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Abstract
Censored median regression has proved useful for analyzing survival data in complicated situations,
say, when the variance is heteroscedastic or the data contain outliers. In this paper, we study the
sparse estimation for censored median regression models, which is an important problem for high
dimensional survival data analysis. In particular, a new procedure is proposed to minimize an inverse-
censoring-probability weighted least absolute deviation loss subject to the adaptive LASSO penalty
and result in a sparse and robust median estimator. We show that, with a proper choice of the tuning
parameter, the procedure can identify the underlying sparse model consistently and has desired large-
sample properties including root-n consistency and the asymptotic normality. The procedure also
enjoys great advantages in computation, since its entire solution path can be obtained efficiently.
Furthermore, we propose a resampling method to estimate the variance of the estimator. The
performance of the procedure is illustrated by extensive simulations and two real data applications
including one microarray gene expression survival data.

1. Introduction
In the last forty years, a variety of semiparametric survival models have been proposed for
censored time-to-event data analysis. Among them, the proportional hazards model (Cox,
1972) is perhaps the most popular one and widely used in literature. However, as noted by
many authors, the proportional hazards assumption may not be appropriate in some practical
applications; for some problems alternative models may be more suitable. One of the attractive
alternatives is the accelerated failure time (AFT) model (Kalbfleisch and Prentice, 1980; Cox
and Oakes, 1984), which relates the logarithm of the failure time linearly to covariates as

(1)

where T is the failure time of our interest, Z is the p-dimensional vector of covariates and ε is
the error term with a completely unspecified distribution that is independent of Z. Due to the
linear model structure, the results of the AFT model are easier to interpret (Reid, 1994). Due
to these desired properties, the AFT model has been extensively studied in the literature
(Prentice, 1978; Buckley and James, 1979; Ritov, 1990; Tsiatis, 1990; Ying, 1993; Jin et al.,
2003; among others).

A major assumption of the AFT model is that the error terms are i.i.d., which is often too
restrictive in practice (Koenker and Geling, 2001). To handle more complicated problems, say,
data with heteroscedastic or heavy-tailed error distributions, censored quantile regression
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provides a natural remedy. In the context of survival data analysis, Ying et al. (1995), Bang
and Tsiatis (2003), and Zhou (2006), among others, considered median regression with random
censoring and derived various inverse-censoring-probability weighted methods for parameter
estimation; Portnoy (2003) considered a general censored quantile regression by assuming that
all conditional quantiles are linear functions of the covariates and developed recursively re-
weighted estimators of regression parameters. In general, quantile regression is more robust
against outliers and may be more effective for nonstandard data; the regression quantiles may
be well estimated even if the mean is not for censored survival data.

In many biomedical studies, a large number of predictors are often collected but not all of them
are relevant for the prediction of survival times. In other words, the underlying true model has
a sparse model structure in terms of the appearance of covariates in the model. For example,
many cancer studies start measuring patients’ genomic information and combine it with
traditional risk factors to improve cancer diagnosis and make personalized drugs. Genomic
information, often in the form of gene expression patterns, is high dimensional and typically
only a small number of genes contains relevant information, so the underlying model is
naturally sparse. How to identify this small group of relevant genes is an important yet
challenging question. Simultaneous variable selection and parameter estimation then becomes
crucial since it helps to produce a parsimonious model with better risk assessment and model
interpretation. There is a rich literature for variable selection in standard linear regression and
survival data analysis based on the proportional hazards model. Traditional procedures include
backward deletion, forward addition and stepwise selection. However, these procedures may
suffer from high variability (Breiman, 1996). Recently some shrinkage methods have been
proposed based on the penalized likelihood or partial likelihood estimation, including the
LASSO (Tibshirani, 1996, 1997), the SCAD (Fan and Li, 2001, 2002) and the adaptive LASSO
(Zou 2006, 2008; Zhang and Lu, 2007; Lu and Zhang, 2007). More recently, several authors
extend the shrinkage methods to variable selection of the AFT model using the penalized rank
estimation or Buckley-James’s estimation (Johnson, 2008; Johnson et al., 2008; Cai et al.,
2008).

