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Abstract
Performance evaluations of health services providers burgeons. Similarly, analyzing spatially
related health information, ranking teachers and schools, and identification of differentially
expressed genes are increasing in prevalence and importance. Goals include valid and efficient
ranking of units for profiling and league tables, identification of excellent and poor performers, the
most differentially expressed genes, and determining “exceedances” (how many and which unit-
specific true parameters exceed a threshold). These data and inferential goals require a
hierarchical, Bayesian model that accounts for nesting relations and identifies both population
values and random effects for unit-specific parameters. Furthermore, the Bayesian approach
coupled with optimizing a loss function provides a framework for computing non-standard
inferences such as ranks and histograms.

Estimated ranks that minimize Squared Error Loss (SEL) between the true and estimated ranks
have been investigated. The posterior mean ranks minimize SEL and are “general purpose,”
relevant to a broad spectrum of ranking goals. However, other loss functions and optimizing ranks
that are tuned to application-specific goals require identification and evaluation. For example,
when the goal is to identify the relatively good (e.g., in the upper 10%) or relatively poor
performers, a loss function that penalizes classification errors produces estimates that minimize
the error rate. We construct loss functions that address this and other goals, developing a unified
framework that facilitates generating candidate estimates, comparing approaches and producing
data analytic performance summaries. We compare performance for a fully parametric,
hierarchical model with Gaussian sampling distribution under Gaussian and a mixture of
Gaussians prior distributions. We illustrate approaches via analysis of standardized mortality ratio
data from the United States Renal Data System.

Results show that SEL-optimal ranks perform well over a broad class of loss functions but can be
improved upon when classifying units above or below a percentile cut-point. Importantly, even
optimal rank estimates can perform poorly in many real-world settings; therefore, data-analytic
performance summaries should always be reported.
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1 Introduction
Performance evaluation burgeons in many areas including health services (Goldstein and
Spiegelhalter 1996; Christiansen and Morris 1997; Normand et al. 1997; McClellan and
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Staiger 1999; Landrum et al. 2000, 2003; Daniels and Normand 2006; Austin and Tu 2006),
drug evaluation (DuMouchel 1999), disease mapping (Devine and Louis 1994; Devine et al.
1994; Conlon and Louis 1999; Wright et al. 2003; Diggle et al. 2006), and education
(Lockwood et al. 2002; Draper and Gittoes 2004; McCaffrey et al. 2004; Rubin et al. 2004;
Tekwe et al. 2004; Noell and Burns 2006). Goals of such investigations include valid and
efficient estimation of population parameters such as average performance (over clinics,
physicians, health service regions or other “units of analysis”), estimation of between-unit
variation (variance components) and unit-specific evaluations. The latter includes estimating
unit specific performance, computing the probability that a unit's true, underlying
performance is in a specific region, ranking units for use in profiling and league tables
(Goldstein and Spiegelhalter 1996), identification of excellent and poor performers.

Bayesian models coupled with optimizing a loss function provide a framework for
computing non-standard inferences such as ranks and histograms and producing data-
analytic performance assessments. Inferences depend on the posterior distribution, and how
the posterior is used should depend on inferential goals. Gelman and Price (1999) showed
that no single set of estimates can simultaneously optimize loss functions targeting the unit-
specific parameters (e.g, unit-specific means, optimized by the posterior mean) and those
targeting the ranks of these parameters. For example, as Shen and Louis (1998) and Liu et
al. (2004) showed, ranking the unit-specific maximum likelihood estimates (MLEs)
performs poorly as does ranking Z-scores for testing whether a unit's mean equals the
population mean. In some situations, ranking the posterior means of unit-specific parameters
can perform well, but in general an optimal approach to estimate ranks is needed.

In the Shen and Louis (1998) approach, SEL operates on the difference between the
estimated and true ranks. But, in many applications interest focuses on identifying the
relatively good (e.g., in the upper 10%) or relatively poor performers, a down/up
classification. For example, quality improvement initiatives should be targeted at health care
providers that have the highest likelihood of being the poorest performers; geography-
specific, environmental assessments should be targeted at the most likely high incidence
locations (Wright et al. 2003); genes with differential expression in the top 1% (say) should
be selected for further study.

We construct new loss functions that focus on down/up classification and derive the
optimizers for a subset of them. We develop connections between the new optimizers and
others in the literature; report performance evaluations among the new ranking methods and
other candidates; identify appropriate uncertainty assessments including a new performance
measure. We evaluate performance for a fully parametric hierarchical model with unit-
specific Gaussian sampling distributions and assuming either a Gaussian or a mixture of
Gaussians prior. We evaluate performance and robustness under the prior and loss function
that was used to generate the ranks as well as under other priors and loss functions. Shen and
Louis (1998) showed that when the posterior distributions are stochastically ordered,
maximum likelihood estimate based ranks, posterior mean based ranks, SEL-optimal ranks
and those based on most other rank-specific loss functions are identical. We report
performance assessments for the stochastically ordered case and compare approaches for
situations when the posterior distributions are not stochastically ordered. We illustrate
approaches using Standardized Mortality Ratio (SMR) data from the United States Renal
Data System (USRDS).

2 The two-stage, Bayesian hierarchical model
We consider a two-stage model with independent identically distributed (iid) sampling from
a known prior G with density g and possibly different unit-specific sampling distributions fk:
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(1)

From model (1) we can derive the independent (ind) posterior distributions for Bayesian
inferences:

For computing efficiency, we assume that the θs are iid, though model (1) can be
generalized to allow a regression structure in the prior and extended to three stages. Our
theoretical results hold for these more general situations.

