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Abstract
Phase-contrast microscopy is a common approach for studying the dynamics of cell behaviors, such
as cell migration. Cell segmentation is the basis of quantitative analysis of the immense cellular
images. However, the complicated cell morphological appearance in phase-contrast microscopy
images challenges the existing segmentation methods. This paper proposes a new cell segmentation
method for cancer cell migration studies using phase-contrast images. Instead of segmenting cells
directly based on commonly used low-level features, e.g. intensity and gradient, we first identify the
leading protrusions, a high level feature, of cancer cells. Based on the identified cell leading
protrusions, we introduce a front vector flow guided active contour, which guides the initial cell
boundaries to the real boundaries. The experimental validation on a set of breast cancer cell images
shows that the proposed method demonstrates fast, stable, and accurate segmentation for breast
cancer cells with wide range of sizes and shapes.

1 Introduction
Cell migration plays pivotal roles in cancer cell scattering, tissue invasion, and metastasis.
Metastasis is a major cause of morbidity and mortality in most of cancer patients [1]. For breast
cancer, five-year relative survival in local invasive breast cancer patients is 98.1%, whereas it
is only 26% in patients with distant metastases in USA [2]. These dismal prognoses can be
partly explained by the fact that a large majority of the drugs used today to treat cancer are pro-
apoptotic, but migrating cells involved in metastases are known to show a decreased
proliferation rate and are thus less sensitive to such chemotherapy. Thus the anti-migration
drugs hold great promise for both anti-metastasis therapy and increasing the efficacy of the
existing pro-apoptotic anti-cancer drugs. Phase-contrast microscopy is a common tool for study
of dynamic behaviors of a population of cells under different treatments [3]. However, the
complicated cell morphological appearance and the low signal to noise ratio (SNR) of the
phase-contrast images, as seen in Figure 1, challenge the existing segmentation methods, new
segmentation methods are needed.

Although a number of cell segmentation methods have been proposed, cell segmentation
remains an open problem [4]. For example, thresholding methods [5] cannot accurately
separate cells from background because regions inside cells often have similar intensity as the
background in the phase-contrast image. Voronoi based methods can only estimate the rough
regions of cells [6]. Watershed methods assume that the edges (watersheds) have the maximum
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intensity (or maximum gradient) between two cells [7]; however, it is not always true. Graph
cut based methods are robust to weak boundaries. Nevertheless, they require closed boundaries
[8]. Active contours has two kinds of methods: region based [9] and edge based [10]. The
region based active contours are robust to the initial boundaries and fast, but they always require
that the intensity of objects is homogenous and different with background [9]. The edge based
active contours are sensitive to the initial boundaries and a set of parameters. The evolution of
contours may stop before reaching the real boundaries or pass through the real boundaries,
without good initial boundaries or well-tuned parameters.

The limitation of above methods, which do the segmentation directly based on low-level
features, e.g. intensity and gradient, is that they all assume the edges or regions inside objects
have simple, distinct features, e.g. large gradient or homogenous intensity. In practice, we
cannot distinct the real boundaries with other features by assuming clear cut gradient or
homogenous intensity information. In this paper, we propose to segment cancer cells in phase-
contrast images by introducing a high-level feature, fronts (leading protrusions), as seen in
Figure 1. We identify the cell fronts first and then introduce the front vector flow to direct the
active contours unambiguously to where the real boundaries are. We name this method as front
vector flow guided active contour.

2 Methods
2.1 Problem Description

We provide two representative phase contrast cell images of living breast cancer cells MDA-
MB231 in the column-(a) of Figure 1. We can see that 1) the cell centers have two distinct
regions with lower (dark region) and higher intensity (bright region), 2) the leading protrusions
of cells is far away from the cell centers and has non-closed arc shape, see the ridge-like
structures, 3) the regions between the cell centers and leading protrusions have similar intensity
as the background. The first property enables us to detect the cell bodies easily by detecting
the two regions, which can be used as the initial boundaries of cells. However, the second and
third properties make the segmentation very challenging. For example, the evolution of cell
boundaries using edge-based active contours [10] will stop near the cell centers due to the rapid
intensity variation, or easily go outside the cells due to the non-closed leading protrusions and
the regions that have homogenous intensity as the background. To deal with these challenges,
we proposed the following method of front vector flow guided active contour.

2.2 Front Vector Flow Guided Active Contour
The proposed front vector flow guided active contour method consists of the following steps:
1) cell center detection, 2) front (leading protrusions) detection, and 3) contour evolution
following the front vector flow.