To the best of our knowledge, the sparse estimation of censored quantile regression has not
been studied in the literature. When there is no censoring, Wang et al. (2007) considered the
LAD-LASSO estimation for linear median regression assuming i.i.d. error terms. For
nonparametric and semiparametric regression quantile models, the total variation penalty has
been proposed and studied extensively, including Koenker et al. (1994), He and Shi (1996),
He, Ng and Portnoy, S. (1998), He and Ng (1999), and some recent work on penalized triograms
by Koenker and Mizera (2004) and on longitudinal models by Koenker (2004). The L1 nature
of the total variation penalty make it work like a model selection process for identifying a small
number of spline basis functions. In this paper, we focus on the sparse estimation of censored
median regression. Compared with variable selection for standard linear regression models,
there are two additional challenges in censored median regression: the error distributions are
not i.i.d. and the response is censored. To tackle these issues, we construct the new estimator
based on an inverse-censoring-probability weighted least absolute deviation estimation method
subject to some shrinkage penalty. To facilitate the selection of variables, we suggest the use
of the adaptive LASSO penalty, which is shown to yield an estimator with desired properties
both in theory and in computation. The proposed method can be easily extended to arbitrary
quantile regression with random censoring. The remainder of the article is organized as follows.
In Section 2, we develop the sparse censored median regression (SCMR) estimator for right-
censored data and establish its large-sample properties, such as root-n consistency, sparsity,
and asymptotic normality. Section 3 discusses the computational algorithm and solution path,
and the tuning parameter issue is addressed as well. We also derive a bootstrap method for
estimating the variance of the SCMR estimator. Sections 4 is devoted to simulations and real
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examples. Final remarks are given in Section 5. Major technical derivations are contained in
the Appendix.

2. Sparse censored median regression
2.1 The SCMR estimator

Consider a study of n subjects. Let {Ti, Ci, Zi, i = 1, … , n} denote n triplets of failure times,
censoring times, and p-dimensional covariates of interest. Conditional on Zi, the median
regression model assumes

(2)

where  is a (p+1)-dimensional vector of regression parameters and
εi’s are assumed to have a conditional median of 0 given covariates. Here we do not require
the i.i.d. assumption for εi’s as in Wang et al. (2007). Note that the log transformation in (2)
can be replace by any specified monotonic transformation. Define T ̃i = min(Ti, Ci) and δi = I
(Ti ≤ Ci), then the observed data consist of (T ̃i, δi, Zi, i = 1, … , n). As in Ying et al. (1995) and
Zhou (2006), we assume that the censoring time C is independent of T and Z. Let G(·) denote
the survival function of censoring times. To estimate the parameters θ0, Ying et al. (1995)
proposed to solve

where Ĝ(·) is the Kaplan-Meier estimator of G(·) based on the data (T ̃i, 1 − δi), i = 1, … , n.
Note that the above equation is neither continuous nor monotone in θ and thus is difficult to
solve especially when the dimension of θ is high. Instead, Bang and Tsiatis (2003) proposed
an alternative inverse censoring-probability weighted estimating equation as follows:

As pointed out by Zhou (2006), the solution of the above equation is also a minimizer of

(3)

which is convex in θ and can be easily solved using an efficient linear programming algorithm
of Koenker and D’Orey (1987). In addition, Zhou (2006) showed that the above inverse
censoring probability weighted least absolute deviation estimator has better finite sample
performance than that of Ying et al. (1995).

To conduct variable selection for censored median regression, we propose to minimize

(4)
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where the penalty Jλ is chosen to achieve simultaneous selection and coefficient estimation.
Two popular choices include the LASSO penalty Jλ(|βj|) = λ|βj| and the SCAD penalty (Fan
and Li, 2001). In this paper, we consider an alternative regularization framework using the
adaptive LASSO penalty (Zou, 2006; Zhang and Lu, 2007; Wang et al., 2007; among others).
Specifically, let θ̃ ≡ (α̃, β̃′)′ denote the minimizer of (3). Our SCMR estimator is defined as the
minimizer of

(5)

where λ > 0 is the tuning parameter and β̃ = (β̃1, … , β̃p)′. Note the estimators from (3) are used
as the weights to leverage the LASSO penalty in (5). The the adaptive LASSO procedure has
been shown to achieve consistent variable selection asymptotically in various scenarios when
the tuning parameter λ is chosen properly.

2.2 Theoretical properties of SCMR estimator

Suppose that  and is arranged so that βa,0 = (β10, … , βq0)′ ≠ 0 and βb,0 =
(β(q+1)0, … , βp0)′ = 0. Here it is assumed that the length of βa,0 is q. Correspondingly, denote

the minimizer of (5) by . Define

. Under the regularity
conditions given in the Appendix, we have the following two theorems.