2.1 Loss functions and decisions
Let θ = (θ1 ,…, θK) and Y = (Y1, …, YK). For a loss function L(θ, a), the optimal Bayesian
a(Y) minimizes the posterior Bayes risk,

and thereby the pre-posterior risk

Also, for any a(Y) we can compute the frequentist risk:

3 Ranking
Laird and Louis (1989) represented the ranks by,

(3)

with the smallest θ having rank 1 and the largest having rank K. The non-linear form of (3)
implies that, in general, the optimal ranks are neither the ranks of the observed data nor the
ranks of the posterior means of the θs. A loss function is necessary to formalize developing
estimates and related uncertainties.

3.1 Squared-error loss (SEL)
Square error loss (SEL) is the most common loss function used in estimation. It is optimized
by the posterior mean of the target parameter. For example, under the model (1), with the
unit-specific θs as the target, the loss function is L(θ, a) = (θ – a)2 and the optimal estimator
is posterior mean (PM) .
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When ranks are the target, producing SEL-optimal ranks by minimizing

(4)

and setting  equal to,

(5)

The R̄k are shrunk towards the mid-rank (K + 1)/2, and generally are not integers (Shen and
Louis 1998). Optimal integer ranks are reached by

(6)

See Section Appendix A for additional details on producing optimal ranks under weighted
SEL.

3.2 Notation
Henceforth, we drop dependency on θ and omit conditioning on Y whenever this does not
cause confusion. For example, Rk stands forRk(θ) and R̂k stands for R̂k(Y). Furthermore, use
of the ranks facilitates notation in mathematical proofs, but percentiles

(7)

normalize large sample performance and aid in communication. For example, Lockwood et
al. (2002) showed that mean square error (MSE) for percentiles rapidly converges to a
function that does not depend on K; the same normalization strategy applies in the loss
functions below.

4 Upper 100(1 − γ)% loss functions
L ^(Equation 4) evaluates general performance without specific attention to identifying the
relatively well or poorly performing units. To attend to this goal, for 0 < γ < 1 we investigate
loss functions that focus on identifying the upper 100(1 − γ)% of the units, with loss
depending on the correctness of classification and, possibly, a distance penalty;
identification of the lower 100γ% group is similar. For notational convenience, we assume
that γK is an integer, so γ(K + 1) is not an integer and in the following it is not necessary to
distinguish between (>, ≥) or (<, ≤).

4.1 Summed, unit-specific loss functions
For 0 < γ < 1, let

(8)
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ABk and BAk indicate the two possible modes of misclassification. ABk indicates that the true
percentile is above the cutoff, but the estimated percentile is below the cutoff. Similarly, BAk
indicates that the true percentile is below the cutoff while the estimated percentile is above
it.

For p, q, c ≥ 0 define,

(9)

The loss functions confer no penalty if the pair of estimated and true unit-specific
percentiles, , are either both above or both below the γ cut point. If they are on
different sides of γ, L ̃ penalizes by an amount that depends on the distance of the estimated
percentile from γ, L† by the distance of the true percentile from γ and L‡ by the distance
between the true and estimated percentiles. Parameters p and q adjust the intensity of the
penalties; p ≠ q and c ≠ 1 allow for different penalties for the two kinds of misclassification.
L0/1(γ) counts the number of discrepancies and is equivalent to setting p = q = 0, c = 1; we

use the relation  in its definition. In practice, L† and
L‡ would be harder to use than L ̃ because their penalizing quantities depend on unknown Pk.
However, inclusion of them in our investigation does help to calibrate the robustness of
other estimators.

Our mathematical analyses apply to the general loss functions (9), but our simulations are
conducted for p = q = 2, c = 1. Within this setting, we denote the first three loss functions in
(9) as L ̃(γ), L†(γ) and L‡(γ).

We do not investigate the “all or nothing, experiment-wise” loss function with zero loss,
when all units are correctly classified as above γ or below γ and penalty 1 if any unit is
misclassified. While this loss function is one of the most fundamental and provides
framework in many multiple comparison methods, it does not provide a good guideline in
our ranking problem. Finding the optimal classification is challenging in computation and
there will be many nearly optimal solutions. Furthermore, in the spirit of computing the false
detection rate, loss functions that compute average performance over units or a subset of
units are more appropriate in most applications.

5 Optimizers and other candidate ranks
We find ranks/percentiles that optimize L0/1 and L ̃ and study an estimator that performs well
for L‡, but is not optimal. First, note that optimizers for the loss functions in (9) and L ̂ are
equal when the posterior distributions are stochastically ordered (the Gk(t | Yk) never cross).
So, in this case P̂k, which minimizes L ̂ (see equations (4), (6) and (7)), is optimal for a broad
class of loss functions (see Theorem 4). Also, it is straightforward to show that all rank/
percentile estimators operating through the posterior distribution of the ranks are monotone
transform invariant; that is, they are unchanged by monotone transforms of the target
parameter.
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5.1 Optimizing L0/1
Theorem 1—L0/1 loss is minimized by

(10)

These are not unique optimizers.

See Section Appendix B.

5.2 Optimizing L̃
Theorem 2—The P̃k(γ) optimize L ̃. In Section Appendix C, we show in detail that the
P̃k(γ) are also optimal for more general loss functions with the distance penalties

 replaced by any nondecreasing functions of . The proof has
three steps: first, classify the units into (above γ)/(below γ) groups; second, inside each
group, rewrite the posterior risk as the inner product of the discrepancy vector and the
misclassification probability vector; third, repeatedly use the rearrangement inequality
(Hardy et al. 1967) to minimize the inner product.

The Normand et al. (1997) estimate—Normand et al. (1997) proposed using the
posterior probability pr(θk > t| Y) and ranks based on it to compare the performance of
medical care providers. The cut point t is an application-relevant threshold. Using this
approach, we define  with properly chosen cut point t and show that  is essentially
identical to P̃k(γ).

