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Abstract
Two- and three-state cross-bridge models are considered and examined with respect to their ability
to predict three distinct phases of the force transients that occur in response to step change in muscle
fiber length. Particular attention is paid to satisfying the Le Châtelier–Brown Principle. This analysis
shows that the two-state model can account for phases 1 and 2 of a force transient, but is barely
adequate to account for phase 3 (delayed force) unless a stretch results in a sudden increase in the
number of cross-bridges in the detached state. The three-state model (A → B → C → A) makes it
possible to account for all three phases if we assume that the A → B transition is fast (corresponding
to phase 2), the B → C transition is of intermediate speed (corresponding to phase 3), and the C →
A transition is slow; in such a scenario, states A and C can support or generate force (high force
states) but state B cannot (detached, or low-force state). This model involves at least one ratchet
mechanism. In this model, force can be generated by either of two transitions: B → A or B → C. To
determine which of these is the major force-generating step that consumes ATP and transduces
energy, we examine the effects of ATP, ADP, and phosphate (Pi) on force transients. In doing so,
we demonstrate that the fast transition (phase 2) is associated with the nucleotide-binding step, and
that the intermediate-speed transition (phase 3) is associated with the Pi-release step. To account for
all the effects of ligands, it is necessary to expand the three-state model into a six-state model that
includes three ligand-bound states. The slowest phase of a force transient (phase 4) cannot be
explained by any of the models described unless an additional mechanism is introduced. Here we
suggest a role of series compliance to account for this phase, and propose a model that correlates the
slowest step of the cross-bridge cycle (transition C → A) to: phase 4 of step analysis, the rate constant
ktr of the quick-release and restretch experiment, and the rate constant kact for force development
time course following Ca2+ activation.
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1 Introduction
Numerous contraction models involving multiple cross-bridge states have been proposed to
account for isometric tension and tension transients, but many of them are not easy to follow
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due to their mathematical complexity and the numerical approximations that are used for
models. Indeed, the numerical approach makes it especially difficult to grasp the significance
and usefulness of a particular model. Moreover, some models address only a part of the cycling
scheme, and others rely on assumptions that are not clearly delineated. In an extreme case, too
many cross-bridge states are employed and too many parameters are used to fit scanty data,
which makes the reader wonder how much of the model is actually supported by the data on
fiber studies, how much is an extrapolation from the data obtained from solution studies, and
how much is pure speculation. Is a model with more cross-bridge states necessarily better than
one with fewer? We believe that the purpose of the model is to account for experimental results,
and to predict results for future experimentation. For this reason, we consider simplicity to be
one of the key aspects of model building. In this mini-review, we focus on simple cases and
attempt to explain some fundamental experimental observations. The mathematical principles
used here are not complex and are, in fact, taught in high school and college courses. Hence if
there are difficulties, one should consult with a math teacher or look into appropriate textbooks.
Alternatively, the authors are always available for consultation. The cases covered here are
limited to the isometric, or near-isometric, state of contraction; isotonic contraction is not dealt
with because it introduces extra complexity. The mathematical symbols used in the text are
summarized in Table 1.

2 The two-state model
This is the simplest model of all and, hence, easiest for beginners to understand while still of
value for experts because it involves fundamental principles. The two-state model is
extensively used in muscle physiology and in mechanics (e.g., Huxley 1957; Thorson and
White 1969; Huxley and Simmons 1971; Abbot 1973; Brenner 1988; Palmer et al. 2007). When
a reactant (A) changes into a product (B) with the forward rate constant α and its reversal rate
constant α′, this kinetic scheme can be written as:

For application to muscle mechanics, state A is assigned to the attached “high force state”, and
state B to the detached “no force state” (or low force state). The rate of the forward reaction is
αA, and the rate of the reversal reaction is α′B, where A and B represent the concentrations of
the respective enzymatic species. Although concentration is usually written as [A] and [B],
here the brackets are left out for simplicity and italics are used to denote mathematical variables.
In contrast, when discussing molecular species we use bold letters such as A and B. As A and
B are functions of time (t), they can be written as A = A(t) and B = B(t). In Scheme 1, because
the forward rate is a loss and the reverse rate is a gain for A,

(1)

The reaction in Scheme 1 is called the first-order reaction because it is represented by the first-
order differential equation (Eq. 1). Given that A and B are two forms of the same molecular
species,

(2)

where AT is the total concentration and is conserved (i.e., it does not change with time). In the
case of concentrated solutions, the word “activity” is used in place of the concentration because
not all molecules are chemically active. The consequent elimination of B from Eqs. 1 and 2
results in:
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(3)

(4)

Note that ≡ indicates definition. Equation 3 takes the form of Eq. A1 in Appendix 1, and it can
be solved (Eq. A6) to result in:

(5)

(6)

(7)

Thus, the first-order reaction of Scheme 1 results in a time course with one exponential process
whose rate constant is λ, which is the sum of the forward rate constant α and the reverse rate
constant α′ (Eq. 4). λ is termed the “apparent” rate constant, indicating that this is the rate
constant experimentally observed as in Eq. 5 or 6. In contrast α and α′ are termed the “intrinsic”
or “fundamental” rate constants (Gutfreund 1995). Although the adjective “intrinsic”,
“fundamental” or “apparent” is often left out, which of these would apply is usually self evident.
A0 is an integration constant that is determined by the initial condition, and it is termed the
amplitude (or magnitude) of the exponential process in Eqs. 5 and 6.

As time approaches infinity (t → ∞), Scheme 1 achieves an equilibrium, resulting in dA(t)/dt
= 0 (in Eqs. 1 and 3). From Eqs. 5 and 6, it becomes clear that A(∞) = A1 and B(∞) = B1. Thus,
K ≡ α/α′ = B1/A1 is the equilibrium constant, and A1 and B1 are the equilibrium concentrations
of individual molecular species. K = B1/A1 is the well-known law of mass action.

