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ABSTRACT

DSAP is an automated multiple-task web service
designed to provide a total solution to analyzing
deep-sequencing small RNA datasets generated by
next-generation sequencing technology. DSAP uses
a tab-delimited file as an input format, which holds
the unique sequence reads (tags) and their corres-
ponding number of copies generated by the Solexa
sequencing platform. The input data will go through
four analysis steps in DSAP: (i) cleanup: removal of
adaptors and poly-A/T/C/G/N nucleotides; (ii) clus-
tering: grouping of cleaned sequence tags
into unique sequence clusters; (iii) non-coding
RNA (ncRNA) matching: sequence homology
mapping against a transcribed sequence library
from the ncRNA database Rfam (http://rfam.
sanger.ac.uk/); and (iv) known miRNA matching: de-
tection of known miRNAs in miRBase (http://www.
mirbase.org/) based on sequence homology. The
expression levels corresponding to matched
ncRNAs and miRNAs are summarized in multi-color
clickable bar charts linked to external databases.
DSAP is also capable of displaying miRNA expres-
sion levels from different jobs using a log2-scaled
color matrix. Furthermore, a cross-species com-
parative function is also provided to show the dis-
tribution of identified miRNAs in different species as
deposited in miRBase. DSAP is available at http://
dsap.cgu.edu.tw.

INTRODUCTION

Next-generation sequencing (NGS) technologies have
found broad applicability in functional genomics
research. The main advantage of NGS technologies is

eliminating the need for in vivo cloning by clonal amplifi-
cation of spatially separated single molecules using either
emulsion PCR (Roche 454 and Applied Biosystems
SOLiD) or bridge amplification on a solid surface
(Illumina Solexa Genome Analyzer). NGS has been used
extensively for expression profiling and discovery of
microRNAs (miRNAs) and other small non-coding
RNAs (ncRNAs) in many organisms. miRNAs are a
growing family of regulatory molecules with several im-
portant biological functions involved in development, dif-
ferentiation, proliferation, apoptosis and response to
stress. Dysregulation of miRNA expression also contrib-
utes to disease pathology (1–4). Since the discovery of the
first two miRNAs, lin-4 and let-7 (5,6), in the Nematode
Caenorhabditis elegans, miRNAs have been described in
invertebrates, vertebrates, plants, yeast and more recently
in protists. The precursor miRNAs are cleaved in the
nucleus by the Drosha enzyme to a 70 nucleotide
hairpin transcript (pre-miRNA), transported to the cyto-
plasm by Exportin 5 through nuclear pores and then
cleaved by Dicer (RNase III enzyme) into 19–22 nt
double-stranded transcripts. In cytoplasm, the mature
miRNA is loaded into an RNA-induced silencing
complex (RISC) to form a miRNA-ribonucleoprotein
complex (miRNP) and binds to the target sites of
mRNAs (7–11) predominately in the untranslated region
of the target mRNA for translational repression or
mRNA cleavage (10–12).
Direct cloning and sequencing of small RNAs from or-

ganisms in the pre-NGS era was time consuming and ex-
pensive. The relatively low cost of NGS and the number of
reads generated from a single run has brought the field of
miRNA research back into the laboratories of single in-
vestigators, as is evidenced by the fact that the majority of
publications on NGS of miRNA originated at sites other
than the large genome centers. A major problem for
large-scale massive parallel sequencing of miRNAs is the
handling and analysis of generated data. NGS platforms
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can easily generate a gigabase of nucleotides per run,
which is equivalent to the output of more than 50
Applied Biosystems 3730XL capillary sequencers. The
Illumina sequencing-by-synthesis technology has been
used in many studies for deep-sequencing of miRNA
from different organisms to study miRNA expression
profiling and discovery of new miRNAs. The throughput
of a typical run from a single channel on a Solexa Genome
Analyzer, for example, is �400–500Mb, which includes
millions of reads. Although most laboratories only
perform a few runs, these laboratories are usually not
equipped for large-scale computing. Some commercial
packages provide a solution that clusters the tags after
adaptor removal. However, further analysis on profiling,
classification or distribution of small RNAs is not avail-
able. DSAP is a web server designed to provide a total
solution for analyzing miRNA sequencing data generated
by NGS. The functions in the DSAP suite include adaptor
removal, clustering of tags and classification of ncRNAs
and miRNAs based on sequencing homology using Rfam
(13–16) and miRBase (17). In addition to these basic func-
tions, DSAP also provides comparative miRNA expres-
sion profile analysis for up to five NGS datasets. These
functions all together provide a global and comprehensive
view on the expression profiles of miRNAs with sequence
homology to known miRNAs in any organism, even those
without an available reference genome.