Definition of : Let

(11)

and define  as the percentiles produced by ranking the pr(θk ≥  (γ)|Y). Section 6.2
gives a relation among P̄k, P̃k(γ) and . Theorems 5 and 6 show that P̃k(γ) is asymptotically
equivalent to .

By making a direct link to the original θ scale,  is straightforward to explain and
interpret. Furthermore, for a desired accuracy, computing  is substantially faster than
computing P̃k(γ), since the former requires only accurate computation of individual posterior
distributions and of ḠY.

5.3 Optimizing L†

Section Appendix D presents an optimization procedure for the case p = q = 2, −∞ < c < ∞.
However, other than use of brute force (complete enumeration), we have not found an
algorithm for general (p, q, c). As for L0/1, performance depends only on optimal allocation
into the (above γ)/(below γ) groups. Additional criteria are needed to specify the within-
group order.
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5.4 Optimizing L‡

We have not found a simple means of optimizing this loss function, but Section Appendix E
develops a helpful relation.

5.5 Other ranking estimators
Traditional rank estimators include ranks based on maximum likelihood estimates, those
based on posterior means of the θs and those based on hypothesis testing statistics (Z-scores,
P-values). MLE-based ranks are monotone transform invariant, but the others are not. As
shown in Liu et al. (2004), MLE-based ranks will tend to give units with relatively large
variances extreme ranks, while hypothesis testing statistics based ranks will tend to place
units with relatively small variances at the extremes. Though not an optimal solution to this
problem, modified hypothesis testing statistics moderate this shortcoming by reducing the
ratio of the variances (Tusher et al. 2001; Efron et al. 2001).

A two stage ranking estimator—Ranking estimator P̃k(γ) optimize the (above γ)/
(below γ) misclassification loss L0/1 and P̂k optimize the L ̂, which penalizes on the distance |

Pest
k Pk|. A convex combination loss function, , thus

addresses both inferential goals, as L‡ similarly does, and motivates , a two stage hybrid
ranking estimator.

Definition of : Use P̃k(γ) to classify into (above γ)/(below γ) percentile groups. Then,
within each percentile group order the estimates by P̂k.

Theorem 3:  minimizes L0/1 and conditional on this (above γ)/(below γ) classification,
produces optimal SEL estimates within the two groups.

See Section Appendix F.

Furthermore, it is straightforward to show that for  there exists a w* > 0 such that for

all w ≤ w*,  is optimal and there exists a w* < 1 such that for all w ≥ w*, P̂k is optimal.

6 Relations among estimators
In this section we develop relations among estimators using ranks or percentiles depending
on the context for convenience.

6.1 A general relation
Let ν = [γK] and define

Then the ranked  equal the ranked pr(Rk ≥ ν) and so each generates the R̃k(γ). Note that

 is a constant used to standardize  such that:
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Theorem 4—R̅k is a linear combination of the  with respect to ν and so for any
convex loss function the R̅k outperform the  for at least one value of ν = 1,…,K. For
SEL, R̅k dominates for all ν. As shown in Section Appendix A, the R̂k = rank(R̅k) also
dominate rank  for all ν.

See Section Appendix G.

6.2 Relating P̂k, P̃k(γ) and 
From (3), (5) and (11), we have that,

The  are generated by ranking the pr , which is equivalent to ranking
pr(ḠY (θk) ≥ γ). By the foregoing, it is equivalent to ranking the pr(E[Rk|θk] ≥ γK), which is
similar to pr(Rk ≥ γK), the generator of P̃k(γ). The R̂k are produced by ranking the R̄k which
is the same as ranking the expectation of the random variables used to produce the  or
R̃k(γ).

6.3 Approximate equivalence of P̃k(γ) and 

Theorem 5—Assume that  and that the posterior cumulative
distribution function (cdf) of each θk is continuous and differentiable at G−1(γ). If Gk(· |Y)
has a universally bounded second moment, then for K → ∞,  is equivalent to P̃k(γ).

See Section Appendix H.

Theorem 6—Assume that  and that the posterior cumulative
distribution function (cdf) of each θk is continuous and differentiable at G−1(γ).
Furthermore, assume that the empirical distribution function (edf) of the ζk converges to a
probability distribution. If Gk(·|Y, ζ) has a universally bounded second moment, then for K
→ ∞,  is equivalent to P̃k(γ).

Proof—Regard ζk as part of the observed data and use  in Theorem 5.

Theorems 5 and 6 imply that  is asymptotically optimal for L ̃ and provides a loss
function basis for the Normand et al. (1997) estimates.

6.4 A unifying score function
We provide a unified approach to loss function based ranking. To this end, we define a non-
negative, nondecreasing scoring function S(P) : (0, 1) → [0, 1]. The function can be
regarded as the scores (reward) a unit would get if its percentile was P. It relates percentiles,
P, to “consequences” S(P). These relations can help in eliciting an application-relevant loss
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function and in interpreting loss-function based percentiles. We use SEL for S(P) to produce
percentiles and ranks, specifically:

(12)

The optimal Sest satisfy  and we use the ranks and percentiles based on
them.

When S(P) = aP + b, a > 0, i.e. the reward is linear in the estimated percentile, we have L ̂s =
a2L ̂ and so P̂k is associated with linear rewards. When S(P) = I{P>γK}, i.e., the reward only
depends on whether the percentile of a unit is beyond the threshold γ, there is no constraint
on the rankings of units inside each of the (above γ)/(below γ) groups. With this setting,
there exist many optimizers and P̃k(γ) is one of them. For the two stage ranking estimator

, let S(P) = aP + I{P>γ} and so . When a is sufficiently close to zero,

 is optimal. More S(P) are given in Section Appendix I.