Theorem 1—  If , then .

Theorem 2—If  and nλ → ∞, then as n → ∞

i. (Selection-Consistency) P (β̂b = 0) → 1.

ii. (Asymptotic Normality)  converges in distribution to a normal random
vector with mean −Σa′λ0b1 and variance-covariance matrix .

The definitions of Σa and Va, and the proofs of Theorems 1 and 2 are given in the Appendix.

3. Computation, parameter tuning and variance estimation
3.1. Computational algorithm using linear programming

Given a fixed tuning parameter λ, we suggest the following algorithm to compute the SCMR
estimator. First, we reformulate (5) as a least absolute deviation problem without penalty. To
be specific, we define,
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Then, with λ fixed, minimizing (5) is equivalent to minimizing

which can be easily computed using any statistical software for linear programming, for
example, the rq function in R.

3.2. Solution path
Efron et al. (2004) proposed an efficient path algorithm called LARS to get the entire solution
path of LASSO, which can greatly reduce the computation cost of model fitting and tuning.
Recently, Li and Zhu (2008) modified the LARS algorithm to get the solution paths of the
sparse quantile regression with uncensored data. It turns out that the SCMR estimator also has
a solution path linear in λ. In order to compute the entire solution path of SCMR, we first
modify the algorithm of Li and Zhu (2008) to compute the solution path of a weighted quantile
regression subject to the LASSO penalty

(6)

In our SCMR estimators, the weight wi = δi/Ĝ(T ̃i). The corresponding R codes are available
from the authors.

Next we propose the following algorithm to compute the solution path of the SCMR estimator
with the adaptive LASSO penalty.

Step 1: Create working data  with  for i = 1, … , n; j = 1,
… , p.

Step 2: Applying the solution path algorithm for (6), solve
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Step 3: Define α̂ = γ̂1 and β̂j = γ̂j+1|β̃j | for j = 1, … , p

.

Note that the above two computation methods give exactly the same solutions for a common
λ. But the solution path method is more effective since it produce the whole solution path,
while the first method is more convenient to combine with the bootstrap method to compute
the variance of the SCMR estimator for a given λ.

3.3. Parameter tuning
Our estimator makes use of the adaptive LASSO penalty, i.e., a penalty of the form

, where β̃ is the unpenalized LAD estimator. We propose to tune the parameter λ
based on a BIC-type criteria. Note that if there is no censoring and the error terms are i.i.d.,
the least absolute deviation loss is closely related to linear regression with double exponential
error. To derive the BIC-type tuning procedure, we make use of this connection. More
specifically, assume that the error term εi’s are i.i.d. double exponential variables with the scale
parameter σ. When there is no censoring, up to a constant the negative log likelihood function

can be written as  and the maximum likelihood estimator of σ is given

by  with θ̃ being the LAD estimator. Motivated by this observation,
we propose the following tuning procedure for sparse censored median regression:

where  and r is the number of non-zero elements in β̂
(λ). Then we minimize the above criteria over a range of values of λ for choosing the best
tuning parameter.

3.4. Variance estimation
Next, we propose a bootstrap method to estimate the variance of our estimator. Specifically,
we first take a large number of random samples of size n (with replacement) from the observed

data. Then for the kth bootstrapped data , we compute the Kaplan-
Meier estimator Ĝ(k)(·) and the inverse censoring probability weighted least absolute deviation
estimator θ̃ (k). Lastly, we compute the bootstrapped estimate θ̂ (k) by minimizing

Here for saving the computation cost, we fixed λ at the optimal value chosen by each tuning
method based on the original data.
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4. Numerical studies
4.1 Simulation studies

In this section, we examine the finite sample performance of the proposed SCMR estimator in
terms of variable selection and model estimation. In addition, we conduct a series of sensitivity
analyses to check the performance of our estimator when the random censoring assumption is
violated.

The failure times are generated from the median regression model (2). Four error distributions
are considered: t(5) distribution, double exponential distribution with median 0 and scale
parameter 1, standard extreme value distribution, and standard logistic distribution. Since the
standard extreme value distribution has median log(log(2)) rather than 0, we subtract its
median. We consider eight covariates, which are i.i.d. standard normal random variables. The
regression parameter vector is chosen as β0 = (0.5, 1, 1.5, 2, 0, 0, 0, 0) with the intercept α0 =
1. The censoring times are generated from a uniform distribution on (0, c), where c is a constant
to obtain the desired censoring level. We consider two censoring rates: 15% and 30%. For each
censoring rate, we consider samples of sizes 50, 100, and 200. For each setting, we conduct
100 runs of simulations.