A. Cell center detection—To detect the cell center, we first detect the dark and bright
regions inside cells respectively, and then combine the detection results together, as seen in
Figure 1. In this paper, we make use of the multi-scale representation to detect the bright regions
[11]. Specifically, we filter the original image using a series of Laplacian of Gaussian (LoG)
filters with different scales, i.e., the σ s of Gaussians. Then the maximum intensity projection
(MIP) image of the filtered image is generated, and we use a three-class fuzzy c-means
clustering [12] method to detect the bright regions accurately, as seen in the column-(b) of
Figure 1. Since a dark region can be viewed as a bright region in the complemented cell image,
we can detect it using the same method, as seen in the column-(c) of Figure 1. Finally, we
employ the convex hull operation to obtain the cell center, as seen in the column-(d) of Figure
1.
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B. Front detection—The first stage of cell migration consists of initial cell polarization
caused by localized actin polymerization to form filaments, and this is followed by the
extension of cytoplasmic protrusions. The quantitative analysis of the cytoplasmic protrusion
formation, disappearance, and variation is important for studies of cell migration. Considering
the ridge shape of fronts, we detect the cell fronts using the curvilinear structure detectors
[13,14].

For a 1D ridge profile, f (x) = c if |x|≤b, and f (x) = 0 otherwise, we can detect the center point
of f (x) using the criterion: k′ (x, σ) = 0, and k″ (x, σ) ≪ 0, where

, k″ (x, σ) = cσ(g′(x + b, σ) − g′(x − b, σ)), and g(x, σ), g
′(x, σ) represent the Gaussian density function and its derivative respectively. For ridge profiles
with different width, we can use a series of scales (multiscale) to let k″ (x, σ) reaches its
maximum value. In discrete case, a point xn is labeled as center point, if

, and  is larger than a given threshold, where σn* =
arg minσ {k″ (xn, σ)}.

It is straightforward to extend the method to 2D space because the cross-section of the 2D ridge
profile in direction perpendicular to ridge center line is a 1D ridge profile. The eigenvector,
(nx, ny), which corresponds to the minimum eigen-value, λx,y, of the Hessian matrix at a given
point (x, y), indicates the cross-section direction at that point. In a 2D discrete case, a point is
labeled as a center point if |λx,y| is larger than a given threshold, and the following equation
holds:

(1)

where , kx, ky, kxx, kxy and kyy are the normalized
partial derivatives of 2D cellular images convolved with 2D Gaussian kernels, and

. To remove the false center points, the hysteresis thresholding
technique is employed, and then a link process links the broken center lines together [14]. The
detected cell front is represented by a binary image, as seen in Figure 2-(e).

C. Contour evolution following the front vector flow—After obtained the cell centers
and fronts, we still cannot obtain the accurate cell boundaries because the regions that locate
between cell centers and the fronts are missed. To obtain the accurate boundaries, we propose
to evolve the initial cell boundaries (the boundaries of the cell centers) to the real boundaries
following the front vector flow.

We calculate the front vector flow as in the following:

(2)

where, If represents the detected cell front image;  denotes the gradient of the
detected front image; and V = 〈u(x, y), v(x, y)〉 is the front vector flow. Figure 2 illustrates
the relationship between the gradient and the front vector flow. As we can see, the front vector
flow extends the gradient vector to a large region and converges to the detected front [15], as
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seen in Figure 2-(b), (c), (f), and (g). This motivates us to evolve the initial cell boundaries
along with the front vector flow to reach the real boundaries. A problem is posed that the front
vector flow may attract initial cell boundaries of different cells to one front. To avoid this, we
associate each front with its corresponding cell uniquely using the convex property (arc shape)
of the fronts, as seen in Figure 2(d). The red arrow, which is obtained by linking the midpoints
of the front and the chord linking two endpoints of the front points, points to the corresponding
cell. Thus we can find the corresponding cell along the direction of the red arrow, and evolve
its initial boundary following the front vector flow of the front.

The contour evolution process along with front vector flow can be easily implemented under
the active contour (level set) framework. The mathematical evolution equation is as follows.

(3)

where ψ denotes the level set function, κ is the curvature, and β is the parameter that controls
the smoothness of the boundary. This equation is straightforward and robust because the only
parameter β, which controls the smoothness of the contour, will not influence the evolution
much.

(4)

3 Experiments and Results
The MDA-MB231 breast cancer cell line was grown in Dulbecco's Modified Eagle's Medium
(DMEM) containing 10% fetal bovine serum. Cell cultures were maintained in a humidified
incubator at 37C, with 5% CO2. Images of cells were acquired in phase contrast mode of a
FluoView™ FV1000 laser scanning confocal microscope (Olympus) using a 20× objective.
We selected 50 cells and manually segmented them as the ground truth. To validate the
performance of the proposed front vector flow guided (FVF) active contour method, we
compared it with two kinds of widely used active contours: edge-based geodesic active contour
(GAC) [10], region based Chan and Vese active contour (CV) [9], and the manually analyzed
ground truth. The goal of the comparison is merely to show the robustness of the proposed
method, which can handle the intensity variation and prevent the contour from leaking. GAC
and CV are two widely used methods, which have been tested in certain phase contrast images.
Therefore, we chose them for comparison. Both GAC and CV methods could be adapted by
incorporating the front detection. However, it is not trivial, and instead we propose the new
method that is straightforward and fast. In this validation, the active contour (level set)
evolution equation of GAC and CV are as:

 Table 1 lists
the detailed parameters settings of the three methods (GAC, CV, and FVF). Figure 3 shows
the comparison among GAC, CV, FVF and manual segmentation results. The boundaries of
cell centers, as seen in Figure 1-(d), were used as the initial boundaries, and the stopping
criterion is setting a maximum iteration number. As we can see, the edge leaks outside of cells
in the results of GAC due to the non-closed cell fronts. The CV method works like a threshold
method that only separates the bright regions from the background and dark regions. Whereas,
the proposed FVF method delineates the cell boundaries accurately compared with the ground
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truth. To quantitatively analyze the accuracy of the segmentation, we employed following two
error measures: false positive rate, FPR = (SA − SM)/SM, and false negative rate, FNR = (SM −
SA)/SM, where SM means the manual segmentation result and SA means the automated
segmentation results. The average FPRs of GAC, CV and FVF are as: 27.8%, 0%, and 7.8%,
while the average FNRs are as: 15.6%, 63.5%, and 6.7%. The results indicate that the propose
FVF method demonstrates accurate segmentation results compared with the ground truth, while
the GAC and CV results are not reliable. The computational complexity is also important for
segmentation methods. In Table 2, we compared the computational complexity of the three
methods in terms of number of iterations and computational time. We implemented the three
methods in Matlab (version 2007), and the comparison were did on a standard desktop PC
(Intel core 2, 1.86 GHz). The CV method is the fastest, and the FVF method has similar
complexity as the CV method. However, the computational complexity of the GAC method
increased rapidly. In conclusion, the proposed FVF method is fast, stable, and accurate
compared with the GAC and CV methods.

4 Discussion and Conclusions
In this paper, we propose a new method for segmenting breast cancer cell images obtained by
phase-contrast microscopy. The segmentation method takes advantage of the prior knowledge
that the leading protrusion in cancer cells is a distinct high-level feature of cell boundaries
compared to the commonly used low-level features such as edge gradient or cell intensity. Thus
we propose to identify the protrusions first, which tell the segmentation algorithms clearly
where the real boundaries are, and then introduce the front vector flow and implement the cell
segmentation in the framework of active contour. The initial cell boundaries, which are
obtained after the cell center detection, are attracted to the real edges following the front vector
flow. The proposed method deals with the aforementioned challenges existing in the phase-
contrast images well. The algorithm is fast, stable, and accurate compared with the manually
segmented ground truth and is used to segment large amounts of breast cancer cells in the
phase-contrast images of our high content screening studies. One limitation of the proposed
method is the requirement of the accurate boundary detection results. It may fail when the noise
or inaccurate boundary detection results exist. To improve the proposed method, we may
integrate the edge detection and vector flow into active contour methods.

Although designed for breast cancer cells in phase contrast images, it is possible to generalize
the proposed algorithm, including the cell center detection, front detection, and contour
evolution, to other applications. For example, the center detection and front detection can be
generalized to the blob and ridge structure detection in other biomedical images, e.g. nuclei
and neurite images. For the contour evolution, it can be customized to other applications where
part of boundaries of objects can be identified. In the future work, we will extend the proposed
segmentation method for tracking live cancer cells in phase-contrast image movies.
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Fig. 1.
Two representative MDA-MB231 breast cancer cell images (column-(a)), the MIP images of
the multi-scale LoG filtered original images for bright region detection (column-(b)), the MIP
images of the multi-scale LoG filtered complemented images for dark region detection
(column-(c)), and the cell body detection results (column-(d)). The green, blue and red curves
imposed on the cell images indicate the boundaries of the detected bright regions, dark regions
and cell centers respectively.
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Fig. 2.
An illustration of the front vector flow. (a) Original cell image, (e) detected front image, (b)
gradient vectors, (c) front vector flow, (f) zoom in image of the green square in (b), (g) zoom
in image of the green square in (c), (d) the red arrow, which is obtained by linking the midpoints
of the front and the chord linking two endpoints of the front, points to the corresponding cell
center, and (h) the front vector flow was imposed on the original cell image. The blue arrows
represent the gradient vectors.
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Fig. 3.
Comparison of segmentation results. (a) Segmentation results of GAC, (b) segmentation results
of CV, (c) segmentation results of FVF, and (d) manual segmentation results.
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Table 1

Parameters settings of the GAC, CV and FVF active contours

Parameter setting

GAC dt = 0.05, c = 1, α = 0.2

CV dt = 0.1, λ1 = 1, λ2 = 1, μ = 0, v = −65

FVF dt = 0.1, β = 1
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