7 Performance evaluations and comparisons
7.1 Posterior and pre-posterior performance evaluations

In a Bayesian model, an estimator’s performance can be evaluated by using the posterior
distribution (data analytic evaluations) and by using the marginal distribution of the data
(pre-posterior evaluations). For example, preposterior SEL performance is the sum of
expected posterior variance plus expected squared posterior bias.

We provide evaluations relative to the loss function used to produce the estimate and other
potentially relevant loss functions. For example, performance with respect to SEL should be
computed for the SEL optimizer and for other estimators. These comparisons help to
determine the efficiency of an estimator that optimizes one loss function when evaluated for
other loss functions. Procedures that are robust to the choice of loss functions will be
attractive in applications.

7.2 The (above γ)/(below γ) operating characteristic
For (above γ)/(below γ) classification, plots of the posterior probability of exceeding γ
versus estimated percentiles are informative (see Figure 4). Such plots can be summarized
by the a posteriori operating characteristic (OC). For any percentiling method, define,

(13)

with the last equality following from identity . OC(γ)
is the sum of two misclassification probabilities and so is optimized by P̃k(γ). It is
normalized so that if the data provide no information on the θk, then for all γ, OC(γ) ≡ 1.
Evaluating performance using only one of the probabilities, e.g., pr  is
analogous to computing the false discovery rate (Benjamini and Hochberg 1995;Storey
2002,2003).
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7.3 Unit-specific performance
For loss functions that sum over unit-specific components, performance can also be
evaluated for individual units and, in a frequentist evaluation, for individual θ vectors. These
evaluations are in Section 9.3.

8 Simulation scenarios
We evaluate pre-posterior performance for the Gaussian sampling distribution with K = 200
using 2000 simulation replications. We compute pr(Rk = ℓ | Y) using an independent sample
Monte Carlo with 2000 draws. All simulations are for loss functions with p = q = 2 and c =
1.

8.1 The Gaussian-Gaussian model
We evaluate estimators for the Gaussian/Gaussian, two-stage model with a Gaussian prior
and Gaussian sampling distributions and allow for varying unit-specific variances. Without
loss of generality we assume that the prior mean is µ = 0 and the prior variance is τ2 = 1.
Specifically,

This derives:

where . When unit-specific variances  are all
equal, the posterior distributions are stochastically ordered and all ranking methods we
investigate are identical. Evaluation for this case provides a baseline performance with
respect to the set of loss functions. In practice, the ’s can vary substantially and we
evaluate this situation using two departures from the  case. In each case, the equal
variance scenario is produced by rls = 1:

1. log uniform: Ordered, geometric sequences of the  with ratio of the largest σ2

to the smallest  and geometric mean .

2. two clusters: The first half of the ; for the second half, .

Here,  and gmv = 1.

In both cases the variance sequence is monotone in k, but simulation results would be the
same if the indices were permuted. These variance sequences — constant, uniform in the log
scale, clustered at the extremes of the range — triangulate possible patterns, though specific
applications can, of course, have their unique features.

8.2 A Mixture prior
This prior is a mixture of two Gaussian distributions with the mixture constrained to have
mean 0 and variance 1:
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where

We present results for ε = 0.1, Δ = 3.40, ξ2 = .25, γ = 0.9 and compute the preposterior risk
for estimators that are computed from the posterior produced by this mixture and for
estimators that are based on a standard, Gaussian prior.

9 Simulation results
9.1 SEL for P̂k and estimated θ-based percentiles

Table 1 documents SEL (L ̂) performance for P̂k, the optimal estimator, for percentiled Yk

(the MLE), percentiled  and percentiled  (the posterior mean of
eθk).

The posterior mean of eθk is presented to assess performance for a monotone, non-linear
transform of the target parameters. For rls = 1, the posterior distributions are stochastically
ordered and the four sets of percentiles are identical, as is their performance. As rls
increases, performance of Yk-derived percentiles degrades, those based on the  are quite
competitive with P̂k but performance for percentiles based on the posterior mean of eθk

rapidly degrades. Results show that though the posterior mean can perform well for some
models and target parameters, in general it is not competitive with rank-based approaches.

9.2 Comparisons among loss function-based estimates

Table 2 reports results for P̂k, P̃k(γ) and  under four loss functions and for the “log-
uniform” variance pattern. For the “two-clusters” pattern, differences between estimators are
modified relative to those for the log-uniform pattern, but preference relations are
unchanged. For example, the L ̂ risks are generally smaller for the “two-clusters” variance
pattern than for the “log-uniform” pattern, but the reverse is true for L ̃.

When rls = 1,  and so differences in the SEL results in the first and seventh
rows quantify residual simulation variation and Monte Carlo uncertainty in computing the
probabilities used in equation (1) to produce the P̃k(γ). Results for other values of rls show

that under L ̂, P̂k outperforms P̃k(γ) and  as must be the case, since P̂k is optimal under
SEL. Similarly, P̂k(γ) optimizes L0/1 and L ̃, and for rls ≠ 1 outperforms competitors. Though

 optimizes  (see Section 5.4) for sufficiently small w, it performs relatively
poorly for the seemingly related L‡; P̃k(γ) appears to dominate and P̂k performs well. The

poor performance of  shows that unit-specific combining of a misclassification penalty
with squared-error loss is fundamentally different from using them in an overall convex
combination.
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Similar relations among the estimators hold for the two component Gaussian mixture prior
and for a “frequentist scenario” with a fixed set of parameters and repeated sampling only
from the Gaussian sampling distribution conditional on these parameters.

Results in Table 2 are based on gmv = 1. Relations among the estimators for other values of
gmv are similar, but a look at extreme gmv is instructive. Results (not shown) indicate that
for rls = 1, the risk associated with L0/1 is of the form a(gmv)γ(1 − γ), where a(gmv) is a
constant depending only on the value of gmv. By identity (13), this implies that the
expectation of OC(γ) is approximately constant. When gmv = 0, the data are fully
informative, Yk ≡ θk and all risks are 0. When , gmv = ∞ and the Yk provide no
information on the θs nor on Pk. Table 3 displays the preposterior risk for this no
information case, with values providing an upper bound for results in Table 2.