3 Perturbation
A perturbation (δx) is experimentally applied after the equilibrium described in Scheme 1 (A
= A1, B = B1) is reached. The perturbation can be a length change (e.g., Thorson and White
1969;Huxley and Simmons 1971;Abbott 1973;Heinl et al. 1974;Kawai 1978), a temperature
change (e.g., Bershitsky and Tsaturyan 1992;Davis and Rodgers 1995;Ranatunga 1999), a
pressure change (e.g., Fortune et al. 1991), etc., but it must be small and fast. A perturbation
can also be a sudden change in the ligand (ATP, ADP, Pi) concentration, such as that used in
caged Pi (e.g., Homsher and Millar 1990;Dantzig et al. 1992;Walker et al. 1992;Araujo and
Walker 1996), caged ATP (e.g., Goldman et al. 1984;Martin and Barsotti 1994), caged Ca
(e.g., Preston et al. 2007), or rapid solution-switch (e.g., Tesi et al. 2000,2002;Stehle et al.
2002;Piroddi et al. 2003) experiments. The purpose of the perturbation is to probe the rate
constant(s) and to construct a kinetic scheme. In Scheme 1, the perturbation is assumed to
modify the rate constants α and α′:

(8)
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(9)

(10)

The changes described in Eqs. 8–10 are assumed to occur simultaneous to perturbation δx, with
δα being the sensitivity of α, δα′ the sensitivity of α′, and δλ the sensitivity of λ, to perturbation
δx. Because δx is a small quantity, all other δs are also small quantities.

The perturbation (Eqs. 8–10) results in a change in A that is time dependent:

(11)

With the substitution of Eqs. 9, 10 and 11 into Eq. 3 we obtain:

(12)

Sidewise subtraction of Eq. 3 from Eq. 12 gives:

(13)

The cross term δλδA is dropped from Eq. 13 because this is an extremely small quantity. If
preferred, Eq. 13 can be derived directly from Eq. 3 by differentiation. The right-hand side of
Eq. 13 is a constant of time, because all variables are time-independent quantities. Note the
similarity between Eqs. 3 and 13. By solving Eq. 13 (Appendix 1),

(14)

(15)

where A2 ≡ (ATδα′ − A1δλ)/λ = AT (αδα′ − α′δα)/λ2. Note that we assume δA(0) = 0 (δA does
not change immediately after the perturbation). A2 is the amplitude (magnitude) of the
exponential process, and the apparent rate constant in Eqs. 14 and 15 are the same as in Eq. 5.
When a perturbation is applied to a muscle fiber, the resulting force time course, such as that
described in Eqs. 14 or 15, is called “force transient” or “tension transient”.

Conclusion 1
An experimenter will observe the same rate constant λ whether starting a new reaction as in
Scheme 1 (Eq. 5), or applying a small perturbation (of any kind) during equilibrium and
measuring the transient as in Eq. 14. Although not shown explicitly, this conclusion holds true
for any multiple-state model.
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4 Tension transients and delayed tension
When an isometrically contracting muscle fiber is stretched by δl (with δl < 0 in the case of
release), force rises simultaneous to the stretch because of the elastic link of attached cross-
bridges. This is termed phase 1 (Fig. 1A; Huxley and Simmons 1971;Heinl et al. 1974). Force
then decays quickly (phase 2), after which it again rises, but more gradually (phase 3 in Fig.
2). Phase 3 is particularly evident in insect indirect flight muscles (Fig. 3A;Pringle 1978), and
is called “delayed tension”. To explain the delayed tension, Thorson and White (1969,1983)
used the two-state model, but had to assume that either α′ increases (as does in Huxley’s model
1957, and in Julian et al.’s model 1974) or α decreases with a stretch (δl), in other words, that
δα′/δl > 0 or δα/δl < 0 (see also Abbott 1973;Abbott and Steiger 1977;Pringle 1978). The
perturbation analysis used was exactly the same as in Eqs. 8–14 above. This assumption (δα′/
δl > 0 or δα/δl < 0), however, does not satisfy the Le Châtelier–Brown Principle, which states
that a thermodynamic system tends to balance the effects of any stress inflicted upon it
(Kirkwood and Oppenheim 1961). In the case of muscle mechanics, this principle is interpreted
in the following way.

If a cross-bridge that is generating force (φ) is stretched by δl, then the work (δW) performed
by the forcing apparatus on this cross-bridge is:

(16)

Equation 16 also holds true for release (δl < 0), in which case δW < 0 and the work is performed
by the cross-bridge on the forcing apparatus. φ is force/cross-bridge (φ > 0), and the same as
the unitary force used in single molecule experiments (e.g. Molloy et al. 1995; Guilford et al.
1997; Kitamura et al. 1999). It is likely that the unitary force is distributed because the mismatch
between actin and myosin repeats in most muscles causes the strain on cross-bridges to be
distributed. Thus, it is more accurate to state that φ represents the averaged unitary force over
the distributed strain. From here, there are two possibilities: in case 1, the activation energy
Eα for the reaction A → B is reduced by the stretch (Fig. 4A); in case 2, the activation energy

 for the reversal reaction B → A is increased by the stretch (Fig. 4B). In case 1, the chain of
events is δl → δW → δEα → α, which results in a change in the rate αA.

(17)

The rate constant α is related to the activation energy by the Arrhenius equation (Gutfreund
1995):

(18)

where kB is the Boltzmann’s constant, and T is the absolute temperature. By differentiation of
Eq. 18 with respect to Eα, we obtain

(19)

From Eqs. 17 and 19, we get
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(20)

For case 2, the chain of events is  and this changes the reversal rate α′

B. Here, because , the expression equivalent to Eq. 20 is

(21)

From Eq. 20, δα/δl = αφ/kBT > 0 (it cannot be negative). Similarly, from Eq. 21, δα′/δl = −α′
φ/kBT < 0 (it cannot be positive). That is, in response to stretch (δl > 0), Eα decreases (δEα <

0, Eq. 17) and α increases (Eq. 20) (case 1), or  increases ( ) and α′ decreases (Eq. 21)
(case 2). Consequently, A should gradually decrease (phase 2) in both cases, as in the Huxley
and Simmons (1971) model, rather than gradually increasing (phase 3). As is clear from the
above discussion, the two-state model can explain phase 2, but not phase 3 (the well-known
phenomenon of “delayed tension”). Actually, this problem can be circumvented by postulating
that the stretch increases the number of cross-bridges in the B state (no tension state) instantly,
making it possible to explain the delayed rise in tension as B → A in Scheme 1 occurs; i.e. the
tension rises with the rate constant λ (Eq. 5), as considered in Section 9. In terms of case 1 vs.
case 2 discussed above, certain lines of experimental evidence favor case 2, based on the
asymmetry of the apparent rate constant (λ = α + α′) of phase 2, which decreases with stretch
(Huxley and Simmons 1971;Ford et al. 1977).

5 The expanded two-state model
When attached cross-bridges A are stretched by δl, they follow different kinetics from ones
that are not stretched. One way of simplifying this complication is to consider that the stretched
cross-bridges are in a special state G, as shown in Scheme 2. As time progresses, G decays at
the rate constant μ to become B, and is not regenerated. This aspect is in contrast to the two-
state model discussed in Section 4, in which the stretched state can be regenerated. In Scheme
2, state A vanishes at the time of stretch, but because the B ↔ A transition takes place, A
reappears over time.

