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ABSTRACT

DNABINDPROT is designed to predict DNA-binding
residues, based on the fluctuations of residues in
high-frequency modes by the Gaussian network
model. The residue pairs that display high mean-
square distance fluctuations are analyzed with
respect to DNA binding, which are then filtered
with their evolutionary conservation profiles and
ranked according to their DNA-binding propensities.
If the analyses are based on the exact outcome of
fluctuations in the highest mode, using a conserva-
tion threshold of 5, the results have a sensitivity,
specificity, precision and accuracy of 9.3%, 90.5%,
18.1% and 78.6%, respectively, on a dataset of
36 unbound–bound protein structure pairs. These
values increase up to 24.3%, 93.4%, 45.3% and
83.3% for the respective cases, when the neighbor-
ing two residues are considered. The relatively
low sensitivity appears with the identified residues
being selective and susceptible more for the binding
core residues rather than all DNA-binding residues.
The predicted residues that are not tagged as
DNA-binding residues are those whose fluctuations
are coupled with DNA-binding sites. They are in
close proximity as well as plausible for other func-
tional residues, such as ligand and protein–protein
interaction sites. DNABINDPROT is free and
open to all users without login requirement avail-
able at: http://www.prc.boun.edu.tr/appserv/prc/
dnabindprot/.

INTRODUCTION

Prediction of the DNA binding sites in proteins is essen-
tial for understanding the protein function and the
molecular mechanism of the protein–DNA recognition.

It is of interest to identify the DNA-binding function
of proteins (1–5) and DNA-binding residues, for
which several approaches have been developed using
sequence (6–13) and structure-based properties (14–16).
There are several prediction studies on machine learning
(6–13,16–22), such as neural networks (16–19), random
forest-based approach (11) and support vector machine
classifier (20–22), some of them relying on sequence
properties only. It was recently shown (23) that non-
specific DNA interacts with the same binding sites as of
the specific DNA implying an intrinsic behavior for DNA
binding. Taking into account the fold similarity and
DNA-binding propensity made possible the use of thread-
ing algorithms of protein–protein and protein–ligand
interactions for the determination of DNA-binding
domains and related protein sites (24).
A widely used property for the prediction of DNA-

binding residues is the propensity of the interface residues.
The polar residues that complement the negative charge of
the DNA surface are highlighted (17,25–28), where ARG
and LYS have the highest propensity values. Evolutionary
conservation is another key property that is shown to
increase the success of DNA binding site prediction
(13,29,30). The analysis of residue–base interactions and
conservation (29) suggests that the DNA-binding residues
are often evolutionary conserved but the conservation by
itself may not be sufficient for the prediction. On the other
hand, the conserved patches (31–33) identifying the func-
tional regions were shown to predict the core of the
DNA-binding interface, yet not all the binding residues.
This implies that a part of the DNA binding site is highly
conserved.
Here, a new approach is introduced for the prediction

of DNA-binding residues and residues that the DNA-
binding residues possibly interact, based on residue fluc-
tuations in high frequency modes by the Gaussian
network model (GNM; 34–35). High-frequency fluctu-
ations involve tightly packed and severely constrained
residues; i.e. the centers of localization of the energy in a
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structure (36). The high frequency fluctuating residues
appears to have a role in maintaining the structure or its
stability. They are positioned at the local minima of the
energy landscape curve, which describe the equilibrium
positions of residues. Escape from these local minima is
opposed by the surrounding energy walls, which in return
implies a resistance for conformational changes. These
residues are suggested to be associated with binding as
well as folding core residues (37–40). Recently, high-
frequency modes reflecting the local events at residue
level was shown to describe a network of residues whose
fluctuations are strongly coupled and responding strongly
to energy fluctuations (41).
With the present approach, a network of residue pairs

that displays high mean-square distance fluctuations in
high-frequency modes is identified on the unbound struc-
tures of known DNA-binding proteins. These residues are
analyzed with respect to DNA binding sites, then filtered
with evolutionary conservation profiles from ConSurf
(42), and ranked according to their propensities for
DNA binding. The high frequency fluctuating residues
that are not tagged as DNA-binding residues in the sug-
gested network of residues are those whose fluctuations
are coupled with the identified DNA binding sites with
possible functional significance.