Under L0/1 P̃k(γ) is the optimal and the difference between P̂k and P̃k(γ) depends on the
magnitude of rls. That P̃k(γ) is only moderately better than P̂k under L ̃ is due in part to our
having considered only the case p = q = 2, c = 1, which makes L ̃ very similar to L ̂. For larger
p and q there would be a more substantial difference.

Figure 1–Figure 3 are based on the Gaussian-Gaussian model. Figure 1 displays the
dependence of risk on gmv for the exchangeable model (rls = 1). As expected, risk increases
with gmv. For rls = 1, expected unit-specific loss equals the overall average risk and so the
box plots summarize the sampling distribution of unit-specific risk.

9.3 Unit-specific performance

When rls = 1, pre-posterior risk is the same for all units. However, when rls > 1, the  form
a geometric sequence and preposterior risk depends on the unit. We study this non-
exchangeable situation by simulation. Figure 2 displays loess smoothed performance of P̂k,

P̃k(γ) and  for L0/1, L ̂ and L‡ as a function of unit-specific variance for gmv = 1 and 3,
rls = 100 and γ = 0.8. Results for L ̂ (gmv = 3) and L0/1 (gmv = 1) are intuitive in that risk
increases with increasing unit-specific variance. However, in the displays for L0/1 (gmv = 3)
and for L‡, for all estimators the risk increases and then decreases as a function of . For
gmv and rls sufficiently large, similar patterns hold for other γ-values with the presence and
location of a downturn depending on | γ − 0.5 |.

These apparent anomalies are explained as follows. If γ is near 1 (or equivalently, near 0)
and if the  differ sufficiently (rls ≫ 1), estimates for the high variance units perform better
than for those with mid-level variance. This relation is due to the improved classification of
high-variance units into (above γ)/(below γ) groups, with substantial shrinkage of the
percentile estimates towards 0.5. For example, with γ = 0.8, a priori 80% of the percentiles
should be below 0.8. Estimated percentiles for the high variance units are essentially
guaranteed to be below 0.8 and so the classification error for the large-variance units
converges to 0.20 as rls → ∞. Generally, low variance units have small misclassification
probabilities, but percentiles for units with intermediate variances are not shrunken
sufficiently toward 0.5 to produce a low L0/1.

9.4 Classification performance
As shown in the foregoing tables and by Liu et al. (2004) and Lockwood et al. (2002), even
the optimal ranks and percentiles can perform poorly unless the data are very informative.
Figure 3 displays average posterior classification probabilities as a function of the optimally
estimated percentile for gmv = 0.33, 1, 10, 100 and γ = 0.6, 0.8, 0.9, when rls = 1. The
pattern shown by the three panels should hold for other γ choices and we use the γ = 0.8
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panel as the typical example for further comments. Discrimination improves with decreasing
gmv, but even when gmv = 0.33 (the σk are 1/3 of the prior variance), the model-based,
posterior probability of Pk > 0.8 is only 0.42 for a unit with P̃k(0.8) = 0.8. For this
probability to exceed 0.95 (i.e., to be reasonably certain that Pk > 0.80) requires that P̃k(0.8)
> 0.97. It can be shown that as gmv → ∞ the plots converge to a horizontal line at (1 − γ)
and that as gmv → 0 the plots converge to a step function that jumps from 0 to 1 at γ.

9.5 The Poisson-Gamma model
We conducted investigations analogous to the all of the foregoing for the Poisson sampling
distribution with a Gamma prior, with constant or unequal variances (e.g., expected values)
for the unit-specific MLEs. Results are qualitatively and quantitatively very similar to those
we report for the Gaussian sampling distribution.

10 Analysis of USRDS standardized mortality ratios
The United States Renal Data System (USRDS) uses provider specific, standardized
mortality ratios (SMRs) as a quality indicator for its nearly 4000 dialysis centers (Lacson et
al. 2001; End-Stage Renal Disease (ESRD) Network 2000) and (United States Renal Data
System (USRDS) 2005). Under the Poisson likelihood (last line of model (14)), with Yk the
observed and mk the expected deaths computed from a case-mix adjustment (Wolfe et al.
1992), the MLE is ρ̂k = Yk/mk, with variance ρk/mk. For the “typical” dialysis center ρk ≈ 1
and the mk control the variance of the MLEs. The observed mks range from around 0 to
greater than 100. The ratio of the largest mk to the smallest mk, which is analogous to the rls
in the foregoing simulations, is around 258,000.

In this “profiling” application, the loss function should reflect the end use of the ranks or
percentiles. For example, suppose that the following monetary reward (increased
reimbursement) and penalty (increased scrutiny) system is in place:

• A provider either does or does not receive the reward depending on whether its
percentile is or is not beyond (for SMRs, below) a γ threshold.

• Providers that do get rewards receive varying amounts depending on their position
among those receiving rewards.

• Providers not receiving rewards undergo increased scrutiny from an oversight
committee.

• The distance from the threshold γ is used to monetize rewards or intensify scrutiny.

Loss function L ̃ embodies this system with the values of p, q and c controlling the award/
penalty differences within the (above γ)/(below γ) groups. If rewarded providers all get the
same amount, then L0/1(γ) can be used. Alternatively, rewards and scrutiny can depend on
the posterior probability of exceeding or falling below γ, with both P̃k(γ) and 
optimizing the evaluation.