The following differential equations (Eqs. 22–24) describe the kinetics of Scheme 2:

(22)

(23)

(24)
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(25)

The initial conditions and the final steady state concentrations are:

where t = −0 means immediately before the stretch, and t= +0 means immediately after the
stretch. A1 and B1 are defined in Eq. 7. Eqs. 22–25 can be solved in reverse order, i.e. first
yielding G(t) (Appendix 1), then B(t), and finally A(t). Alternatively, the method described in
Appendix 2 for three states can be used, because the expanded two-state model is a special
case of the three-state model. The results are as follows.

(26)

(27)

(28)

λ is defined in Eq. 4. λ > μ, because α′ > δα when δ is small. Relating a chemical state to force
can be simplified by considering a myofibril of cross sectional area AC and a half sarcomere
of length l0. Because all cross-bridges in this structure are arranged in parallel mechanically,
the forces generated (or supported) by state A (FA) and state B (FB) are proportional to the
number of force generating cross-bridges in each state.

φ is the force/cross-bridge (unitary force) in state A, φ + ρδl is the force/cross-bridge in state
G, ρ is the spring constant of the cross-bridge, and NA is Avogadro’s number. Therefore, in
the half sarcomere AAcl0NA is the total number of cross-bridges in state A, and GAcl0NA is the
total number of cross-bridges in state G. Force F(t) is:

(29)
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(30)

(31)

Equations 29, 30, and 31 illustrate that a force transient comprises three phases. The first is a
rise in the force simultaneous with the stretch. The second is a rapid decay of force at rate
constant μ, and reflects the decay of G. The outcome of the third phase depends on the polarity
of z: if z > 0, then there is a delayed rise in force as it approaches A1Acl0NA; if z≤0, then there
is further decay of force to the steady state value A1Acl0NA. Although this model (Scheme 2)
may appear to explain the delayed tension when z > 0, in fact it does not quite accomplish this
because the rise of force is small and never exceeds the steady-state value.

According to the above analysis, the length change can be seen to induce an extra state G,
which decays with a unique rate constant (μ). Steiger and Abbott (1981) used this line of
modeling on a four-state model (with two attached and two detached states after Lymn and
Taylor 1971), to generate one with six states. Although we believe that Scheme 2 and its theory
represent one of the most rigorous systems for treating the stretched (or released) cross-bridges,
they may not allow for practical analysis of experimental results because the apparent rate
constants λ and μ are similar and, hence, difficult to distinguish from one another. In addition,
modeling must include one extra cross-bridge state per attached cross-bridge state, which adds
to the complexity of the algebra required when multiple attached states are considered. For
these reasons, we do not use this line of approach in the following discussions.

6 The three-state model
To explain delayed tension more explicitly, it is necessary to introduce the three-state model.
Given the extreme usefulness of this model, we discuss it in detail. The three state model has
been used frequently among muscle physiologists and mechanics (e.g., Julian et al. 1974;
Thorson and White 1983; Woledge et al. 1985; Murase et al. 1986; Dickinson et al. 1997;
Campbell et al. 2001). Scheme 3 represents its most general form.

This is a cyclic scheme with the forward reaction consisting of the outer clockwise cycle: A
→ B → C → A, for which the respective rate constants are α,β and γ. The reversal reaction
consists of the inner counter-clockwise cycle: A → C → B → A, with the respective rate
constants γ′, β′ and α′. In Scheme 3, we assume that A and C are attached states, which generate
and/or support force, and that B is a detached state, which does not support force. Because the
analysis of Scheme 3 is very complex, we will discuss a simple case here. The complete analysis
of Scheme 3 can be found in the Appendix 2.

7 Three-state model, a simple case analysis (α + α′ ≫ β + β′ ≫ γ + γ′)
Now let us consider a simple case in which α + α′ ≫ β + β′ ≫ γ + γ is satisfied. In the following
discussion, these rate constants are referred to fast, medium, and slow, respectively. The case
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α + α′ ≪ β + β′ < γ + γ′ is included in this discussion by an exchange: α, α′ ↔ γ, γ′. The more
realistic case (α + α′ > β + β′ > γ + γ′) is discussed later in Section 20. X ≫ Y indicates that X
is much larger than Y, so that Y can be ignored when X + Y is evaluated. An example is 1000
s−1 and 100 s−1. If we focus on a fast time scale, comparable to 1/(α + α′) (such as ~1 ms in
the cross-bridge cycle), then steps 2 (B ↔ C) and 3 (C ↔ A) are too slow to occur. Hence they
could not be witnessed on the time-scale of observation. In this case, only step 1 is observed,
and the problem is reduced to Scheme 1, with the apparent rate constant λ2.

(32)

Conclusion 2
The apparent rate constant of a fast step (λ2) is the sum of the forward rate constant and the
reversal rate constant of this step (Eq. 32), and it is not influenced by either the rate or
equilibrium constants of slower steps.

If we focus on a medium-speed time scale, comparable to 1/(β + β′) (such as ~10 ms in the
cross-bridge cycle), then step 1 is very fast and looks like an equilibrium, whereas step 3 is too
slow to be witnessed. Therefore, in this scenario, Scheme 3 actually looks like Scheme 4.

where Kα ≡ α/α′, which is the equilibrium constant of step 1. In this case

(33)

That is, A and B gain/lose as a group. Because A, B and C are three different states of myosin,

(34)

where AT is the total concentration of myosin subfragment one (S1). Because step 1 represents
an equilibrium, the mass action law applies:

(35)

By eliminating B and C from Eqs. 33–35, we obtain

(36)

(37)

By solving Eq. 36 (Appendix 1), we arrive at:
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(38)

where A1 ≡ AT/[1 + Kα(1 + Kβ)], B1 = KαA1 and C1 = KαKβA1 are the steady-state concentrations,
and Kβ ≡ β/β′ is the equilibrium constant of step 2. Equation 38 shows that Scheme 4 has the
apparent rate constant λ3, which is defined in Eq. 37.

Conclusion 3
The apparent rate constant of a medium-speed step (λ3) is a weighted sum of the intrinsic rate
constants β and β′ of step 2; although λ3 is influenced by the equilibrium constant of the fast
steps, it is not influenced by the rate or equilibrium constants of the slow steps.

