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Abstract
The Linear Response (LR) approximation and similar approaches belong to practical methods for
estimation of ligand-receptor binding affinities. The approaches correlate experimental binding
affinities with the changes upon binding of the ligand electrostatic and van der Waals energies, and
of solvation characteristics. These attributes are expressed as ensemble averages that are obtained
by conformational sampling of the protein-ligand complex and of the free ligand by molecular
dynamics or Monte Carlo simulations. We observed that outliers in the LR correlations occasionally
exhibit major conformational changes of the complex during sampling. We treated the situation as
a multi-mode binding case, for which the observed association constant is the sum of the partial
association constants of individual states/modes. The resulting nonlinear expression for the binding
affinities contains all the LR variables for individual modes that are scaled by the same 2–4 adjustable
parameters as in the one-mode LR equation. The multi-mode method was applied to inhibitors of a
matrix metalloproteinase, where this treatment improved the explained variance in experimental
activity from 75% for the uni-mode case to about 85%. The predictive ability scaled accordingly, as
verified by extensive cross-validations.

Introduction
Estimation of binding affinities for ligand-receptor complexes is important for several research
areas including structure-based drug design. The approaches range from scoring functions1–
9 for quick ranking of large libraries of compounds docked into the binding site to more
sophisticated, second-pass methods for examination of the top candidates from the fast
docking. The latter category spans from methods utilizing single energy-minimized
conformations10–15 to complex and time consuming Free Energy Perturbation,
Thermodynamic Integration, and related approaches based on extensive sampling.16–19 Fairly
accurate binding energy estimates can be obtained by methods of intermediate complexity,
requiring only two molecular dynamics (MD) or Monte Carlo (MC) simulations, one with the
free solvated ligand and one with the ligand bound to the solvated receptor. The binding free
energy is expressed as the sum of several contributions. The methods can be classified based
upon various criteria such as (1) the sampling method: MD20–23 or MC;24–26 (2) the
treatment of solvent: explicit,20,24–26 continuum,15,21,27 or in vacuo;15,22 (3) estimation of
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the electrostatic component of solvation energies: linearized Poisson-Boltzman equation,15,
22,23,28,29 the generalized Born model,21,29,30 or the pair-wise Coulomb relations in the
explicit solvent;25 and (4) the parameter optimization: used27 or not used.23

To illustrate the approaches, let us have a closer look at the Linear Response (LR, a.k.a Linear
Interaction Energy) method20,31–35 and its extension (ELR).24,36–39 The LR method
correlates binding free energies ΔGi with van der Waals and electrostatics energies between
the ligand and its surroundings, to which the ELR method adds the solvent-accessible surface
area (SASA) term:

(1)

Here, Ki is the association constant, R is the universal gas constant, T is temperature, the
subscript i indicates the ith compound, and α, β, γ and κ are adjustable parameters that optimize
the agreement between experimental ΔGb values and calculated energy and SASA terms
according to Eq. 1. The angle brackets denote the ensemble averages and Δ indicates the
difference between the ensemble averages in the bound and free ligand states. The ensemble
averages of the energies and SASA seem to be replaceable by the energies and SASA calculated
for the time-averaged structures.22,39 Usually, conformational sampling leads to better
correlations22,39 than simpler and faster minimization, although the opposite cases have been
described.15

We observed that outliers in the fits of Eq. 1 to experimental data are occasionally associated
with larger conformational changes of the bound ligands during the simulation. These changes
may happen in spite of careful equilibration, if there are several energetically similar
conformation states available. In this communication, we propose a conceptual treatment of
such a situation that is based on the multi-mode binding mechanism.

Methods
Reversible 1:1 binding of the ith ligand Li in m mutually exclusive orientations or
conformations (modes) to the receptor site R can be schematically written as

(2)

The ligand is present as a single species in the receptor surroundings. The apparent association
constant Ki for this process is, on the concentration basis, defined as

(3)

Each partial association constant Kij can be expressed using Eq. 1, with the same values of the
adjustable parameters α, β, γ, and κ. The apparent association constant can then be correlated
with the simulation results by a combination of Eqs. 1 (now with the subscript ij representing
the jth binding mode of the ith compound) and 3:
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(4)

The simple Eq. 4 is in accordance with published analyses of formally analogous situations:
the rigorous statistical thermodynamic40 description and equilibrium treatment41,42 of the
multi-mode interactions of ligands with proteins and kinetic analyses of reversible uni-
molecular reactions leading to different products43 or isomers44. The multi-mode approach
represented by Eq. 4 was also implemented in the most frequently used ligand-based method
Comparative Molecular Field Analysis (CoMFA).45