Liu et al. (2004) analyzed 1998 data and Lin et al. (2004) extended these analyses to 1998 –
2001 for 3173 centers with complete data using an autoregressive model. We illustrate the
new loss functions and performance measures using 1998 data and the model,

(14)
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For these data, . Table 4 gives the posterior risks. For all loss
functions investigated, the MLE based rank has the poorest performance; methods based on
the posterior distributions generally perform well. As Theorem 6 indicates, P̃k(γ) and 
have almost identical risk.

Figure 4 displays pr(θk > 0.18 | Y) with X-axis percentiles determined separately by the
three percentiling methods. As shown by Theorem 6, the  and P̃k(0.8) curves are
monotone and approximately equal; the P̂k curve is not monotone, but is close to the other
curves. The OC(0.8) value for  and P̃k(0.8) is 0.64 (the optimal classification produces
an error rate that is 64% of that for the no information case) and for P̂k is 0.65, showing that
for γ = 0.8, using P̂k to classify is nearly fully efficient. Figure 4 also shows that for centers
classified in the top 10%, the probability that they are truly in the top 20% (γ = 0.8) can be
as low as 0.45. Lin et al. (2004) showed that, by using data from 1998–2001, this probability
increases to 0.57. Evaluators should take this relatively poor classification performance into
account by tempering rewards and scrutiny.

Figure 5 displays the relation between P̃k(0.8) and P̂k for 50 dialysis centers spaced
uniformly according to P̃k(0.8). Since P̃k(0.8) is based on the pr(Pk > .8|Y) calculated from
MCMC samples, ties appear when this probability is close to zero. Among 3173 dialysis
centers, 249 centers have the exceeding probability 0 and all are estimated with percentile
125/3174=0.039. Though P̃k is highly efficient, some percentiles are substantially different
from the optimal. As further evidence of this discrepancy, of the 635 dialysis centers
classified by P̃k(0.8) in the top 20%, 39 are not so classified by P̂k with most of these near
the γ = 0.8 threshold. Estimated percentiles are very similar for centers classified in the top
10%.

11 Discussion
Effective ranking or percentiling should be based on a loss function computed from the
estimated and true ranks, or be asymptotically equivalent to such loss function based
estimates. Doing so produces optimal or near optimal performance and ensures desirable
properties such as monotone transform invariance. In general, percentiles based on MLEs or
on posterior means of the target parameter can perform poorly. Similarly, hypothesis test-
based percentiles perform poorly.

Our performance evaluations are primarily for the fully parametric model with a Gaussian
sampling distribution, though we do investigate departures from the Gaussian prior.
Simulations for the Poisson/Gamma model produce relative performance very similar to
those for the Gaussian. The P̂k that optimize L ̂ (SEL) are “general purpose” with no explicit
attention to optimize the (above γ)/(below γ) classification. The optimal (above γ)/(below γ)
ranks are asymptotically equivalent to the “exceedance probability” procedure proposed in
Normand et al. (1997). This near-equivalence provides insight into goals and a route to
efficient computation.

We report loss function comparisons and plots based on unit-specific performance. These
can be augmented by bivariate and multivariate summaries of properties, for example pair-
wise posterior distributions or pair-wise operating characteristics.

When posterior distributions are not stochastically ordered and the choice of ranking

methods does matter, our simulations show that though P̃k(γ) and  are optimal for their
respective loss functions and outperform P̃k, P̃k performs well for a broad range of γ values.
And, P̂k(γ) can have poor SEL performance. However, for some scenarios the relative
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benefit of using an optimal procedure is considerable and so a choice of estimator should be
guided by goals.

Performance evaluations for three-level models with a hyper-prior and robust analyses based
on the non-parametric maximum likelihood prior or a fully Bayesian nonparametric prior
(Paddock et al. 2006) showed that SEL-optimal ranks perform well over a wide range of
prior specifications.

Other loss functions and estimates can be considered. Weighted combinations of several loss
functions can be used to broaden the class of loss functions. If an application relevant loss
function cannot be optimized, our evaluations provide a framework to compare candidate
estimators. Our scoring function approach can help practitioners elicit a meaningful loss
function with an intuitive interpretation.

Though there are a wide variety of candidate loss functions and, thereby, candidate
estimated percentiles, our investigations show that in most applications one can choose
between P̂k and  (equivalently, P̃k(γ)). The P̂k are for general purpose and are
recommended in situations where the full spectrum of percentiles is important, for
identifying units as low, medium or high performers. This is the case in educational
assessments. Schools and school districts want to track their performance over time
irrespective of whether they are low, high or in the middle. The  focus on a specific
(above γ)/(below γ) cut point and are recommended in situations where identifying one
extreme is the dominant goal. Selection of the most differentially expressed genes, with γ
selected to deliver a manageable number for further analysis, is a prime example.

Whatever percentiling method is used, plots such as Figure 4 can be constructed with those
percentiles on the X-axis. In general, the plot will not be monotone unless the  are used,
but use of the P̂k produces a nearly monotone plot and very good OC(γ) performance.
Therefore, unless there is a compelling reason to optimize relative to a specific (above γ)/
(below γ) cut point, the P̂k are preferred.

Importantly, as do Liu et al. (2004) and Lockwood et al. (2002), we show that unless data
are highly informative, even the optimal estimates can perform poorly. It is thus very
important to select proper estimates for as good as possible inference, especially when
performance differences between estimators are large. Data analytic performance summaries
such as SEL, OC(γ) and plots like Figure 3 and Figure 4 should accompany any analysis.

Appendix

Appendix A Optimizing weighted squared error loss (WSEL)

Theorem 7
Under weighted squared error loss:

(15)

the optimal rank estimates are
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(We drop conditioning on Y)

Thus, the R̄k are optimal.

When all wk ≡ w,

optimizes (15) subject to the  exhausting the integers (1;…K). To see this, if 0 ≤ E(Ri) =
mi ≤ E(Rj) = mj, ri < rj, then

and the R̂k are optimal.