METHODS

Dataset

The algorithm implemented as a web server,
DNABINDPROT, is tested on a data set of 54 unbound
(free) proteins and verified with the bound (complex)
structures. The DNA binding site information is taken
from PDBsum website (43), where the site information is
extracted from the distance between the protein atoms and
the DNA atoms in the complex (44). The dataset is
compiled from the previous studies of Dijk et al. (45)
and Szilágyi et al. (4). Some of the protein structures are
discarded due to the missing residues at the binding sites
of unbound structures. After performing a redundancy
check using PISCES (46), a total of 54 unbound–bound
protein structure pairs are used in this study (Sup-
plementary Table S1).

Overview: GNM

The GNM (34,35) considers protein structures as 3D
elastic networks, where residues represented by a-carbon
atoms are the nodes and the harmonic springs between
residues pairs within a specified interaction range are
the edges. It is assumed that the residues in this elastic
network description undergo Gaussianly distributed
fluctuations around their mean positions.
The potential energy function of the network on N

modes (residues) is defined by,
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where g is the force constant, "Ri and "Rj are the fluctu-
ation vectors of i-th and j-th residues, respectively. "Rij is
the fluctuation of distance vector between residues i and j.
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Rij is the distance between a-carbon atoms i and j, where
rc is distance cut-off distance for interaction. The equilib-
rium fluctuations "Ri and "Rj of C

a of residues i and j are
given by GNM as
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where U is an orthogonal matrix whose columns ui are the
eigenvectors and , is a diagonal matrix of eigenvalues ji
of !. The eigenvalues are proportional to the frequencies
of the individual modes, while eigenvectors define the
shapes of the modes. kB is the Boltzmann constant and
T is the absolute temperature. This equation allows
expressing the correlation between the fluctuations of
residues in terms of linear combinations of individual
eigenvectors from slowest to fastest modes of motion.

Alternatively, the mean-square distance fluctuations
between i-th and j-th residues, i.e. the mean-square fluctu-
ation in the ‘spring length’ connecting residues i and j,
can be expressed as (35,38):

h�R2
iji ¼ h �Ri��Rj
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h�Rij
2
i reflects both the mobilities of individual residues

and the correlation between the fluctuations of residues.
Slow modes having high degree of cooperativity refer to
cooperative and global motions, whereas fast modes refer
to the residues displaying local behavior with rapid and
small amplitude fluctuations. Here we concentrate on
these fast modes.

Determination of the DNA-binding residues: fluctuations,
conservation and residue propensities

The mean-square distance fluctuations of residue of i and
j, h�Rij

2
i, in the fastest modes on a given unbound struc-

ture are calculated using Equation (4). A network of resi-
due pairs with high mean-square distance fluctuations is
obtained in the fast frequencies (41). On the fast end of the
dynamic spectrum that GNM provides; individual modes
of fast1, fast2 and fast3 and the average of fast1-3 and
fast1-5 are considered in the calculations.

These residues are then filtered using their evolutionary
conservation levels using the ConSurf Database (42). The
conservation scores reflect the Bayesian measure of the
site’s evolutionary rate. The continuous conservation
scores were partitioned into a discrete scale of 9, where
a grade of 1 indicates a highly variable amino acid, the
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position that evolves rapidly, and 9 is highly conserved,
the position that evolves slowly. For each given PDB ID,
the conservation scores are taken from the already existing
ConSurf database and a threshold value is chosen to
reduce the first suggested set of residues. Finally, the sug-
gested residues are ranked according to their propensities
for DNA binding, for which the propensity values are
taken from a previous study (17).

The performance of the DNABINDPROT server is
reported in terms of sensitivity, specificity, precision and
accuracy, based on the following definitions:

sensitivity: SN ¼ TP=ðTP+FNÞ ð5Þ

specificity: SP ¼ TN=ðFP+TNÞ ð6Þ

precision: PRE ¼ TP=ðTP+FPÞ ð7Þ

accuracy: ACC ¼ ðTP+TNÞ=ðTP+FP+TN+FNÞ ð8Þ

where TP, TN, FP and FN stand for the number of
true positives, the number of true negatives, the number
of false positives and the number of false negatives,
respectively.

WEB SERVICE

Specifying the PDB ID or uploading a structure along
with the chain ID where available, the user has the
option to choose the number of fast modes, fast threshold
percentage, the number of sequence neighbors, the conser-
vation threshold and whether to sort the results with
respect to propensity or residue number. Fast threshold
percentage is used for the determination of residue pairs
ij with higher h�Rij

2
i values. Conservation threshold

is used to eliminate the residues that have conservation
scores less than a chosen value. Considering the
low-resolution nature, the near neighbors of an identified
residue pair may contribute to the outcome of the predic-
tion. The user can thus choose whether to display the
results from the exact match or to take into account the
neighboring residues (one or two neighbors).

