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ABSTRACT

Computational RNA secondary structure prediction
approaches differ by the way RNA pseudoknot inter-
actions are handled. For reasons of computational
efficiency, most approaches only allow a limited
class of pseudoknot interactions or are not con-
sidering them at all. Here we present a computation-
al method for RNA secondary structure prediction
that is not restricted in terms of pseudoknot com-
plexity. The approach is based on simulating a
folding process in a coarse-grained manner by
choosing helices based on established energy
rules. The steric feasibility of the chosen set of
helices is checked during the folding process
using a highly coarse-grained 3D model of the
RNA structures. Using two data sets of 26 and 241
RNA sequences we find that this approach is com-
petitive compared to the existing RNA secondary
structure prediction programs pknotsRG, HotKnots
and UnaFold. The key advantages of the new
method are that there is no algorithmic restriction
in terms of pseudoknot complexity and a test is
made for steric feasibility. Availability: The
program is available as web server at the site:
http://cylofold.abcc.ncifcrf.gov.

INTRODUCTION

The variety of biochemical functions that are being carried
out by RNA molecules is mesmerizing. Many RNAs
such as ribosomal RNA, RNAase P or tRNA attain a
defined secondary and tertiary structure that is vital to
their function. Experimentally determined structures
are only available for a small fraction of RNAs that
are of interest. This makes the computational prediction
of the base-pairing pattern (the secondary structure)
of RNA an important problem. One major break-
through was the development of dynamic programming

algorithms that could predict the minimum free energy
secondary structure of RNA sequence assuming that the
structures are non-nested (1–5). Subsequently, dynamic
programming algorithms have been extended to allow
certain classes of pseudoknots (6,7).

Many RNA secondary structure prediction algorithms
(including the one presented here) are based on the idea of
iteratively adding substructures to an initially unfolded
sequence (8,9). Genetic algorithms are an example of
such algorithms and have proven very useful for exploring
pseudoknotted structures and sub-optimal RNA struc-
tures (10–14).

Allowing pseudoknots is desirable simply because RNA
structures determined by X-ray crystallography or NMR
revealed that many RNAs contain non-nested base pairing
interactions. Allowing all possible base pairing inter-
actions leads to the potential problem for structure pre-
diction approaches that not only are there many more
conformations to consider, but also many conformations
are not sterically feasible. Here, we describe a computa-
tional approach for RNA secondary structure prediction
that has no restriction in terms of pseudoknot complexity,
but additionally checks the steric feasibility of the
considered conformations.

ALGORITHM

The described approach of RNA secondary structure pre-
diction is based on the idea of maximizing matching
helices in a secondary structure (10). A flow chart of the
algorithm is shown in Figure 1. Briefly, the method works
as follows: Initially, a list (called a stem-list) of all possible
helices with more than 3 bp is generated. Helices can
contain Watson–Crick and GU–wobble base pairs. The
secondary structure prediction is performed by picking
the best-scoring structure obtained after 50 folding simu-
lation runs. The score is set to be the sum of the free
energy contribution of the already placed helices. Each
folding simulation run is performed by picking helices
from the stem list with a Boltzmann-weighted probability.
Estimating the free energy contribution of an RNA

*To whom correspondence should be addressed. Tel: +1 301 846 5536; Fax: +1 301 846 5598; Email: shapirbr@mail.nih.gov

W368–W372 Nucleic Acids Research, 2010, Vol. 38, Web Server issue Published online 25 May 2010
doi:10.1093/nar/gkq432

Published by Oxford University Press (2010).
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



double-helix is accomplished using the RNA Vienna
package (2). Each chosen helix is represented by a very
coarse-grained 3D representation in a virtual 3D work-
space. An RNA double helix is represented by a cylinder
(using a radius of 6.5 Å and a length of 2.7 Å times the
number of base pairs) that is capped with a half-sphere on
both ends. This shape is called a capsule. A schematic
diagram of the mapping of an RNA secondary structure
into a highly coarse-grained 3D representation is shown in
Figure 2. The main reason for choosing capped cylinders
over regular cylinders is the computational efficiency of
collision detection. Single stranded regions between
helices are represented as constraints for the maximum
distance between the ends of the capped cylinders. A
newly chosen capped cylinder is placed into the 3D simu-
lation space at a random position such that the
distance-constraints are fulfilled. The distance constraints
are a function of the single-stranded sequence lengths
between connected helices. The maximum distance
between helix ends is 2.0 Å + n*8.0 Å with n being the
sequence separation. The minimum distance is 2.0.