Thus, the three-state model (Scheme 3) has 2 exponential processes with 2 apparent rate
constants, λ2 and λ3 (λ2 > λ3) (generally, an N-state model has (N−1) exponential processes).
Each apparent rate constant is the weighted sum (linear combination) of the forward and
reversal rate constants of the respective steps (Eqs. 32 and 37). The time courses A(t), B(t) and
C(t) take the form described in Eqs. A21–A23 of Appendix 2. Step 3 occurs slowly, which is
important for calculation of the turnover rate. In perturbation analysis, the rate constants of the
fast steps (1 and 2) can be observed (Eqs. 32 and Eq. 37), whereas the rate constant of the
slowest step (3) cannot be observed. However, because of the presence of in-series compliance,
the forward rate constant of step 3 can be observed as discussed later in Section 19.

8 Steady state
In Scheme 3, t→∞ will result in the steady state, in which dA(t)/dt = 0, dB(t)/dt = 0, and dC(t)/
dt = 0 are achieved. From these conditions, it follows that the steady-state concentrations of
A1, B1, C1 (still assuming that γ,γ′ ≪ α, α′, β,β′) are:

(39)

The turnover rate J is calculated as:

(40)

In the case of the cross-bridge cycle, J is the same as the ATP hydrolysis rate. The equilibrium
is a special case (J = 0) of the steady state. If αA1 − α′B1 or βB1 − β′C1 is evaluated in place of
Eq. 40, both become 0 because of the approximations we used. In this case, B1/A1 = α/α′ =
Kα, and C1/B1 = β/β′ = Kβ. Hence, step 1 and step 2 can be approximated by the equilibrium.
However, although C1/A1 = αβ/α′β′ = KαKβ, generally A1/C1 ≠ γ/γ′. Hence, step 3 does not
contribute to the equilibrium of the reaction C ↔ A (step 3) directly, but rather steps 1 and 2
(reactions A ↔ B ↔ C) determine the equilibrium.
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Conclusion 4
At steady state, the fast steps of the cyclic reaction can be approximated by the equilibrium,
whereas the slowest (rate-limiting) step cannot be approximated by the equilibrium.

9 The mechanisms of tension transients that satisfy the Le Châtelier–Brown
Principle

Based on Scheme 3, it is now possible to explain delayed tension without violating the Le
Châtelier–Brown Principle. When the length of active muscle fiber is stretched (δl > 0) rapidly,
force increases simultaneously because of the combined effect of attached cross-bridge
elasticity and series compliance (phase 1, Figs. 1A and 2). The stretch simultaneously increases
the elastic energy δW (mechanical energy) stored in the cross-bridge state A (Eq. 16); hence
it either reduces the activation energy Eα (Eq. 17; Fig. 4A) or elevates the activation energy

 (Fig. 4B). This increases the rate constant α (Eq. 20) and/or decreases the rate constant α′
(Eq. 21), and thus increases the A → B transition and/or decreases the B → A transition to
reduce the energy and to satisfy the Le Châtelier–Brown Principle. In either case, the result is
an exponential decay of force (phase 2, Fig. 1A) at rate constant λ2 (Eq. 32), and is consistent
with the model proposed by Huxley and Simmons (1971). Step 2 (B → C) is slower and does
not take place at this time. Over time, cross-bridges accumulate in the B state. The amount of
this accumulation is substantial, as the following calculations demonstrate. From Eq. 7,

(41)

(42)

In case 1 (Section 4), a side-wise multiplication of Eq. 20 to Eq. 41 yields Eq. 43.

(43)

In case 2 (Section 4), a side-wise multiplication of Eq. 21 by Eq. 42 likewise yields Eq. 43.
Here we assumed that unitary force (φ) is 2 pN (range 1–6 pN: Finer et al. 1994;Miyata et al.
1995;Molloy et al. 1995;Ishijima et al. 1996;Guilford et al. 1997), the value of α is comparable
to that of α′, T = 293 K (20°C), and the length change is 0.1% stretch. Consequently, δl = 0.001
× 1.25 μm × 60% = 0.75 nm, where half sarcomere length is 1.25 μm, at which skinned psoas
fiber experiments are usually carried out. 60% is to account for cross-bridge compliance, and
the remaining 40% series compliance; the results with respect to the temperature effect on
stiffness (rabbit psoas fibers) fit well if the series compliance is 40 ± 5% during standard
activation at 20°C (Kawai 2003). The reported series compliance varies significantly, the
lowest value being 19% (Bagni et al. 1990) and the highest 69% (Wakabayashi et al. 1994),
and mid-range values having been published as well (44% in Higuchi et al. 1995 and 50–60%
in Dobbie et al. 1998). Equation 43 suggests that the number of cross-bridges in state B
increases as much as 19% in response to a stretch as small as 0.1%. The increase becomes

Kawai and Halvorson Page 11

J Muscle Res Cell Motil. Author manuscript; available in PMC 2010 July 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



about 38% for a 0.2% stretch, and so on. Here it is possible that a “ratchet” mechanism is at
work in step 1 (i.e., preferred detachment of unstrained, or perhaps negatively strained, cross-
bridges: Huxley 1957;Vale and Oosawa 1990;Smith and Geeves 1995;Smith 1998), increasing
the number of cross-bridges in state B even further. However, it must be recognized that the
ratchet mechanism is against the Le Châtelier-Brown principle, thereby the ratchet has its value.

The next thing that happens is an increase in the slower step 2 (B → C), because its rate is
βB, and the number (B) of cross-bridges in state B is now larger than steady-state (δB1 > 0: Eq.
43). The stretch also increases the elastic energy in state C, which in turn reduces the activation

energy . Hence β′ is also accelerated (or Eβ is elevated and β is diminished). Consequently,
the reversal reaction of step 2 (C → B) is accelerated. The net reaction is the sum of those in
both directions, with the rate constant λ3 (Eq. 37). When the rate βB(B → C) is greater than
the rate β′C(C → B), we observe a delayed rise in tension (phase 3, Figs. 2 and 3A); when the
rates are equal, we observe a plateau (phase 3, Fig. 1A); when βB is less than β′C, we do not
observe the delayed rise in tension. The above-mentioned ratchet mechanism is important here,
because the projected rate β′C is large and comparable to βB. In addition, there may be a ratchet
mechanism in step 2 to decelerate the reversal reaction C → B. Because the amplitude
(magnitude B in sinusoidal analysis) of phase 3 is smaller in frog semitendinosus fibers than
that in rabbit psoas fibers under the same activating condition (Kawai and Brandt 1980), phase
3 in frog fibers shows a plateau in step analysis (Fig. 1A). The amplitude is sizable in rabbit
psoas fibers. Hence a delayed rise in tension is clearly visible (Fig. 2). We have also noticed
that the presence of exponential process B (phase 3) depends on the goodness of the fiber
preparation; if it is poor, phase 3 magnitude is less, or it even disappears.