With an optional email address provided, the results can
be sent to the user as well as being displayed on the web
page. The output consists of the suggested DNA binding
sites obtained using the high-frequency modes only and
the results obtained from the combination of the high fre-
quency modes and conservation data, wherever applic-
able. Optionally, the given results can be ranked based
on the DNA-binding propensities of the residues,
ascribing higher weights for the predicted residues that
are functionally predisposed for the DNA binding. The
listed residues are at the same time plausible for their
interaction with the DNA binding sites. The flowchart
of the process is given in Figure 1.

RESULTS AND DISCUSSION

For the prediction of DNA-binding residues and the
residues that they interact with, a set of unbound (free)
protein structures with available bound (complex) struc-
tures (a total of 54 unbound-bound protein structures) are

analyzed (See Dataset in ‘Methods’ section;
Supplementary Table S1). In 18 proteins, there is no con-
servation score available due to an inadequate number of
homolog sequences. For these cases, the results are dis-
played based on the GNM predictions only. The reported
performance results are based on the study on 36 proteins
for which the conservation data is available.
If the analyses are done based on the exact outcome of

the highest fluctuation mode, using a fast threshold of 0.1,
without using conservation data, the results have a sensi-
tivity, specificity, precision and accuracy of 11.1%, 87.6%,
16.1% and 76.6%, respectively. Correspondingly, the
results are 74.4%, 50.7%, 20.9% and 53.9% respectively
when only conservation data with a threshold of 5 is used
without taking the GNM analysis into account. The com-
bination of the GNM’s prediction and conservation data,
based on the exact outcome of the highest fluctuation
mode with a fast threshold of 0.1 and using a conservation
threshold of 5, yields values of 9.3%, 90.5%, 18.1% and
78.6% for sensitivity, specificity, precision and accuracy,
respectively. These values increase up to 24.3%, 93.4%,
45.3% and 83.3% for the respective cases, when the
neighboring two residues are considered. Taking
the high-frequency modes into account enhances the

Figure 1. Flowchart of DNABINDPROT.
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specificity and the accuracy of the results when compared
with the conservation only analysis. The high-frequency
fluctuations potentially refer to the binding core residues
rather than all binding residues, which possibly explain the
low sensitivity of the results. The performance results
are shown in Figure 2 when a fast threshold of 0.1 and
conservation threshold of 5 is used for the fastest mode
(mode 1). The effect of taking neighboring residues into
account is reflected on the results in terms of an increase in
the performance values.
The present results are relatively selective among

binding sites. The analysis suggests that 4.8% of the
residues as DNA binding sites or correlated sites with
the DNA binding sites, whereas 10.9% of the residues
are DNA binding sites, in a structure on the average. By
using conservation only, an average of 52.3% of sites has
a conservation score above 5 which are proposed as a
potential binding site. To this end, it should also be
noted that although the RMSD between bound and
unbound conformations vary several angstroms for the
structure in the dataset, the residues that appear in fast
modes of motion in unbound and bound conformations
overlap significantly. This also evidences the overlap of
high frequency fluctuation residues with stabilization
centers.
Comparison of DNABINDPROT tool with other

publicly available tools is given in Supplementary Data
(Supplementary Tables S2 and S3). A direct comparison
of DNABINDPROT with DP-Bind (13,20), DISPLAR
(16) and DBD-Hunter (5) using the same dataset and
the same standards of performance measurements are
given in Supplementary Table S2. The comparison
displays that DNABINDPROT’s performance on specifi-
city and accuracy is comparable with the other three
servers’ performances on the same dataset. Yet, the sensi-
tivity appears low due to the fact that the high-frequency
fluctuations are more selective among the binding
residues, by pointing to the core binding residues that
overlap the stabilization centers. The lower precision
values could be compensated to a certain extent with the
fact that the non-DNA tagged residues are those that
display coupled fluctuations with the DNA binding sites
and may as well be plausible for some functional signifi-
cance. The comparison also displayed that the computa-
tion time with DNABINDPROT is much faster than

those servers tested. Using only one processor, the run
time for a protein of average size takes about less than a
minute with DNABINDPROT.