For general wk there is no closed form solution, but a sorting-based algorithm based on,

(16)

guides the optimization. By the above inequality, reversing any two estimated ranks that do
not align with R̄k results in a smaller squared error.

Theorem 8
Start from any initial ranks and implement the recursion: If inequality (16) is satisfied,
switch the position of unit i and unit j, i, j = 1,…, K. The unique fixed point will minimize
weighted squared error loss (15).

Since each switch will decrease the expected loss and there are at most n! possible values of
the expected loss, a fixed point will be reached. At the fixed point, no (i, j) pair produces
inequality (16) and so gives the SEL minimum.
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In the standard sorting problem, the quantities to sort do not depend on the current positions
of the units, while the quantity in (16) does. For this reason, the convergence of the
algorithm can be very slow. After units i and j are compared and ordered, if unit i is
compared to some other unit k and a switch happens, then unit i should be compared to unit j
again and so this pairwise-switch optimization algorithm is computationally impractical.

Appendix B Optimizing L0/1

Proof of Theorem 1
Rewrite the loss function as a function of the number of units that not classified in the top (1

− γ)K, but that should have been. Then, , where A is the set of indices
of the observations classified in the top and T is the true set of indices for which rank(θk) >
(1 − γ)K. We need to maximize the expected number of correctly classified coordinates:

To optimize L0/1, for each θk calculate pr(Pk > γ|Y), rank these probabilities and select the
largest (1−γ)K of them to minimize L0/1, creating the optimal (above γ)/(below γ)
classification. This computation can be time-consuming, but is Monte Carlo implementable.

The P̂k(γ) optimize L0/1. There are other optimizers because L0/1 requires only the optimal
(above γ)/(below γ) categorization but not the optimal ordering. For example, permutations
of the ranks of units classified in A or permutations of the ranks in AC yield the same
posterior risk for L0/1.

Appendix C Optimizing L̃

Lemma 1
If a1 + a2 ≥ 0 and b1 ≤ b2, then

Lemma 2
Rearrangement Inequality (Hardy et al. 1967): If a1 ≤ a2 ≤ … ≤ an and b1 ≤ b2 ≤ … ≤ bn,
b(1); b(2), …b(n) is a permutation of b1; b2, … bn, then

For n = 2 we use the ranking inequality:
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For n > 2, there exists a minimum and a maximum in all n! combinations of sums of
products. By the result for n = 2, the necessary condition for the sum to reach the minimum
is that any pair of indices (i1, i2), (ai1, ai2) and (bi1, bi2) must have the inverse order; to reach
the maximum, they must have same order. Therefore, except in the trivial cases where there

are ties inside {ai} or {bi},  is the only candidate to reach the minimum and

 is the only candidate to reach the maximum. Proof of Theorem 2 Denote by R(i)
the rank random variables for units whose ranks are estimated as i. Then,

For optimum ranking, the following conditions are necessary:

1. By Lemma 1, for any (i1; i2) satisfying (1 ≤ i1 ≤ [γ(K + 1)], [γ(K + 1)] + 1 ≤ i2 ≤
K), it is required that pr(R(i1) ≥ γ (K + 1)) ≤ pr(R(i2) ≤ γ(K + 1)). To satisfy this
condition, divide the units into two groups by picking the units with largest (1 −
γ)K values of pr(Rk ≥ γ(K + 1)) into the (above γ) group.

2. By Lemma 2

a. For the set {k : Rk = R(i), i = 1, …, [γ(K + 1)]} , since |γ(K + 1) − i|p is a
decreasing function of i, we require that pr(R(i1) ≥ γ(K + 1)) ≥ pr(R(i2) ≥
γ(K + 1)) if i1 > i2. Therefore, for the units with ranks (1,… γK), the ranks
should be determined by ranking the pr(Rk ≥ γ(K + 1)).

b. For the set {k : Rk = R(i), i = [γ(K + 1)] + 1, … ,K} since |i − γ(K + 1) |q is
an increasing function of i, we require that pr(R(i1) ≥ γ(K + 1)) ≥ pr(R(i2) ≥
γ(K + 1)) if i1 > i2. Therefore, for the units with ranks (γK + 1,…,K), the
ranks should be determined by ranking the pr(Rk ≥ (K + 1)).

These conditions imply that the R̃k(γ) (P̃k(γ)) are optimal. By the proof of Lemma 2, we
know that the optimization is not unique, when there are ties in pr(Rk ≥ γ (K + 1)).

Appendix D Optimization procedure for L†
As in the proof of Theorem 2, we begin with a necessary condition for optimization. Denote
by R(i1), R(i2) the rank random variables for units whose ranks are estimated as i1, i2, where
i1 < γ(K + 1), i2 > γ(K + 1). Let,

For the index selection to be optimal,
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The following is equivalent to the foregoing:

Therefore, with pk = pr(Rk ≥ γ(K + 1)) the optimal ranks split the θs into a lower fraction and
an upper fraction by ranking the quantity,

This result is useful and different from that of WSEL in Section Appendix A in the sense
that we can now successfully get a quantity depend on unit index k only. However, as for
L0/1 optimization of L† does not induce an optimal ordering in the two groups. A second
stage loss, for example SEL, can be imposed within the two groups.