A mirror image of the above events occurs on release (δl < 0) of the active muscle fibers. On
release, force drops (phase 1, Figs. 1B and 3B) due to simultaneous release of the combined
elasticity of series compliance and the attached cross-bridges. This results in a decrease in the
elastic energy stored in state A (Eq. 16), which in turn increases Eα (Eq. 17) and reduces α (Eq.

20) (or reduces  and increases α′) to satisfy the Le Châtelier–Brown Principle. Thus, the rate
αA decreases (or α′B increases). Because there is a continuous supply of A via B → A and C
→ A transitions, the net effect is a transient increase (accumulation) of state A, and a transient
decrease of state B. Overall, this results in an exponential rise of force (phase 2, Fig. 1B), at a
rate constant λ2 (Eq. 32). Step 2 is slower and does not take place yet. The result over time is
a temporary decrease in the cross-bridges of the B state and, as seen from Eq. 43, this decrease
is substantial. The next event is the slower step 2. The rate of its forward reaction βB (B →
C) is now reduced because B is reduced. The elastic energy stored in state C decreases with
the release of length; hence the activation energy is increased and the rate constant β′ reduced,
resulting overall in a decline of the rate of the reversal reaction β′C (C → B). Again, the net
reaction is the sum of those in both directions, with rate constant λ3. When rate β′C (C → B)
is greater than rate βB (B → C), we observe a delayed drop in tension (phase 3, Fig. 3B); when
the rates are equal, we observe a plateau (phase 3, Fig. 1B); and when rate β′C (C → B) is
weaker than rate βB (B → C), we do not observe a delayed drop in tension. Recently, Burton
et al. (2006) presented a case in which the polarity of phase 3 and 4 was in the same direction
when a large (1%) release in rabbit psoas fiber was tested. Thus, polarity of phase 3 may be
determined by the experimental conditions.

In all cases, the transitions satisfy the Le Châtelier–Brown Principle. From the above
discussion, it is clear that phase 2 represents A ↔ B interconversion (step 1), with the fast
apparent rate constant of λ2, and that phase 3 represents B ↔ C interconversion (step 2), with
the medium apparent rate constant λ3 as indicated in Scheme 3. What it is important to notice
here is that both phase 2 of stretch and phase 2 of release arise from the same elementary step
of the cross-bridge cycle, because tension transients on stretch and release are almost in mirror
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image to each other (Figs. 1 and 3). Similarly, phase 3 of stretch and phase 3 of release arise
from the same elementary step. Due to energetic considerations (Eqs. 16–21), however, the
resulting rate constants for stretch and release are asymmetric. This is referred to as “non-
linearity” of the rate constants (Huxley and Simmons 1971), and accounts for the fact that
tension transients are not in perfect mirror image on stretch and release, as shown in Fig. 1A
and 1B. From the above discussions, it can be concluded that tension develops (increases) by
two mechanisms: through the fast B → A transition (phase 2) that occurs on release (counter-
clockwise cycle in Scheme 3; Fig. 1B), and through the medium-speed B → C transition (phase
3) that occurs on stretch (clockwise cycle; Figs. 2 and 3A).

Conclusion 5
The three-state model (Scheme 3) can explain phase 2 and phase 3 of force transients without
violating the Le Châtelier–Brown Principle, provided that step 3 is the rate-limiting step, the
middle state (B) is a low-or no-force state, and there is a ratchet mechanism to increase the
A → B transition or to diminish the C → B transition in response to stretch. Both states A and
C must bear force, and step 1 must be faster than step 2.

In performing perturbation experiments in muscle fibers and probing the elementary steps of
the cross-bridge cycle, it is important to keep the length change small. We typically use a
sinusoidal length change with a 0.25% peak-to-peak amplitude, which corresponds to 1.9 nm
(or ±0.95 nm) at the cross-bridge level when 40% series compliance is considered. Because
this is smaller than the step size (4–11 nm: Molloy et al. 1995; Guilford et al. 1997; Kitamura
et al. 1999), the elementary steps can be probed. A 10% length change, by contrast, corresponds
to 75 nm at the cross-bridge level, and the cross-bridge would have to cycle many (7 to 19)
times to compensate for this large length change. The time course of such an experiment would
be limited by the slowest step of the cycle. As is seen in Eq. 43, even a small length change
has a strong effect on cross-bridge occupancy, and therefore results in a large change in force.

10 Effects of MgATP and phosphate (Pi)
The next question is whether, in Scheme 3, cross-bridges cycle in the clockwise direction or
in the counter-clockwise direction to consume ATP and to perform work. To answer this, we
need to look into the effects the substrate (MgATP) and product (phosphate and MgADP)
concentrations have on the apparent rate constants.

In rabbit psoas fibers, an increase in the the MgATP concentration was shown to accelerate
the rate constants of phases 2 and 3 in sinusoidal length-change experiments (Kawai 1978). In
sinusoidal analysis, the apparent rate constant of phase 2 is termed 2πc, and that of phase 3 is
termed 2πb (see Scheme 3). Because the temporal resolving power (signal-to-noise ratio) is
greater in sinusoidal length-change experiments than in step length-change experiments, we
adapted this technique. According to conclusions 2 and 3 above, the effect of ATP implies that
the MgATP binding is associated with a fast reaction step whose rate constant is comparable
to 2πc. We have also found that an increase in the Pi concentration accelerates the rate constant
of phase 3 (2πb), but that Pi does not significantly affect the rate constant of phase 2 (2πc)
(Kawai 1986). In light of conclusion 3, this observation implies that the Pi binding step is
coupled to a medium-speed step with a rate constant comparable to 2πb. If we fit these results
to Scheme 3, then it follows that ATP binding is associated with step 1, whereas Pi binding is
associated with step 2. These possibilities are considered quantitatively in the following
Sections 11–13.
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11 Substrate-binding step with a conformational change
To indicate a cross-bridge state we now use Xi (i = 0, 1, 2, …). When Xi is used in algebraic
expressions, we define it as the probability of the cross-bridge state, rather than the
concentration. Because substrate (S) binding to cross-bridges at X1 is rapid, this reaction can
be described by an equilibrium with association constant K1. The basis for this is that the
binding reaction starts with a diffusion-limited collision between S and X1, and the resulting
product, X2, is the state immediately after the collision (collision complex). X2 then undergoes
a slower conformational change (isomerization) to become X3:

The math that corresponds to Scheme 5 is identical to that of Scheme 4 with the following
substitutions: X1 in place of A, X2 in place of B, X3 in place of C, K1S in place Kα, k2 in place
of β, and k−2 in place of β′ (note, however, that we are not correlating A to X1, B to X2, etc).
In this substitution, S is the substrate (MgATP) concentration and a constant over time in
skinned fiber experiments, because the muscle preparation is bathed in a large volume of
solution with a fixed MgATP concentration; the solution is usually buffered by the ATP
regenerating system, creatine phosphate and creatine kinase (CP/CK) or the equivalent (see,
however, Cooke and Pate (1985) for a problem with this approach). Therefore, equations to
describe Scheme 5 can be derived from Eqs. 33–36, with the above substitutions, and the results
can be calculated using Eq. 37. That is, Scheme 5 has the apparent rate constant:

(44)

Thus, λ2 increases and saturates hyperbolically with an increase in S. The data of 2πc vs. S that
were obtained from rabbit psoas fibers were fitted to Eq. 44 to derive three kinetic constants
(K1 = 1.4 mM−1, k2 = 440 s−1, k−2 = 100 s−1 at 20°C: Kawai and Halvorson 1989) that
characterize Scheme 5. Based on caged ATP experiments, Goldman et al. (1984) reported that
the second order rate constant of cross-bridge detachment is at least 500 mM−1 s−1 (rabbit
psoas, 20–22°C). This number is equivalent to K1k2 (initial slope of Eq. 44) of Scheme 5, and
is in approximate agreement with the value calculated from it (1.4 mM−1 × 440 s−1 = 620
mM−1 s−1). The NPE-caged ATP that was used did not allow faster rate constants to be probed,
in part because of the slow rate of photolysis (~100 s−1) (Goldman et al. 1984) and also because
of its competition with ATP (Thirlwell et al. 1995). Hence, the saturation phase of Eq. 44 cannot
be defined based on caged ATP experiments. Sinusoidal analysis does not have these
limitations. Hence Eq. 44 has been utilized extensively to characterize other fasttwitch (Galler
et al. 2005) and slow-twitch (Wang and Kawai 1996) skeletal muscle fibers, and porcine (Zhao
and Kawai 1996) and bovine (Fujita et al. 2002) myocardium as well as Drosophila
melanogaster indirect flight muscles (Swank et al. 2006), as summarized in Table 2. Solution
studies of S1 from rabbit back muscles (performed at 20–23°C) yielded K1 = 4.5 mM−1, k2 =
400 s−1, and k−2<0.02 s−1 (Bagshaw et al. 1974), and similar studies of actoS1 (performed at
20°C) yielded K1k2 = 1500 mM−1 s−1 (Millar and Geeves 1988). Similarly, studies of myofibril
suspension (at 20°C) yielded K1k2 = 1800 mM−1 s−1 and k−2~0 (Herrmann et al. 1994). Thus,
it can be concluded that K1 and k2 were in approximate agreement in four very different
preparations.

From the above discussion, it is clear that X1 and X2 correspond to state A in Scheme 3, and
that X3 corresponds to state B. This assignment cannot be transposed because that would
require that the slow rate constant, λ3(= 2πb), decreases as S increases, yet 2πb was found to
increase concomitant with an increase in tHe MgATP concentration (Kawai 1978;Kawai and
Zhao 1993). This assignment demonstrates that a cross-bridge cycles in the clockwise direction
in Scheme 3. With regard to the ratchet mechanism discussed in Section 9, we have
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experimental evidence that K1 (ATP binding) becomes larger as isometric tension is decreased
by various experimental manipulations (Zhao et al. 1996), indicating that cross-bridges detach
more readily as load is reduced. This mechanism is consistent with the Fenn effect (Fenn
1923).

12 ADP as a competitive inhibitor of ATP
It has been shown that an increase in the MgADP concentration results in a decrease in the rate
constants of phase 2 and phase 3 (Kawai 1986; Kawai and Halvorson 1989). This result can
be interpreted as the effect of a competitive inhibitor (Scheme 6).

where D is MgADP, K0 is the association constant for D to X1, and X0 is the ADP-bound state.
It is known that myosin S1 has only one nucleotide-binding site (Rayment et al. 1993), and
that it can bind either MgATP or MgADP. In Scheme 6, K0 is written underneath the reaction,
because the association is the reversal reaction, from X1 to X0.

Because X0, X1 and X2 lose and gain as a group in Scheme 6, Eq. 45 can be set up.

(45)

From the mass action law,

(46)

where D is the MgADP concentration. Because Xi is the probability,

(47)

where XT is a constant of time while we make the observation at the high speed. By eliminating
X0, X1 and X2 from Eqs. 45–47, we arrive at:

(48)

(49)

(50)

From Eq. 48 (Appendix 1), we get:

(51)

where X30 is an integration constant and X31 is the steady state probability of X3:
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(52)

Other steady state probabilities are:

Therefore, Scheme 6 includes an exponential process with an apparent rate constant λ2, as
defined by Eq. 50. λ2 decreases hyperbolically as D is increased. Fitting the data from the ADP
study in rabbit psoas fibers at 20°C to Eq. 50 led us to deduce that K0 = 2.8 mM−1 (Kawai and
Halvorson 1989) (Table 2). In comparison, solution studies of S1 performed at 20–23°C yielded
K0 = 3.7 mM−1 (Bagshaw et al. 1974). K0 is least important among all kinetic constants,
however, because D is minimal (0.01–0.02 mM) in the presence of CP/CK (Meyers et al.
1985). Hence X0< 0.01 and few cross-bridges are distributed in the AMD state.

The above discussion makes it clear that X0, X1 and X2 correspond to state A in Scheme 3,
and thatX3 corresponds to state B in Scheme 3. Specifically, X1 corresponds to AM (A = actin.
M = myosin), to which no nucleotide is bound. X2 corresponds to AM*ATP, and X0 to
AM.ADP. X3 corresponds to both the weakly attached AM.ATP and the detached M.ATP.
Recently, Palmer et al. (2007) showed a cross-bridge model in which 2πc corresponds to the
detachment step (X2 ↔ X3 interconversion), based on the stochastic attachment and
detachment cycle of cross-bridges.