Notably, Eq. 4 contains the same adjustable parameters α, β, γ and κ as Eq. 4. The multi-mode
treatment uses a different correlation equation (Eq. 4) than the classical one-mode approach
(Eq. 1) but relies on the same four adjustable parameters. Thus, Eq. 4 has 3×m variables (m is
the number of binding modes considered for each ligand) that are equal to the ensemble
averages of van der Waals energies, coulombic energies, and SASA terms for individual
binding modes. However: (1) all m van der Waals terms are scaled by the parameter α; (2) all
m electrostatic terms are scaled by the parameter β; (3) all m SASA terms are scaled by the
parameter γ; and (4) there is only one constant parameter κ. In Eq. 4, each mode is represented
by one exponential that corresponds to Eq. 1 (for this reason, the separation of the parameter
κ from the summation was not made in Eq. 4). Each exponential contains the same adjustable
parameters α, β, γ and κ, so there are four optimized parameters in total. After optimization of
the parameters by nonlinear regression analysis of experimental data according to Eq. 4, the
prevalence of the jth binding mode can be calculated as Kij/ΣKij, where: (1) the partial
association constant of the jth mode Kij is calculated from Eq. 1 with optimized values of
adjustable parameters α, β, γ and κ, and the energy and SASA terms for the jth mode; and (2)
the sum runs through all m partial association constants Kij that are calculated in the previous
step. The prevalences of individual modes are the outcome of the parameter optimization. No
assumptions about the prevalence distribution need to be made before optimization. The
prevalences calculated by this approach are in accordance with the Boltzmann distribution.

We applied the multi-mode method to a set of 28 diverse hydroxamate inhibitors of
MMP-9,46 encompassing the following structural types:

The complete structures of the inhibitors along with the LR terms and the experimental and
predicted Ki values are listed in the supporting information. The ligands exhibit ~4000-fold
difference in binding affinity, with the association constants Ki ranging from 2.865×106 to
1.25×1010 M−1.

The crystal structure of MMP-9 complexed with reverse hydroxamate inhibitor (file 1GKC)
was downloaded from the Protein Data Bank.47 Three-dimensional structures of ligands were
constructed using the SYBYL6.91 suite of programs48 running under Irix 6.5. The ligands
were then docked into the active site of MMP-9 using FlexX.49,50 Conformations of the
ligands in the active site were selected from the top 30 poses generated by FlexX using the
distance in the interval 1.5 – 2.5 Å between the hydroxamate oxygens and the zinc atom of the
receptor as the primary criterion and the FlexX ranking as the secondary criterion.51 Protons
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were added to the heavy atoms of the protein and energy minimization was performed using
constraints to relax the added protons using Tripos force field.52 All heavy atoms were fixed
at the experimental coordinates during energy minimization. The optimized complexes were
then subjected MD simulations consisting of 15-ps heating phase, 100-ps equilibration and
200-ps production period. The lengths of the bonds between the hydroxamate groups of
inhibitors and the catalytic zinc were constrained to alleviate the deficiencies of the used force
field in the description of metal coordination. MD simulations for hydrated ligands were
performed under similar conditions. The protocol was described in detail elsewhere.39 The
generated ensemble averages are summarized in the supporting information.

Results and Discussion
In our previous study,39 the MD-based LR correlations (Eq. 1) of the hydroxamate
inhibitors46 of MMP-9 behaved anomalously: the quality of correlations did not improve with
increased simulation time and some outliers adopted comparatively different conformations
during MD simulations. We decided to examine whether a correlation taking into account
multiple binding modes could improve the results.

The van der Waals, electrostatic and solvent accessible surface area terms were calculated
using the corresponding time-averaged structures of the complex and the free ligand for eight
25-ps intervals of the 200-ps MD simulations. The time-averaged structure for each interval
represented a binding mode (0–25 ps: mode 1, 25–50 ps: mode 2, … 175–200 ps: mode 8). No
collinearity between the calculated LR terms, used in Eq. 1 and Eq. 4, was observed. The
highest mutual correlation was seen between the electrostatic and SASA terms (Eq. 4), with
the correlation coefficient r = 0.218. The results of the fit of the data for the classical and multi-
mode LR treatment (Eq. 1 and Eq. 4, respectively) are summarized in Table 1. The results for
the minimization of the ligands in the binding sites are included for comparison. A plot of
experimental vs. calculated activities is shown in Figure 1.

For minimization and the one-mode treatment, the van der Waals and electrostatics terms were
not significant. For minimization, the parameter errors for the van der Waals and electrostatic
terms were higher than the optimized parameter values. Moreover, the parameter for the van
der Waals term had a negative value. For the one-mode treatment, the error terms were ~60%
of the parameter estimates. Inclusion of the statistically insignificant terms led to negligible
improvements in the correlations: for minimization, to r2=0.445, and for the one-mode
treatment, to r2 = 0.695 (data not shown).