An additional comparison table composed of the
values reported in the related studies which are based on
their own datasets and measurement parameters is given
in Supplementary Table S3. Since such a comparison
is only meaningful when the same datasets and the
same standards of performance measurements are used,
Supplementary Table S3 can be considered as an
overview of the server studies in the field rather than a
definitive comparison.

Sample protein

The 2cgp (47), Escherichia coli catabolite gene activator
protein (CAP)–DNA complex, is a dimeric protein with
200 residues. One monomer has 11 DNA-binding residues
(LYS 57, THR 168, ARG 169, GLN 170, CYS 178, SER
179, ARG 180, GLU 181, THR 182, ARG 185 and LYS
201; 43) The residue pairs that display high mean-square
distance fluctuations h�Rij

2
i in the fastest modes are dis-

played in Figure 3a and b for one of the monomers of the
unbound CAP structure, 1g6n (48). This structure binds
DNA specifically after an allosteric transition produced by
the ligand, cAMP, where DNA binding sites and cAMP
binding sites are in allosteric interaction (48).

When the fast threshold of 0.1 is taken, 10 residue pairs
(GLN 170-GLY 173, GLU 171-GLY 173, ILE 172-GLY
173, GLN 174-GLY 173, ILE 175-GLY 173, VAL
176-GLY 173, CYS 178-GLY 173, SER 179-GLY 173,
ARG 180-GLY 173, VAL 183-GLY 173) suggest a
network of 11 residues with the highest mean-square
distance fluctuations in the fastest mode. After the elimin-
ation of six residues due to low conservation scores, five
residues are suggested from which four residues, GLN
170, CYS 178, SER 179 and ARG 180, are known (43)
as being DNA-binding residues. The remaining one, GLY
173, is one of the ligand (cAMP) binding sites. For this
case, the results’ performance values in terms of sensi-
tivity, specifity, precision and accuracy are 36%, 99%,
80% and 96%, respectively. The details are illustrated in
Figure 3.

When the fast threshold is reduced to 0.01, three
more residue pairs are observed (LEU 50- GLY 173,
ARG 169-GLY 173, GLY 177-GLY 173) suggesting a
network of 14 residues in the fastest mode of motion
(LEU 50, ARG 169, GLN 170, GLU 171, ILE 172,
GLY 173, GLN 174, ILE 175, VAL 176, GLY 177,
CYS 178, SER 179, ARG 180 and VAL 183). After the
elimination of half due to the low conservation scores,
seven residues are suggested from which five residues,
ARG 169, GLN 170, CYS 178, SER 179 and ARG 180,
are known (43) as DNA-binding residues. The remaining
ones, GLY 173 and GLY 177, are cAMP binding sites. It
can be also noted here that LEU 50, which is eliminated
due to its low conservation score, is adjacent to VAL 49,
which is another cAMP binding site. If we further drop
the threshold just above the average correlation values,
the region of GLY 173 displays higher correlation with

Figure 2. Performance results of DNABINDPROT for the fastest
mode with a fast threshold of 0.1 and a conservation threshold of 5.
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the rest of the protein as is shown by the grey line in
Figure 3a.

Additionally, the exact outcome of the GNM analysis
on another structure of CAP (2wc2; 49) in the unliganded
state (without cAMPs) reveals residue ARG 82 as the
most probable binding site in the first mode with the con-
servation threshold of 5. This residue is one of the cAMP
binding sites. On the other hand, ARG 82 and LYS 201
are the top two suggested residues in the average five fast
modes (1–5), pointing to a cAMP binding site and a DNA
binding site, respectively.

CONCLUSION

For unbound proteins known to have a DNA-binding
function, the residue pairs with high mean-square
distance fluctuations in fast modes of motion reveal a
network of interacting residues in proteins, which are
plausible for DNA binding. This implies that the fast
modes with high frequencies reflect predefined fluctuations

in a structure for DNA binding. The residues suggested in
the network that are not tagged as DNA-binding residues
may still have a significance as being correlated with the
identified DNA-binding residues. These residues could be
near neighboring residues as well as other functional
residues, such as small ligand and protein-protein inter-
action sites, as exemplified with the case study presented.
The high frequency modes being reminiscent of stabilized
centers in a structure are possibly associated with potential
binding core residues.

SUPPLEMENTARY DATA

Supplementary data are available at NAR Online.
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