13 Phosphate release step with a conformational change
Assuming that a cross-bridge state X4 makes a conformational change to generate state X5,
then the phosphate (P) is released to result in state X6 (Scheme 7):

If this reaction is viewed in the opposite direction, it follows that P forms a collision complex
with X6 to result in X5, and that X5 makes a slow conformational change to result in X4.
Mathematically this situation is exactly the same as that described in Scheme 5, with the
following substitutions (but not correlations): X6 in place of X1, X5 in place of X2, X4 in place
of X3, P in place of S, K5 in place of K1, k−4 in place of k2, and k4 in place of k−2. Therefore,
Eq. 44 allows us to derive the apparent rate constant of Scheme 7 as:

(53)

where P is the Pi concentration, and K5 is the association constant for P to X6. In Scheme 7,
K5 is written underneath the reaction, because the Pi association is the reversal reaction, from
X6 to X5.

The above discussion makes it clear that X4 corresponds to state B, and X5 and X6 to state
C, of Scheme 3. This assignment cannot be transposed, because from that it would follow that
an increase in the Pi concentration results in an increase in force (state C), which is opposite
to what was observed (Cooke and Pate 1985;Kawai 1986). A transposition of this assignment
would also contradict to the previous assignment of the ATP binding step (cross-bridges cycle
in the clockwise direction in Scheme 3), because Pi must be released from the cycle.
Consequently, X4 corresponds to the detached M.ADP.Pi state and the weakly attached
AM.ADP.Pi state; X5 corresponds to the strongly attached AM*ADP.Pi state, and X6
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corresponds to the AM*ADP state. It must be pointed out here that the AM*ADP state (X6) is
completely distinct from the AM.ADP state (X0), which is consistent to solution studies (Sleep
and Hutton 1980).

When examining the Pi effect, there is also a fast reaction to the left of Scheme 7 (step 1 in
Scheme 3) that cannot be ignored, based on conclusion 3 above. The analysis is carried out in
the same way as in Scheme 4, to result in the apparent rate constant λ3 (Kawai and Halvorson
1991):

(54)

σ is defined in Eq. 52 (0<σ<1). Thus, the apparent rate constant λ3 (2πb) increases and saturates
with an increase in either S or P, and it decreases with an increase in D. As seen in Eq. 53 or
Eq. 54, λ3 is a hyperbolic function of P, and fitting the data to this hyperbolic function makes
it possible to deduce three kinetic constants (k4, k−4, K5). σ of Eq. 52 is obtained from the ATP
study, where the K0D term can be dropped because D is very small (0.01–0.02 mM) in the
presence of CP/CK. Pi is thought to be released via a narrow deep cleft (back door) in S1
(Yount et al. 1995); hence it is not likely that ADP competitively binds to the Pi binding site.
An increase in the ADP concentration decreases the rate constant 2πb (λ3), but this is via a
reduction of σ in Eqs. 52 and 54.

Equations 53 or 54 has been used extensively to analyze cross-bridge kinetics in rabbit skeletal
muscle fibers (Fortune et al. 1991; Kawai and Halvorson 1991; Dantzig et al. 1992; Millar and
Homsher 1992; Walker et al. 1992; Wang and Kawai 1997; Galler et al. 2005). With sinusoidal
analysis, k4 = 56 s−1, k−4 = 129 s−1, and K5 = 0.069 mM−1 were deduced for rabbit psoas fibers
at 20°C (Kawai and Halvorson 1991). These values compare with those from caged Pi
experiments (k4 = 79.2 s−1, k−4 = 114.7 s−1, K5 = 0.27 mM−1; Dantzig et al. 1992, 20°C) as
well as pressure release experiments (k4 ~ 15 s−1, k−4 ~ 36 s−1, K5 = 0.255 mM−1 at 12°C:
deduced from Fortune et al. 1991; see note b of Table 2 legend), and are summarized in Table
2. If the data of the pressure-release experiment are extrapolated to 20°C using the Q10 values
reported for k4 (6.8), k−4 (1.6), and K5 (1.1) (Zhao and Kawai 1994), then k4 = 69 s−1, k−4 =
52 s−1, and K5 = 0.275 mM−1 will result. If the data of the caged Pi experiment by Walker et
al. (1992) (Table 2) are extrapolated to 20°C using the same Q10 values, then k4 = 70 s−1,
k−4 = 145 s−1, and K5 = 0.172 mM−1. As seen with these numbers, approximate agreement was
achieved based on three different techniques from four laboratories. K5 deduced from
sinusoidal analysis is somewhat (2.5–4 ×) smaller, primarily because Fortune et al. (1991),
Dantzig et al. (1992), and Walker et al. (1992) fitted the rate constant results to Eq. 53, whereas
Kawai and Halvorson (1991) fitted the Pi dependence data of both rate constant (Eq. 54) and
amplitude simultaneously. In slow-twitch fibers of rabbit soleus, Millar and Homsher (1992)
found: k4 = 1.96 s−1 and the second order Pi binding constant K5k−4 = 1.994 mM−1 s−1 when
using caged Pi at 20°C. These numbers compare well to those of Wang and Kawai (1997) in
Table 2: k4 = 5.7 s−1, k−4 = 4.5 s−1, K5 = 0.18 mM−1, hence K5k−4 = 0.81 mM−1 s−1. k4 is
usually larger in our case, because of the inclusion of σ (Eq. 54) that accounts for fast equilibria
to the left of Scheme 7. Because Pi released by the photolysis of caged Pi is limited to 2–3
mM, it is difficult to probe the saturation phase using this technique (K5 = 0.18 mM−1 indicates
that half saturation occurs at 5.5 mM Pi). Although Eq. 54 demonstrates a sensitivity to S
through σ, this equation has not been used to deduce K1 or K2 because of uncertainties about
the ATP cleavage step (step 3), which skinned-fiber studies have not been able to resolve (see
Section 14).
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Conclusion 6
When the effects of ATP, ADP and Pi are considered, the only model consistent to the Le
Châtelier–Brown Principle involves assigning phase 2 to steps surrounding the ATP binding
step, and assigning phase 3 to steps surrounding the Pi release step. Consequently, cross-bridges
cycle in the clockwise direction in Scheme 3, consuming ATP, generating force, and releasing
Pi and ADP. Therefore, the transient force increase in phase 2 that was seen by Huxley and
Simmons (1971) following step-length release is not the result of energy transduction (that
requires ATP), but of a transient accumulation of the number of cross-bridges in the A state
(which includes both the AM and AM*ATP species). Phase 2 was not correctly assigned
because Huxley and Simmons (1971) used intact fibers, and hence did not examine the effects
of ATP or Pi concentration.