The multi-mode model provides significantly better correlations (Table 1, Figure 1) and
explains ~85% (r2=0.845) of the variation in experimental activity with the standard deviation
SD = 0.862. All three terms included in Eq. 4 exhibited significant contributions to the
correlation. The contributions of the energy terms imply dominant roles of the electrostatic and
van der Waals interactions between the inhibitor and the protein. The SASA term indicates
that the burying of the ligand, which is exposed to the solvent in the unbound state, is favorable
for complex formation. Division of the SASA term into polar and non-polar solvent accessible
surface areas did not increase the descriptive and predictive power of the model (data not
shown).

The robustness of the regression equations and their predictive abilities were probed by cross-
validation. For this purpose, the fits to the potency data are generated leaving out one or more
inhibitors from the calibration process. The resulting equation for each fit is used to predict the
potencies of the omitted compounds. The leave-one-out (LOO) procedure and especially the
leave-several-out (LSO) procedure with a random selection of a 6-member test set that was
repeated 200 times provided a thorough evaluation. The RMSE values using LOO (1.008) and
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LSO (1.012) were only slightly higher than the RMSE value of the whole data set without any
omission (0.931).

Eq. 4 has an interesting property: it selects the binding modes, which contribute most to the
binding. The prevalencies Kij/ΣKij of individual simulation intervals representing the binding
modes for the studied ligands are summarized in Supporting Information, along with ligand
structures, experimental and predicted affinities, as well as energy and SASA terms. Major
outliers in the one-mode treatment (ligands 3, 15, and 21) are predicted accurately by multi-
mode treatment (Figure 1). In case of compound 3, the contributions are ~15% for all modes
except modes 1 and 7 (4 and 10%, respectively). Compound 15 shows a similar pattern but the
minimal contributions are observed for modes 1, 2, and 6. Compound 21 exhibits deviations
both positive and negative deviations from the average: mode 2 contributes 26% to overall
binding, while modes 1 and 5 represent only 8 and 5%, respectively. Ligands 2, 6, 7, 8, 9,
23, and 24 also have a dominant mode (mode 7, 4, 2, 1, 1, 7, and 8, respectively) representing
more than 30% of the total bound ligands. A ligand oscillating around an equilibrium position
should exhibit approximately equal contributions to binding for all eight binding modes; i.e.
in ideal case, the average prevalence is 12.5% with the standard deviation SD = 0. The SD
values of the mode prevalences ranged from 1–4 (compounds 1, 3, 14, 15, 22, 27, 28) to 12–
15 (compounds 2, 7, 8). As illustrated in Figure 2, among complexes that substantially change
the geometry during simulation, some have one significant binding mode (Figure 2A), while
others exhibit an even distribution of binding modes (Figure 2B). As can be expected, well-
behaved complexes with similar geometries in each simulation period have approximately
equal prevalences of binding modes (Figure 2C).

Conclusions
The developed multi-mode approach to the LR approximation resulted, in the studied case of
hydroxamate inhibitors of MMP-9, in correlations with significantly better descriptions and
predictions as compared to classical one-mode LR equation. The entire simulation period is
divided into time slots called binding modes. The time-averaged structures of bound and free
ligands in the binding modes are used to calculate van der Waals, electrostatic, and desolvation
contributions to binding. The weights of the contributions are determined by optimization using
a multi-mode LR equation. The weights also determine the contributions of individual binding
modes to overall binding. Steady ligands, oscillating around the equilibrium positions, exhibit
an even distribution of binding modes. Mobile ligands, undergoing substantial geometry
changes in the complex during MD simulations, may or may not preferentially bind in selected
binding modes. If further studies confirm the findings, the multi-mode LR approach may
become a useful tool for prediction of binding affinities.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Comparison of the experimental versus calculated binding affinity (lnK) for the one-mode
model (Eq. 1) with minimization (the compound number, see Supplementary Information for
structures) and conformational sampling (○, Eq. 1), and for the multi-mode conformational
sampling (●, Eq. 4). The optimized coefficient values are given in Table 1.
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Figure 2.
Binding modes of compounds 7 (A), 22 (B), and 27 (C). The mode representing 40% or more
of the bound ligand is displayed in balls and sticks (A). The time-averaged structures for 25-
ps simulation intervals represent individual modes and are color-coded (modes 1 to 8,
respectively): cyan - 0–25 ps, blue - 25–50 ps, green - 50–75 ps, magenta - 75–100 ps, orange
- 100–125 ps, purple - 125–150 ps, red - 150–175 ps, and violet - 175–200 ps). The structures
were superimposed using the α-carbon atoms of the protein.
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