For comparisons, we fit six different estimators in our analysis, namely the full model estimator
β̃ (called “Full” in the Tables), our SCMR estimators with the adaptive Lasso penalty (“SCMR-
A”), the Lasso penalty (“SCMR-L”), and the SCAD penalty (“SCMR-S”), the naive estimator
with the adaptive Lasso penalty (“Naive”) in which the censoring information was ignored and
all the observed event times were treated as failure times, and the oracle estimator assuming
the true model were known (“Oracle”). To obtain the SCMR-S estimator, we use the local
linear approximation (LLA) algorithm by Zou and Li (2008). Various estimators are compared
with regard to their overall mean absolute deviation (MAD), point estimation accuracy, and
the variable selection performance. Here the MAD of an estimator θ̂ is given by

We summarize the overall model estimation and variable selection results of different
estimators in Tables 1 and 3, in terms of the MAD, the selection frequency of each variable,
the frequency of selecting the exact true model, and the mean number of incorrect and correct
zeros selected over 100 simulation runs. To simplify the presentation, we only present the
results for t(5) and double exponential error distributions; the results for other error
distributions have similar patterns and hence omitted. In terms of model estimation, the MAD
of the SCMR-A and SCMR-S estimators are smaller than those of the SCMR-L and Full
estimators in all the settings, and are also close to the oracle estimator when the sample size is
large and the censoring proportion is low. With regard to variable selection, compared with
the Full and SCMR-L estimators, the SCMR-A and SCMR-S estimators produce more sparse
models and select the exact true model more frequently. For example, when n = 200, censoring
rate is 15% and the error distribution is t(5), the frequencies of selecting true model (SF) are:
Oracle (100), SCMR-A (72), SCMR-L (22), SCMR-S (72), Naive (69), and Full (0). In average,
the numbers of correct/incorrect zeros in the estimators are: Oracle (4/0), SCMR-A (3.67/0),
SCMR-L (2.59/0), SCMR-S (3.63/0), Naive (3.65/0), and Full (0/0). In summary, the SCMR-
A and SCMR-S estimators give comparable performance in both estimation and variable
selection, which is not surprising since they are both selection consistenct and have the same
asymptotic distribution. In addition, the naive estimator has the biggest MAD in all settings
since it is a biased estimator, but it is interesting to note that it selects variables well.
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The point estimation results of the first three non-zero coefficients are summarized in Tables
2 and 4, including the bias and sample standard deviation of the estimates over 100 runs, and
the mean of the estimated standard errors based on 500 bootstraps per run. Based on the results,
the naive estimator showed big biases as we expected; the biases of all other estimators are
relatively small particularly when the sample size is large and the censoring proportion is low.
In addition, the estimated standard errors obtained using the proposed bootstrap method are
reasonably close to the sample standard deviations in all scenarios.

Next, we conduct a series of sensitivity analyses to check the performance of our estimator
when the random censoring assumption is violated. More specifically, the censoring times are
now generated as , i = 1, … , n, where  are from a uniform distribution on (0,
c) as before. We consider two values of ξ : ξ = 0.1 or 0.2, two censoring rates: 15% and 50%,
and two sample sizes: n = 100 or 500. Other settings remain the same as before. The estimation
and variable selection results are for ξ = 0.2 with t(5) error distribution are summarized in
Tables 5 and 6, respectively. The results for ξ = 0.1 and other error distributions are quite
similar, which are omitted here. Based on the results reported in Tables 5 and 6, we observe
similar findings as before. The SCMR-A estimator showed much better performance in terms
of variable selection compared with the SCMR-L and the Full estimators, although all the
methods may produce certain biases in point estimation as expected.