If cylinders collide, the newly placed capped cylinder is
placed at a different random position. If after 20 attempts
the newly placed capped cylinder is still colliding with pre-
viously placed capped cylinders, the positions of all
capped cylinders are optimized in order to minimize col-
lisions and constraint violations. If no collision-free
position can be found, the newly chosen helix and its
capped cylinder representation is discarded. Otherwise,
the found collision-free position is stored. Helices that
are part of the stem-list and that share bases with the
newly placed helix are removed from the stem-list. In the
next iteration the next helix is chosen until no more helices
can be placed. Once no more helices can be placed, one
simulation run is completed. Fifty simulation runs are

performed and the overall best-scoring structure is
returned to the user.

IMPLEMENTATION

The folding algorithm is implemented as a C++program.
The web server has been implemented using the Grails
framework (18), which is based on the Groovy
programming language. For a secondary structure predic-
tion request, the web server launches the cylofold binary
on a Linux compute cluster. After the prediction result has
been generated, the program VARNA (19) is launched to
generate an image of the secondary structure prediction.
The prediction results are temporarily stored in a relation-
al database.

Usage

A user of the CyloFold prediction web server can start a
secondary structure prediction request by entering
(‘pasting’) a nucleotide sequence (as raw characters or in
FASTA form, both ACGU and ACGT alphabets are
accepted) into the web form and pressing ‘submit’. The
maximum sequence length that is currently accepted by
the web server is 300 nt. The initial return of the web
server is a unique id, which is needed if one wants to
access results at a later time. Due to the compute-intensive
approach for the prediction, it can take several minutes for
the server to finalize a secondary structure prediction. The
user can access the results by one of three methods: a
simple ‘reload’ of the initial result page will update the

Figure 2. Scheme for mapping between an RNA secondary structure
(a) and the used 3D coarse-grained representation (b). Each helix is
represented as a capped cylinder (‘capsule’). Single-stranded regions
between helices are represented as distance constraints. Only those
RNA secondary structures can be a (partial) solution of a secondary
structure prediction, for which the algorithm succeeds in placing the
corresponding capped cylinders such that they do not collide and do
not violate distance constraints.

Figure 1. A flow-chart depicting the algorithm for predicting RNA
secondary structures.
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status of the prediction and will eventually contain the
prediction results. Alternatively, the user can bookmark
the initial result page in the web browser and return to it at
a later time. Lastly, the unique id provided after
submitting the secondary structure prediction compute
request can be used to access the results using another
web form available on the server home page.
A typical output from a completed RNA structure pre-

diction is shown in Figure 3. The prediction result is pre-
sented to the user in three different formats: (i) An image
of the predicted RNA secondary structure created by
VARNA (19); (ii) An extended bracket notation in
which nested base pairs are denoted as pairs of nested
parentheses and helices corresponding to pseudoknot
interactions are denoted as letters; (iii) The ‘CT’ file
format that is also generated by other programs such as
mfold (5). This format contains a list of the indices of the
bases and their predicted base-pairing partners.

RESULTS AND DISCUSSION

The performance of the new RNA secondary structure
prediction method was evaluated using two different
data sets. Data set 1 (corresponding to the results shown
in Table 1) consists of 26 RNA sequences, whose tertiary
structure is available in the Protein Data Bank (PDB). The
reference secondary structure was obtained by extracting
the base pair information from the PDB coordinate file
using the program RNAview (20). Data set 2 consists of
241 RNA sequences and secondary structures originating
from PseudoBase (21,22).
In order to quantify the time-complexity of the folding

method, we fitted a function of the form a*Nb (with N
being the number of residues in the input sequence) to
the execution time needed for the cases of the 241
sequence set. We found that the execution time
(measured in seconds) of the structure prediction is well
described by the function 2.74*10�8*N4.47. The timing
evaluation was performed on a computer with 4 GB of
RAM and an Intel 64-bit Xeon processor (3.0MHz).
We report in Tables 1 and 2 prediction results for these

two data sets together with the corresponding results
obtained by running the RNA secondary structure predic-
tion programs HotKnots 2.0 (8), pknotsRG (7) and
UNAFold (23).
The average Matthews correlation coefficient (MCC)