IMPLEMENTATION

DSAP runs on a Linux CentOS 64-bit server housing two
quad-core Intel� Xeon� 5300 Series Processors and 16GB
RAM installed in the Chang Gung Bioinformatics Center.
Data processing is performed using Perl and Linux shell
scripts. The dynamic web interface is generated using the
Perl CGI library, ChartDirector for Perl and Matrix2png
(18). Based on the estimation of 2 million tags per job,
DSAP can handle at least 480 jobs per 24 h.

Input file and parameters

A single Solexa sequencing run produces two kinds of
data. The FASTQ file contains an identifier, sequence
reads and quality values for each base. The sizes of
FASTQ files are usually in the gigabytes, which is not
suitable for sending over the web. Another form of
output format is a tab-delimited file which holds only
the unique sequence read (tag) and its corresponding
number of copies. A script is available from http://code
.google.com/p/biopieces/wiki/read_solexa to transform
the FASTQ file into unique sequence tags. The sizes of
the tag files can be reduced to a few megabytes, which is
more reasonable to send to a web server for analysis by
web-based server tools. DSAP takes a sequence tag file as
input material. After successful upload, the web server will
return a page using a timestamp as an identifier to start the
pipeline. The user can monitor the job status through a
job status bar and several real-time bar charts recording
the cleanup and clustering processes (Supplementary
Figure S1a). A more detailed description of DSAP can

be found on the tutorial page (http://dsap.cgu.edu.tw/
tutorial.html). The only required parameter for DSAP is
choosing from among 115 species, or the user can use the
default of all species if the organism is not listed.

WORKFLOW

DSAP follows a series of automatic analysis steps to
identify miRNAs in the input file (Figure 1): (i) cleanup
to remove adaptors and poly-A/T/C/G/N nucleotides; (ii)
clustering to group cleaned sequence tags into unique
sequence clusters; (iii) ncRNA matching to map unique
sequence clusters against the transcribed sequence library
of ncRNA (Rfam); (iv) known miRNA matching to detect
known miRNAs in miRBase based on sequence
homology; and (v) comparative miRNAomics to show
differential miRNA expression profiles from different
jobs and cross-species distribution of identified miRNAs.

Cleanup

To ensure the accuracy of DSAP, sequence reads that
contain poly-A/T/C/G/N nucleotides or the annealing
50-adaptor are removed. Only the sequence reads with at
least 5 nt at the 30-send matching the head of the
30-adaptor are considered reliable reads. The user can
choose whether to remove poly-A/T/C/G/N reads in the
cleanup step. Sequence reads with length >16 nt after the
cleanup process are retained for the clustering step. We
use Supermatcher, based on the Smith–Waterman algo-
rithm, from the EMBOSS (19–21) analysis package for
the entire sequence alignment task in this step.
Supermatcher combines word-match and Smith–
Waterman (dynamic programming) algorithms (22). This
program is more appropriate for handling a large number
of sequences on web servers than using a pure dynamic
programming method.

Clustering

In the clustering step, we use cleaned sequence tags from
the previous step as input data to generate a set of
non-redundant representative sequence clusters as output
for further analysis. Sequence tags remaining after the
cleanup step with 100% sequence identity and identical
sequence length are grouped as non-redundant sequence
clusters. Each sequence cluster has a representative
Cluster ID and its total read count.

ncRNA matching

A critical step in generating small RNA libraries for NGS
is the size fractionation of small RNAs from total RNA.
However, in addition to miRNAs, the fractionated RNA
is usually contaminated with other ncRNAs such as
ribosomal RNAs (rRNAs), spliceosome RNAs (U1–U6),
small nuclear RNAs (snRNAs), small nucleolar RNAs
(snoRNAs) or transfer RNAs (tRNAs). Rfam, hosted
by Wellcome Trust Sanger Institute in collaboration
with Janelia Farm (13–16), contains information on
ncRNA families. We retrieved 22 425 miRNA precursors
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Figure 1. DSAP workflow. DSAP follows several analysis steps: (a) Cleanup to remove adaptors and poly-A/T/C/G/N nucleotides. (b) Clustering to
group cleaned sequence tags into unique sequence clusters. (c) ncRNA matching to map unique sequence clusters against a transcribed sequence
library of ncRNA (Rfam). (d) Known miRNA matching to detect known miRNAs in miRBase based on sequence homology. (e) Comparative
miRNAomics to show differential miRNA expression profiles from different jobs, and cross-species distributions of identified miRNAs.
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from the Rfam database version 9.1 for use as a reference
database to separate ncRNAs other than miRNAs in the
non-redundant sequence tag clusters. Then, we use
BLAST (with default parameters) to identify representa-
tive sequence clusters originating from rRNAs, tRNAs,
snRNAs, snoRNAs or other annotated ncRNAs (23).