4.2 PBC data
The primary biliary cirrhosis (PBC) data was collected at the Mayo clinic between 1974 and
1984. This data is given in Therneau and Grambsch (2000). In this study, 312 patients from a
total of 424 patients who agreed to participate in the randomized trial are eligible for the
analysis. Of those, 125 patients died before the end of follow-up. We study the dependence of
the survival time on the following selected covariates: (1) continuous variables: age (in years),
alb (albumin in g/dl), alk (alkaline phosphatase in U/liter), bil (serum bilirunbin in mg/dl), chol
(serum cholesterol in mg/dl), cop (urine copper in µg/day), plat (platelets per cubic ml/1000),
prot (prothrombin time in seconds), sgot (liver enzyme in U/ml), trig (triglycerides in mg/dl);
(2) categorical variables: asc (0, absence of ascites; 1, presence of ascites), ede (0 no edema;
0.5 untreated or successfully treated; 1 unsuccessfully treated edema), hep (0, absence of
hepatomegaly; 1, presence of hepatomegaly), sex (0 male; 1 female), spid (0, absence of
spiders; 1, presence of spiders), stage (histological stage of disease, graded 1, 2, 3 or 4), trt (1
control, 2 treatment).

The PBC data has been previously analyzed by a number of authors using various estimation
and variable selection methods. For example, Tibshirani (1997) fitted the proportional hazards
model with the stepwise selection and with the LASSO penalty. Zhang and Lu (2007) further
studied the PBC data using the penalized partial likelihood estimation method with the SCAD
and the adaptive Lasso penalty. Here, we apply the proposed SCMR method to the PBC data.
As in Tibshirani (1997) and Zhang and Lu (2007), we restrict our attention to the 276
observations without missing values. Among these 276 patients, there are 111 deaths, about
60% of censoring. Table 7 summarizes the estimated coefficients and the standard errors for
the Full, the SCMR-L, the SCMR-A and the SCMR-S. We found that the SCMR-A selects 9
variables: age, asc, oed, bil, alb, cop, alk, plat and prot and the SCMR-L selects 13 variables
which contain the 9 variables selected by the SCMR-A. Moreover, the 9 variables selected by
SCMR-A shared 6 variables out of 8 selected by the penalized partial likelihood estimation
method of Zhang and Lu (2007) in the proportional hazards model. We also plot the solution
path of the SCMR-A estimator in Figure 1.
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4.3 DLBCL microarray data
Sparse model estimation has wide applications in high dimensional data analysis. In this
example, we apply the SCMR method to the high dimensional microarray gene expression data
of Rosenwald et al. (2002). The data consists of survival times of 240 diffuse large B-cell
lymphoma (DLBCL) patients, and the expressions of 7, 399 genes for each patient. Among
them, 138 patients died during the follow-up method. The main goals of the study are to identify
the important genes that can predict patients’ survival and to study their effects on survival.
This data was analyzed by Li and Luan (2005). To handle such high dimensional data, a
common practice is to first conduct a preliminary gene filtering based on some univariate
analysis, and then apply a more sophisticated model-based analysis. Following Li and Luan
(2005), we concentrate on the top 50 genes selected using the univariate log-rank test. To
evaluate the performance of the proposed SCMR method, the data are randomly divided into
two sets: the training set (160 patients) and the testing set (80 patients).

The SCMR-A estimator is then computed based on the training data and the proposed BIC
method is used for parameter tuning. Our SCMR-A estimator selects totally 25 genes. To
evaluate the prediction performance of the resulting SCMR-A estimator built with the training
set, we plot, in Figure 2, the Kaplan-Meier estimates of survival functions for the high-risk and
low-risk groups of patients, defined by the estimated conditional medians of failure times. The
cut-off value was determined by the median failure time of the baseline group from the training
set, and the same cutoff was applied to the testing data. It is seen that the separation of the two-
risk groups is reasonably good in both the training and the testing data, suggesting a satisfactory
prediction performance of the fitted survival model. The log-rank test of differences between
two survival curves gives p-values of 0 and 0.031 for the training and testing data, respectively.

5. Discussion
We propose the SCMR estimator for model estimation and selection in censored median
regression based on the inverse-censoring-probability-weighted method combing with the
adaptive LASSO penalty. Theoretical properties, such as variable selection consistency and
asymptotic normality, of the SCMR estimator are established. The whole solution path of the
SCMR estimator can be obtained and the proposed method for censored median regression can
be easily generalized to censored quantile regression.