obtained by comparing the base pairing pattern of the
predicted secondary structures with their respective
reference secondary structure is for data set 1 and
CyloFold 0.83; this can be compared to pknotsRG
(0.82), HotKnots 2.0 (0.75) and UNAFold (0.73) (see
row of Table 1 named ‘All’).
We divided this data set into two subsets according to

the fraction of pseudoknot base pairs in the respective
structures. The results can be seen in the last two rows
of Table 1. The eight PDB structures with <5%
pseudoknotted base pairs correspond to an average
MCC of 0.87 for CyloFold compared to 0.81 for
pknotsRG, 0.82 for HotKnots 2.0 and 0.87 for
UNAFold. The 18 structures listed in Table 1 that have

a pseudoknot amount >5% correspond to an average
MCC of 0.81 for CyloFold, 0.82 for pknotsRG, 0.73 for
HotKnots 2.0 and 0.66 for UnaFold.

Using the larger data set 2, one obtains an average
MCC of 0.752 for CyloFold and 0.748 for pknotsRG
(Table 2). In Table 2 one can see the RNA secondary
structure predictions obtained by CyloFold correspond
to the highest MCC (compared to the programs
pknotsRG, HotKnots 2.0 and UNAFold). It also has
the highest average base pair prediction sensitivity
(0.763). For another measure, the positive predictive
value (how often are predicted base pairs part of the

Figure 3. Screenshot of a typical prediction result returned by the
CyloFold web server. The shown sequence corresponds to the bacterio-
phage T2 gene 32 mRNA pseudoknot (PDB 2TPK).
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reference secondary structure), all programs obtain
averages between 0.68 and 0.76 for data set 2 with
pknotsRG leading with a value of 0.756. It should be
noted that the MCC is often used as an overall measure
of prediction quality, while sensitivity, specificity and
positive predictive value capture certain other aspects of
the prediction quality.

These results indicate that the prediction accuracy of
CyloFold compared to pknotsRG is similar. The key ad-
vantage of CyloFold is that there is no restriction in terms
of the classes of pseudoknots that are being considered.
Also, it should be noted that the employed model of
simulated RNA folding by placing helices with a probabil-
ity according to their free energy contribution is in essence

very simple (24). In that sense it is surprising how well the
method performs, and it should be an encouragement to
continue to develop RNA folding algorithms that are sub-
stantially different from established approaches.

CONCLUSION

CyloFold is a new method for RNA secondary structure
prediction. We show using two different data sets that the
prediction accuracy (MCC) is comparable to the RNA
secondary structure prediction program pknotsRG. The
search algorithm has no restriction in terms of pseudoknot
complexity. Another novel aspect is that at each step
during the simulated folding process, the steric feasibility
of the predicted structures is checked for steric feasibility
using a highly coarse-grained 3D representation. The
method is made available in the form of a user-friendly
web server.
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Table 1. Prediction results corresponding to 26 RNA structures that are available in the Protein Dank Bank