Known miRNA matching

miRBase is a database of published miRNA sequences
and associated annotation (17). Release 14 of miRBase
contains 10 883 entries representing hairpin precursor
miRNAs expressing 10 581 mature miRNA products in
115 species. DSAP uses a non-redundant mature
miRNA reference database created from mature
miRNAs in miRBase as the default database for the iden-
tification of known miRNAs. Representative sequence
clusters remaining after ncRNA matching are compared
with known mature miRNA sequences with BLAST (with
parameters ‘-F F -W 16’ to turn off the low complexity
filter and increase the word size to 16 for increased speed).
In order to obtain more reliable results, only BLAST hits
with perfect alignments (100% sequence identity and
cover full length of known miRNA) are retained. The
hit list is summarized in a clickable bar chart that links
to miRBase for further information on the identified
miRNA. A tab-delimited file which contains all the
details is also available for download. Representative
sequence clusters that showed low sequence homology
with known miRNAs are grouped as putative novel
miRNAs.

Comparative miRNA analysis and cross-species
distribution of miRNAs

One of the main purposes of miRNA experiments is to
elucidate the differential expression levels of miRNAs
among different development stages or experimental con-
ditions. DSAP is capable of displaying non-normalized
miRNA expression levels from different jobs using
a log2-transformed color matrix. Furthermore, DSAP
also accepts experimental results (in tab-delimited
format) from other miRNA expression analyses, such as
stem–loop real-time PCR, microarray or SOLiD
sequencing. An example of the input file is shown in
Supplementary Figure S2. Input file format details
can be found on the tutorial page (http://dsap.cgu.edu.
tw/tutorial.html#format).
Another powerful function of DSAP is the ability

to show the distribution of identified miRNAs in
different species from miRBase. This function can
provide a global view on the convergence and diver-
gence of the identified miRNAs. The users can either
fill in the job identifiers provided by DSAP or to
paste their own miRNA expression profiles in a text
field to enable the miRNA comparison function.
These functions are explained in more detail on the
tutorial page (http://dsap.cgu.edu.tw/tutorial.html#
miRNAomics).

RESULTS AND DISCUSSION

A working example

We provided three sequence tag files generated from small
RNA libraries prepared on Day 5 (CE5), Day 7 (CE7) and
Day 9 (CE9) chicken embryos (NCBI GEO database
Accession Number GSE10636) as demonstration
datasets (24). The user can upload a sequence tag file
under 300Mb and then choose a species or just use the
default of all 115 species. The server will return a page
using a timestamp as an identifier after a successful
upload. Users can bookmark this page for future refer-
ence. The output page of DSAP running on the demon-
stration dataset is shown in Supplementary Figure S1. The
output page is composed of several blocks that represent
the analysis workflow of DSAP. The first block
(Supplementary Figure S1a) shows the current status of
the process and the time used by each step in a dynamic
meter graph. The second block (Supplementary Figure
S1b) shows a bar chart dynamically recording the
number of sequence tags surviving the cleanup process.
The third block (Supplementary Figure S1c) shows the
result of clustered clean sequence tags and provides infor-
mation about each unique sequence cluster in a
tab-delimited file. The fourth and fifth blocks summarize
the results of the unique sequence clusters matched to
Rfam (Supplementary Figure S1d) and miRBase
(Supplementary Figure S1e). Each matched RNA family
and its related expression level is summarized in a
multi-color clickable bar chart linked to miRBase for
further details. All results are downloadable from the
website in a tab-delimited text file. Representative
sequence clusters that failed to be identified from the
known miRNAs matching step can be downloaded for
the identification of putative novel miRNAs. A
summary of all steps in the pipeline is generated for
each job (Supplementary Figure S1f). By using DSAP,
415 373 and 324 miRNAs were detected in the test
datasets CE5, CE7 and CE9, respectively, out of 525
known chicken mature miRNAs deposited in miRBase.
The last block (Supplementary Figure S1g) provides
cross-experiments and cross-species miRNAs distribution
comparison results in a color scaling matrix.