A key assumption of the proposed method is that the censoring distribution is independent of
covariates. However, such a restrictive assumption can be relaxed. For example, Wang and
Wang (2009) recently proposed a locally weighted censored quantile regression, in which a
local Kaplan-Meier estimator was used to estimate the conditional survival function of
censoring times given covariates. We think that the proposed SCMR estimator can be easily
generalized to accommodate this case. However, when the dimension of covariates is high, the
local Kaplan-Meier estimator may not work due to the curse of dimensionality. Alternatively,
Portnoy (2003) and Peng and Huang (2008) studied a class of censored quantile regressions at
all quantile levels under the weaker assumption that censoring and survival times are
conditionally independent. The model parameters are estimated through a series of estimating
equations: the self-consistency equations in Portnoy (2003) and the martingale-based equations
in Peng and Huang (2008). The variable selection for such estimating equation based methods
becomes more challenging, which needs further investigation.

Appendix: Proof of Theorems
To prove the asymptotic results established in Theorems 1 and 2, we need the following
regularity conditions:
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1. The error term ε has a continuous conditional density f(·|Z = z) satisfying that f(0|Z =
z) ≥ b0 > 0, |ḟ (0|Z = z)| ≤ B0 and sups f(s|Z = z) ≤ B0 for all possible values z of Z,
where (b0,B0) are two positive constants and ḟ is the derivative of f.

2. The covariate vector Z are of compact support and the parameter β0 belongs to the
interior of a known compact set ℬ0.

3. P(t ≤ T ≤ C) ≥ ζ0 > 0 for any t ∈ [0, τ ], where τ is the maximum follow-up and ζ0 is
a positive constant.

PROOF OF THEOREM 1
To establish the result given in Theorem 1, it is equivalent to show that for any η > 0, there is

a constant M such that . Let u = (u0, u1, … , up)′ ∈ ℜp+1, and

 be a ball in ℜp+1 centered at θ0 with the radius . Then we need
to show that P(θ ̂ ∈ AM) ≥ 1 −η. Define

which is a convex function of θ. Thus, to prove P(θ ̂ ∈ AM) ≥ 1 −η for any η > 0, it is sufficient
to show

Let , which can be written as

(7)

where G0(·) is the true survival function of the censoring time.

For the first term in (7), we have
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where κ1 is a finite positive constant. The last inequality in the above expression is because
that  and β̃j, j = 1, … , q, converges to βj0 that is bounded away from zero.

In addition, based on the result (Knight, 1998) that for any

, we have

Since εi has median zero, it is easy to show that

Thus, by the central limit theorem,  converges in
distribution to u′W1, where W1 is a (p + 1)-dimensional normal with mean 0 and variance-

covariance matrix . It implies that the first term in Ln(u) can be written as
Op (‖u‖). For the second term in Ln (u), let

. We will show that  converges
in probability to a quadratic function of u. More specifically, for any ψ > 0, write

We have

Moreover,
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Since EZ(|u′ Xi|2) is bounded and ψ can be arbitrary small, it follows that

 as ψ → 0. Thus, we have, as n → ∞,

which implies . Furthermore, we have

where Σ = EZ{f(0|X)XX′}is positive and finite. Thus,

For the second and third terms in (7), by the Taylor expansion, we have

where ,
and ΛC(·) is the cumulative hazard function of the censoring time C. This leads to

Similarly, we have

Therefore,
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By the similar techniques used for establishing the lower bound of

, we can show that the right-hand side of the above expression can
be represented as

where  is a bounded function on [0,

τ ]. Then by the martingale central limit theorem, we have that 
converges in distribution to u′W2, where W2 is a (p + 1)-dimensional normal with mean 0 and

variance-covariance matrix . In summary, we showed that

For the right-hand side in the above expression, the first term dominates the remain terms if
M = ‖u‖ is large enough. So for any η > 0, as n gets large, we have

which implies that θ̂ is .

Proof of Theorem 2
(i) Proof of selection-consistency. We will first take the derivative of Q(Ĝ, θ) with respect to

βj for j = q + 1, … , p, at any differentiable point . Then we will show that for

, when n is large,

, for j = q + 1, … , p, is negative if −εn < βj < 0 and positive if 0 < βj < εn. Since
Q(Ĝ, θ) is a piecewise linear function of θ, it achieve its minimum at some breaking point.

Moreover, based on Theorem 1, the minimizer  of Q(Ĝ, θ) is .
Thus, each component of β̂b must be contained in the interval (−εn, εn) for all large n. Then as
n → ∞, P(β̂b = 0) → 1.
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To do this, we have, for j = q + 1, … , p,

(8)

Let  and define

Write Vn(Δ) = {Vn,0(Δ), Vn,1(Δ), … , Vn,p(Δ)}′. Then the first term at the right-hand side of (8)
can be rewritten as Vn,j(Δ). As shown in Theorem 1, Vn(0) converges in distribution to a (p +
1)-dimensional normal with mean 0 and variance-covariance matrix Σ1. Furthermore,
following the similar derivations of Koenker and Zhao (1996), we can show that sup‖Δ‖ ≤M
‖Vn(Δ)−Vn(0) + Σ1Δ‖ = op(1). This implies that Vn,j(Δ) = Op(1) since Vn(0) converges in
distribution to a normal vector, Σ1 is finite and Δ is bounded.