PDB Description L PKF CF PK HK UF

MCC SNS PPV MCC SNS PPV MCC SNS PPV MCC SNS PPV

1A60 TYMV tRNA-like structure 44 13.6 0.74 0.77 0.71 0.96 1.00 0.93 0.83 0.77 0.91 0.83 0.77 0.91
1CX0 HDV ribozyme 72 22.2 –0.01 0.00 0.00 –0.01 0.00 0.00 –0.01 0.00 0.00 –0.01 0.00 0.00
1E95 SRV-1 pseudoknot 36 33.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.70 0.50 1.00
1HVU HIV RT bind. pseudoknot 30 26.6 0.95 1.00 0.91 0.95 1.00 0.91 0.56 0.40 0.80 0.56 0.40 0.80
1KAJ MMTV RNA pseudoknot 32 25.0 0.85 1.00 0.73 0.85 1.00 0.73 0.85 1.00 0.73 0.53 0.50 0.57
1KH6 HCV IRES domain 42 0.0 0.74 0.77 0.71 0.55 0.54 0.58 0.53 0.54 0.54 0.92 0.93 0.93
1KPY PEMV-1 P1P2 pseudoknot 27 22.2 0.89 1.00 0.80 0.94 1.00 0.89 0.79 0.62 1.00 0.79 0.63 1.00
1KXK GroupII self-splic. intron 70 0.0 0.91 0.87 0.95 0.81 0.83 0.79 0.81 0.83 0.79 0.96 0.96 0.96
1L2X Viral RNA pseudoknot 27 22.2 0.94 1.00 0.89 0.94 1.00 0.89 0.79 0.63 1.00 0.79 0.63 1.00
1Q9A 23S rRNA sarcin/ricin 27 0.0 0.91 0.83 1.00 0.77 0.83 0.71 0.86 1.00 0.75 0.77 0.83 0.71
1U8D Guanine riboswitch 67 11.9 0.87 0.87 0.87 0.88 0.78 1.00 0.88 0.78 1.00 0.88 0.78 1.00
2A43 Luteoviral pseudoknot 26 23.0 0.93 1.00 0.88 0.93 1.00 0.88 0.75 0.57 1.00 0.75 0.57 1.00
2G1W tmRNA pseudoknot 22 18.1 0.81 1.00 0.67 0.86 1.00 0.75 0.81 0.67 1.00 0.81 0.67 1.00
2GIS SAM- riboswitch 94 8.5 0.80 0.76 0.85 0.80 0.76 0.85 0.86 0.86 0.86 0.55 0.55 0.55
2HOO thi-box riboswitch 83 0.0 0.70 0.67 0.74 0.58 0.62 0.54 0.58 0.62 0.54 0.58 0.62 0.54
2K95 P2B-P3 telo-merase RNA 48 37.5 0.89 0.80 1.00 0.89 0.80 1.00 0.75 0.8 0.71 0.54 0.40 0.75
2OIU L1 Ribozyme Ligase adduct 71 0.0 0.86 0.78 0.95 0.98 0.96 1.00 0.98 0.96 1.00 0.98 1.00 1.00
2QUS Hammerhead Ribozyme 68 2.9 0.95 0.91 1.00 0.95 0.91 1.00 0.95 0.91 1.00 0.95 1.00 1.00
2QWY SAM-II riboswitch 52 26.9 0.48 0.46 0.50 0.48 0.46 0.5 0.34 0.31 0.4 0.35 0.31 0.40
2RP0 PEMV1 mRNA pseudoknot 26 15.3 0.88 1.00 0.78 0.88 1.00 0.78 0.84 0.71 1.00 0.84 0.71 1.00
2TPK T2 gene 32 mRNA p.k. 36 27.7 1.00 1.00 1.00 1.00 1.00 1.00 0.71 0.58 0.88 0.63 0.58 0.70
361D Domain E of 5S rRNA 19 0.0 0.86 1.00 0.75 0.86 1.00 0.75 0.83 0.83 0.83 0.83 0.83 0.83
3DIG Lysine Riboswitch 173 30.1 0.89 0.85 0.93 0.74 0.72 0.76 0.74 0.72 0.76 0.74 0.72 0.76
3FU2 class-I preQ1 riboswitch 32 18.8 0.79 0.63 1.00 0.79 0.63 1.00 0.79 0.63 1.00 0.79 0.63 1.00
3PHP TYMV p.k. hairpin 23 0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
437D rib. frame-shifting p.k. 27 22.2 0.94 1.00 0.89 0.94 1.00 0.89 0.79 0.63 1.00 0.79 0.63 1.00
Mean All 0.83 0.85 0.83 0.82 0.84 0.81 0.75 0.71 0.83 0.73 0.65 0.83
Mean No pseudoknots <5.0 0.87 0.85 0.89 0.81 0.84 0.80 0.82 0.84 0.81 0.87 0.90 0.87
Mean Pseudoknots >5.0 0.81 0.84 0.80 0.82 0.84 0.82 0.73 0.65 0.84 0.66 0.55 0.80

L, Sequence length; PKF, fraction of pseudoknot interactions; For each of the four different prediction methods (CF, Cylofold; PK, pknotsRG; HK,
HotKnots 2.0; UF, UNAFold) we report three different measures of prediction quality (SNS, sensitivity; PPV, positive predictive value).

Table 2. Prediction results for a set of 241 RNA sequences that are

part of PseudoBase for the programs CyloFold, pknotsRG (7),

HotKnots 2.0 (8) and UNAFold (23)

MCC SNS PPV

CyloFold 0.752 0.763 0.747
pknotsRG 0.748 0.753 0.756
HotKnots 2.0 0.611 0.565 0.684
UNAFold 0.597 0.532 0.692

SNS, sensitivity of predicted base pairs; PPV, positive predictive value.
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