Optimized sequence alignment for isomiRs

Extensive sequence variations (isomiRs) of miRNA tran-
scriptomes have been identified by the aid of
deep-sequencing technologies (25). In addition to the de-
tection of sequence and length variations in mature
miRNAs, enzyme modification of miRNA such as RNA
editing and 30-nucleotide additions to miRNAs can also be
detected by these technologies. In order to have a compre-
hensive view of these variations, DSAP uses a word
matching method to align homologous sequences
between unique sequence cluster and precursor miRNA,
then append the leading and trailing sequences to obtain a
multiple sequence alignment (MSA). The alignment of
unique sequence clusters using our method is optimized
for the observation of isomiRs and can be sorted based on
expression levels of unique sequence clusters, sequence
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length or sequence homology (Figure 2). We found this
approach to be better than using MSA methods (26–28)
and more scalable in terms of computational time than
local sequence clustering approaches such as CD-HIT,
Uclust, BAG and BLASTclust. Because the unique
sequence clusters are not equal in length, MSA algorithms
attempt to make input sequences the same length by in-
serting gaps. In such circumstances, the leading and
trailing bases of unique sequence clusters that lack hom-
ologous bases will not be aligned properly.

Benchmarking of DSAP

We used nine NGS datasets containing 153 406–2 090 730
tags from chicken, plant and protist for benchmarking.
The performance of DSAP is shown in Table 1. Most of
the jobs can be completed in �5min. The largest dataset,
which contains over 2 million sequence tags, can be
finished in 15min.

Comparison with other similar applications

Identification and profiling of miRNA with NGS technol-
ogy is a relatively new approach. Only three other appli-
cations, miRanalyzer (29), miRExpress (30) and miRDeep
(31) are available for the analysis of miRNA

deep-sequencing datasets. miRanalyzer is a web server
tool that performs small RNA classification and new
miRNA prediction but is limited to 10 model species
with the need for sequenced genomes. In addition,
cross-species comparison of miRNA expression profiles
is not supported. miRExpress is a stand-alone software
package implemented for miRNA profiling; however,
basic Linux knowledge is required to compile and
execute this package. miRExpress can take
deep-sequencing raw data as an input directly but lacks
the ability to classify small RNAs other than miRNAs.
miRDeep is also a stand-alone software package for the
identification of miRNAs based on location of miRNAs
on a predicted hairpin structure. Therefore, miRDeep is
only useful for organisms with a known genome sequence.
Compared with miRanalyzer, miRExpress and miRDeep,
DSAP is the only web server tool which contains almost
all of the functions of the above applications except new
miRNA prediction. Furthermore, DSAP provides not
only tables and text files as output formats but also click-
able charts and differential miRNA expression on a color
scaling matrix for better visualization. Although DSAP is
not presently able to predict new miRNAs, we will add
this function in our next version. Table 2 shows the key
features of DSAP, miRanalyzer, miRExpress and
miRDeep.

CONCLUSION

DSAP is an ultrafast and useful tool that can process large
amounts of sequencing data generated by a Solexa sequen-
cer directly through the web and return a user-friendly
report. Additionally, DSAP only takes <15min to finish
a single job of 2 million sequence tags. It is the only
web-based suite designed for the identification of known
miRNAs from NGS reads generated from organisms with
or without a complete sequenced genome. Furthermore,
DSAP also provides visualization interfaces for differen-
tial mature miRNA expression level and cross-species dis-
tribution of the identified miRNAs. A major target of

Figure 2. Optimized observation of isomiRs. The alignment of unique sequence clusters with the corresponding miRNA hairpin is optimized for the
observation of isomiRs. Unique sequence clusters and precursor miRNA hairpin sequences were first aligned using word matching, and then we
appended the leading and trailing sequences to get a MSA. The alignment can be sorted by expression levels, sequence length or sequence homology.

Table 1. Benchmarking of DSAP

Datasets Number of sequence tags Processing time (hh:mm:ss)

CE5 329 334 00:03:42
CE7 220 166 00:01:58
CE9 153 406 00:01:20
Protist1 754 059 00:04:38
Protist2 736 939 00:05:02
Protist3 395 939 00:02:50
Protist4 697 983 00:03:56
Plant1 1 643 030 00:11:34
Plant2 2 090 730 00:13:53

Benchmarking is done on a Linux CentOS 64bit server housing two
quad-core Intel� Xeon� 5300 Series Processors and 16GB RAM with
different numbers of sequence tags.
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DSAP in the next version will be the prediction of novel
miRNAs and their putative targets.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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