Next, since  is bounded, by the law of large numbers, we have that

 converges to

. Thus, the second term at the right-hand side of (8)
can be written as

which is also Op(1) since it converges to a normal variable with mean 0.

Thus, for j = q + 1, … , p,

Since the LAD estimator θ̃ is , we have, for j = q + 1, … , p, .

Then based on the assumption nλ → ∞, when n is large, the sign of  is
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determined by the sign of βj. So as n gets large, , for j = q + 1, … , p, is negative
if −εn < βj < 0 and positive if 0 < βj < εn, which implies P(β̂b = 0) → 1 as n → ∞.

(ii) Proof of asymptotic normality. Based on the results established in Theorem 1 and (i) of
Theorem 2, we have the minimizer θ̂ is  and P(β̂b = 0) → 1 as n → ∞. Thus to
derive the asymptotic distribution for the estimators of non-zero coefficients, we only need to
establish the asymptotic representation for the following function:

where  and v is a (q + 1)-dimensional vector with bounded norm. Define Xa′i
= (1, Zi1, … , Ziq)′, i = 1, … , n. Since  and β̃j → βj0 ≠ 0 and following the similar
derivations as those in the proof of Theorem 1, we can show that

(9)

where

. Define

Then by the central limit theorem,  converges in distribution to a (q + 1)-

dimensional normal vector Wa′ with mean 0 and variance-covariance matrix . The

minimizer of  is given by . Moreover, the

minimizer of Sn (Ĝ, v) is given by . By the lemma given in Davis et al. (1992),

 converges to v0 in distribution as n → ∞. Therefore we have that

 converges in distribution to (q + 1)-dimensional normal vector with mean

−Σa′λ0b1 and variance-covariance matrix .
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Figure 1.
The solution path of our SCMR-A estimator for PBC data. The solid vertical line denotes the
resulting estimator tuned with the proposed BIC criterion.
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Figure 2.
Kaplan-Meier estimates of survival curves for high-risk and low-risk groups of patients using
the selected genes by the SCMR-A.
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Table 7

Estimation and variable selection for PBC data with censored median regression.

Full SCMR-A SCMR-L SCMR-S

Intercept 7.62 (0.44) 7.72 (0.40) 7.83 (0.45) 7.71 (0.42)

trt 0.04 (0.14) 0 (−) 0 (−) 0 (−)

age −3.29 (1.50) −2.77 (1.36) −0.93 (0.94) −2.49 (1.43)

sex 0.03 (0.28) 0 (−) 0.04 (0.24) 0 (−)

asc −0.57 (0.83) −0.31 (0.83) −0.31 (0.81) 0 (−)

hep −0.05 (0.17) 0 (−) 0.02 (0.17) 0 (−)

spid −0.09 (0.20) 0 (−) 0 (−) 0 (−)

oed −0.75 (0.63) −0.70 (0.61) −0.70 (0.65) −0.96 (0.45)

bil −1.71 (3.24) −2.09 (3.25) −1.56 (2.43) −2.79 (3.68)

chol −0.87 (3.50) 0 (−) −0.64 (1.23) −0.67 (3.07)

alb 2.96 (1.33) 3.16 (1.28) 3.54 (1.17) 2.70 (1.42)

cop −4.00 (1.97) −3.89 (1.87) −2.61 (1.57) −3.53 (2.02)

alk 2.16 (1.02) 2.19 (0.97) 2.11 (0.87) 2.31 (1.42)

sgot −0.20 (1.84) 0 (−) 0 (−) 0 (−)

trig 1.16 (2.11) 0 (−) 0 (−) 0.37 (1.74)

plat −1.61 (1.11) −1.25 (0.90) −1.12 (0.67) −1.48 (0.92)

prot 2.58 (2.31) 1.62 (2.23) 0.93 (1.85) 2.17 (2.72)

stage 0.03 (0.10) 0 (−) −0.05 (0.09) 0 (−)
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