Appendix E Optimizing L‡
As for optimizing WSEL in Section Appendix A, a pairwise switch algorithm is
computationally challenging, since the decision on switching a pair of units depends on their
relative position and on their estimated ranks. Thus, in each iteration all pair-wise relations
have to be checked. We have not identified a general representation or efficient algorithm
for the optimal ranks. However, we have developed the following relation between L†, L ̃ and
L‡. Note that when either  it must be the case that
either . Equivalently,

Now, suppose c > 0, p ≥ 1, q ≥ 1 and let m = max(p,q). Then, using the inequality 21−m ≤ am

+ (1 − a)m ≤ 1 for 0 ≤ a ≤ 1, we have that (L ̃ + L†) ≤ L‡ ≤ 2m−1(L ̃ + L†). Specifically, if p =
q = 1, L‡ = L ̃ + L†; if p = q = 2, then (L ̃ + L†) ≤ L‡ ≤ 2(L ̃ + L†). Similarly, when c > 0, p ≤ 1,
q ≤ 1, (L ̃ + L†) ≥ L‡ ≥ 2m−1 (L ̃ + L†). Therefore, L ̃ and L† can be used to control L‡.

Appendix F Proof of Theorem 3

Since the (above γ)/(below γ) groups are formed by P̃k(γ),  minimizes L0/1. For
constrained SEL minimization we prove the more general result that for any (above γ)/
(below γ) categorization, ordering within the groups by P̂k produces the constrained
solution. To see this, without loss of generality, assume that coordinates (1,…, γK) are in the
(below γ) group and (γK + 1,…,K) are in the (above γ) group. Similar to Section Appendix
A,
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Nothing can be done to reduce the variance terms. The summed squared bias partitions into,

which must be minimized subject to the constraints that

. We deal only with the
(below γ) group; the (above γ) group is handled in the same manner. Without loss of
generality assume that R̄1 < R̄2 < … < R̄γK and compare SEL for

 to any other assignment. It is straightforward to show that
switching any pair that does not follow the R̄k order reduces SEL. Iterating this and noting
that the R̂k = rank(R̄k) produces the result.

Appendix G Proof of Theorem 4
Recall that for a positive, discrete random variable the expected value can be computed as
the sum of (1 − cdf) at mass points, where cdf is the cumulative distribution function, so

(17)

Relation (17) can be used to show that when the posterior distributions are stochastically
ordered, R̂k ≡ R̃k(γ) because the order of pr[Rk ≥ ν] does not depend on γ and the R̄k inherit
their order.

Appendix H Proof of Theorem 5
In this proof we use YK rather than Y to stress that as K goes to infinity, the length of Y

changes. For , we prove: as

, where Pk is the true percentile of θk, YK
is the vector (Y1; Y2,… , YK).

The posterior independence of θk is straightforward. Denote θ = (θ1, …, θk,…, θK) and θ(−k)

= (θ1,…, θk−1, θk+1,…,θK), where . Let θ(γ) = θ(i,K) be the γth quantile of θ,

if , where θ(i,K) is the ith largest number of θ. Respectively,  is the γth quantile
of θ(−k). We also denoted θ(i−1,K−1) as the (i − 1)th largest number of θ(−k).
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For the P̃k(γ)’s generator:

(18)

For the second term in (18)

We have the inequality , θ(γ) = θ(i,K) by definition. Consider the relation

between  and γ:

•
If  pr(θ(i−1,K−1) ≤ θk <
θ(i,K)|YK) = 0 and pr(θ(i,K) < θk ≤ θ(i−1,K−1)|YK) = 0;

•
If  pr(θ(i,K−1) < θk ≤ θ(i,K)|
YK) = 0 and pr(θ(i,K) < θk ≤ θ(i−1,K−1)|YK) = 0.

Thus the second term in (18) is zero,

(19)

In (19),  is the γth quantile of non-iid K − 1 samples from K − 1 posterior distributions.
By theorem 5.2.1 of David and Nagaraja (2003) and large sample theorem of order statistics

from iid sampling, we have  in probability as K goes to ∞. Since we assume

that θk|Yk has a uniformly bounded finite second moment, so does . Thus

.

The generator of  is:

(20)

Since  by (19) and (20), |pr(Pk ≥ γ|YK) − pr(θk ≥ .
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Appendix I Scoring function
For each function S(P), there will be an optimal SEL ranking estimator. For instance,

indicates that the reward or penalty is the same for all units below the threshold γ; for units
above γ the reward/penalty is linearly related to the rank.

We study the (above γ)/(below γ) classification, but more than two ordinal categories can be
of interest. For example, educational institutions might be classified into three categories,
the poor, the average and the excellent. The following two S(P) capture this goal. Let J ≥ 3
be the number of ordered categories, then

or
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Figure 1.
Unit-specific, L ̂ and L‡ risk classified by gmv for K = 200, γ = 0.8.
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Figure 2.

Loess smoothed, unit-specific performance of P̂k, P̃k(γ) and  under L ̂, L‡, and L0/1 as a
function of unit-specific variance ( ).
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Figure 3.
Average posterior classification probabilities as a function of the optimally estimated
percentiles for rls = 1, γ = (0.6, 0.8, 0.9).

Lin et al. Page 27

Bayesian Anal. Author manuscript; available in PMC 2010 July 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Pr(θk > 0.18 | Y) with X-axis percentiles determined separately by the three percentiling
methods.
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Figure 5.
Circles represent 50 USRDS dialysis centers evenly spread across percentiles determined by
P̃k(0.8) using 1998 SMR data. Lines connect P̃k(0.8) and P̂k. Ties appear in the lower
percentile area.
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Table 1

Simulated preposterior SEL (10000 L ̂) for gmv = 1.

percentiles based on

rls P̂k

exp 

Yk

1 516 516 516 516

25 517 517 534 582

100 522 525 547 644
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Table 3

Preposterior risk for rls = 1 when gmv = ∞. All values are 10000×Risk.

L0/1 L̂ L‡ L̃ and L†

γ 200γ(1−γ) 1667 3333γ(1−γ) 3333γ(1−γ)[γ3 + (1−γ)3]

0.5 5000 1667 833 208

0.6 4800 1667 800 224

0.8 3200 1667 533 277

0.9 1800 1667 300 219
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