blood flow (rCBF) in the inner penumbra being approximately 15 ml/100g/min
(0.00015 ml/mg/min), (Murphy et al. 2006; Ohashi et al. 2005) therefore, an injection of 1 ml
such ATP-loaded liposomes (12 mg/ml) into a 300g rat could deliver ATP to the inner boundary
of penumbra with a speed of 0.079 nmole/mg/min (21.8*0.5/21*0.00015*1000) at 1-h post-
injection, assuming the total blood volume being 21 ml. At this delivery speed, it will only
need about 30-min (2.38/0.079) to replenish the total ATP base pool (2.38 nmole/mg wet
weight) in the inner penumbra through the residue blood flow.

In a forebrain ischemia model, it has been observed that when being entrapped into
nanoliposomes and administered intracarotidally, ATP greatly increased the number of
ischemic episodes that can be tolerated before brain electrical silence and death appeared
(Laham et al. 1988; Puisieux et al. 1994) because of improvement in energy metabolism. Direct
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energy delivery remains an attractive treatment for ischemic stroke, yet it still needs extensive
research before its successful translation to clinic settings. Efforts need to be put on aspects
such as giving synergistic adjunctive treatments, improving the bioavailability of ATP-loaded
nanoliposomes, and minimizing the interaction of exogenous ATP purinergic receptors
(Boucsein et al. 2003; Chen et al. 2007; Siow et al. 2005). A non-selective P2 receptor
antagonist, such as suramin (Kharlamov et al. 2002; Millart et al. 2009), can be used for
minimizing these compounding effects. Suramin can be encapsulated into liposomes (Chang
and Flanagan 1994; Chang and Flanagan 1995).

Delivery of a metabolic suppressor
Nanoliposomes have been used as a carrier for CNS drug delivery and can be tissue selective.
Selective delivery of a metabolic suppressor to a specific brain region makes it possible to
reach a desired regional drug concentration with minimized drug-related systemic adverse
effects (CNS depression, hypotension, etc.), therefore, having its application in acute stroke
treatments. Some local anesthetics and sedatives have been reported of their liposomal
formulation for topical application and controlled release, such as lidocaine (Fransson et al.
2002), benzocaine (Avila and Martinez 2003), diazepam (Fatouros and Antimisiaris 2002;
Sznitowska et al. 2000). Because the amphiphilic drug diazepam, which binds to the same
GABAA receptor as pentobarbital does, can be used in liposomal formulation, the more water-
soluble pentobarbital will theoretically be better encapsulated in nanoliposomes and be
bioactive.

Penumbral drug delivery strategy
Conventional drug delivery methods cause unwanted drug exposure to other tissue or brain
regions, leading to severe side effects and toxicity, especially when high dose is being used for
reaching therapeutic drug levels in ischemic tissue. For examples, the classic metabolic
suppressor pentobarbital could reduce metabolic rate by 56%, (Warner et al. 1996) having a
proven neuroprotective effect; but it cannot be used with a sufficient dose to achieve the desired
maximal metabolic suppression because of its drug-related respiratory suppression.
Neuroprotection by providing exogenous energy has also been facing problems of adverse
effects and low bioavailability. With the advancement of CNS drug delivery, those problems
can be tackled through innovative approaches (see following paragraph).

Brain ischemia causes a serial of pathological changes that affect drug delivery. In the ischemic
local region there is limited blood supply while the blood-brain barrier and the shrunk
extracellular space further limit drug access to ischemic brain tissue. However, there are also
some pathological changes that may be utilized for facilitating drug delivery to local ischemic
tissue. For example, brain ischemia causes a metabolic shift towards anaerobic glycolysis,
resulting in a lower intracellular pH value in the ischemic brain tissue. Targeting at this property
of ischemic brain tissue, liposomal nanocarrier may be optimized to release their cargos under
acidic condition (Collins et al. 1989) similar to the intracellular environment of ischemic brain
tissue(pH<6.75) (Anderson et al. 1999). Another example, ischemia induced molecular
structure changes can also be used for selective drug delivery to ischemic brain tissue. A most
recently discovered special peptide has showed the homing ability to ischemic brain tissue
(Hong et al. 2008). Therefore, the strategy for drug delivery to ischemic brain tissue should be
to overcome the disadvantages and to utilize the advantages of ischemia induced pathological
changes for achieving maximal bioavailability. And the neuroprotective strategy is to deliver
a treatment that has the largest protection potential using the most efficient drug delivery
system.
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Summary
It is of great clinical significance to develop a neuroprotective treatment that can be made
available to most acute stroke patients. Bioenergetic intervention by massive metabolic
suppression and direct energy delivery would be a promising future direction. An effective
drug delivery system for this purpose should be able to penetrate BBB and achieve high local
tissue drug levels while non-ischemic region being largely unaffected. Selective drug delivery
to ischemic stroke penumbra is feasible and deserves intensive research. See Figure 1.
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Figure 1.
Infarct expansion and treatment strategies. During the first few hours after middle cerebral
occlusion of a 300 gram rat, the infarct expands quickly at an average speed of 3.3 mg brain
tissue per minute assuming the specific gravity of rat brain is 1.0 mg/mm3. Neuroprotective
treatment should be able to penetrate the blood-brain barrier and reach penumbral zone. Such
treatment should be made available to most acute stroke patients who have salvageable
penumbral tissue.
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Figure 2.
From pathophysiology to therapeutic strategy. Salvaging penumbra is the goal for acute stroke
treatment. Neuroprotection for acute ischemic stroke should target the upper stream event that
determines the fate of ischemic penumbra. Bioenergetic intervention could be the therapeutic
modality equivalent to recanalizational therapies at metabolic levels because the disturbance
of energy metabolism after acute brain ischemia differentiates the ischemic cascades. C1-C9:
pathological cycles between major events that are supported by literature; Q1-Q3: suspected
pathological cycles between major events that need more literature support.
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Figure 3.
Correlation between energy thresholds and blood flow thresholds. The form and pathway of
cell death closely are closely associated with energy state levels. Blood flow reduction causes
specific metabolic disturbances at certain blood flow thresholds. The ischemic core has
depleted ATP level whilst the penumbra has gradient reduction of ATP level between normal
or oligemic tissue and ischemic core.
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