14 Combined cross-bridge model
Schemes 6 and 7 are combined to summarize the complete cross-bridge Scheme 8.

Note that the steps are renumbered. These are called “elementary steps” or “fundamental
steps” (Gutfreund 1995). In this scheme, states X3 and X4 are equated and represented as
X34 for simplicity. In reality, X3 ↔ X4 (step 3) corresponds to the ATP cleavage step (Lymn
and Taylor 1971; Bagshaw et al. 1974;Xu et al. 2003), which is difficult to resolve in skinned
fiber studies as they depend on strongly attached cross-bridges. Therefore, cross-bridge states
before and after the cleavage of ATP are merged together and referred to as the Det (detached)
state. The Det state includes both the weakly attached states (AM.ATP,AM.ADP.Pi) and the
truly detached states (M.ATP, M.ADP.Pi). Because weakly attached states are based on ionic
interactions (Brenner et al. 1982), at 200 mMionic strength the majority of Det consists of truly
detached states. An accounting of step 3 is one remaining problem that should be solved by
skinned fiber experiments in the coming years. What we know already is that step 3 is not very
much slower than 2πb (λ3), because if it were slower, then the rate constant 2πb would not be
sensitive to the ATP concentration. Therefore, step 3 cannot be rate-limiting for the entire
cross-bridge cycle as once suggested (Stein et al. 1985) based on four-state model of Lymn
and Taylor (1971). Based on solution studies, it is known that in fast-twitch muscles at 20°C,
k3 and k−3 are on the order of 30–120 s−1 (Bagshaw et al. 1974; Xu et al. 2003). The fact that
this is similar to the rate constants of step 4 complicates the problem.

Step 6 is the slowest step in the cycle, and can be considered the “rate-limiting” step. If k6 +
k−6 is similar to or faster than k4 + k−4, then it follows that an increase in [MgATP] reduces
2πb and an increase in [MgADP] increases 2πb, both of which are contrary to the experimental
evidence (Kawai 1978, 1986). Therefore, k6 + k−6 < k4 + k−4, which makes step 6 the slowest
in the cross-bridge cycle. The product of step 6 can be either X0 (as shown in Scheme 8) or
can be converted directly to X1 by ADP release. Experiments in solution carried out by Sleep
and Hutton (1980) indicated that K6~50 (i.e., k−6 ≪ k6), and that reversal of the X0 state to the
X6 state is possible (shown in a dashed arrow in Scheme 8). That is, X0 is likely to be an
intermediate product of the hydrolysis pathway, and a part of the cross-bridge cycle.

An examination of Scheme 8 reveals that collision complex formation is followed by a
conformational change in three places: (1) step 1 (ATP binding) to step 2, (2) the reversal of
step 5 (Pi binding) to step 4, and (3) the reversal of step 0 (ADP binding) to step 6. The
conformational change presumably accompanies a change in the force on a cross-bridge and
secures ligand binding. This is consistent with the suggestion from Huxley (1980), that
chemical reaction (collision complex formation) and mechanical reaction (conformational
change) alternate in the cross-bridge cycle. Because these sequential reactions are difficult to
resolve, they are frequently merged together. Therefore, the “Pi release step” may include both
steps 4 and 5. In fact, the strongly attached AM*ADP.Pi state was not recognized in solution
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studies. Hence, in solution systems the conformational change (step 4) must have been merged
together and referred to the “Pi release step”. Similarly, the “ADP release step” may include
both steps 6 and 0. It has been often stated that the ADP release step is slow, but what that
really means is that the preceding conformational change (step 6) is slow. The ADP release
step itself (step 0) is a reversal of collision complex formation and, hence, cannot be slow.
Similarly, “ATP binding” may include steps 1 and 2.

For the steady-state calculations, step 0 through step 5 can be approximated by equilibrium,
and Xi can be calculated from five equilibrium constants (Ki) as formulated by Eq. 18 of Kawai
and Halvorson (1991), except when the Pi concentration becomes small (such as < 2 mM). In
this case, X6 becomes large, increasing the turnover rate k6X6, which contributes significantly
to the steady-state probability of all Xs, hence calculation of Xi needs k6 (Section 18) and all
other rate constants in Scheme 8. The rate-limiting step (step 6) cannot be approximated by
equilibrium, as discussed in Sections 8 and 18 and in conclusion 4.

15 Force generation step, isometric tension, and work performance
Solution studies have shown that the Pi release step accompanies a large reduction in free
energy (ΔG°), amounting to ~1/2 the energy generated by ATP hydrolysis (White and Taylor
1976). Hence, this step is almost irreversible (Sleep and Hutton 1980) (note: ΔG° = −RT log
K, where R is the gas constant and K is the equilibrium constant), requiring 10–100 M Pi for
reversal (Taylor 1979). This is why White and Taylor (1976) suggested that the Pi release step
is associated with the force generation step. Skinned-fiber studies, in contrast, demonstrated
that even at mM levels, Pi can diminish isometric tension (Cooke and Pate 1985; Kawai
1986), which indicates that the Pi release step is reversible. This reversibility has been
demonstrated through 18O exchange experiments (Webb et al. 1986), and by equilibrium
constant measurements showing that K4 = 0.43 (step 4), and 1/K5P ≅ 1.8 (step 5 at 8 mM Pi)
based on values listed in Table 2 for rabbit psoas fibers (Kawai and Halvorson 1991). Therefore,

 and , and their absolute values are less than RT (= 2.44
kJ/mole), hence there is not much change in the free energy in steps 4 or 5. It is likely that in
skinned fibers, the free energy of ATP hydrolysis is stored in the contractile apparatus as elastic
(mechanical) energy, which can be sensed as force, and can be readily reversed to chemical
energy as the Pi concentration is elevated in the mM range. In the solution system, in contrast,
a great deal of the liberated free energy is lost as heat. Hence, such a reaction cannot be reversed.

If we focus on one half sarcomere, isometric tension in this structure can be represented by Eq.
55 (Kawai and Zhao 1993). Because all cross-bridges are arranged mechanically in parallel
(Fig. 6), overall tension is their sum of the tension of each.

(55)

where Ti is tension when all cross-bridges are in state Xi (Xi = 1). T34 = 0, because X34 is a
state that does not generate or support tension. Other Ti values are deduced by comparing
isometric tension with Xi as functions of S, P and D. The results of such comparisons are plotted
in Fig. 5, for both rabbit psoas fibers (Kawai and Zhao 1993) and soleus slow-twitch fibers
(Wang and Kawai 1997). The formulation of Eq. 55 does not change if two half sarcomeres
are added serially to make a full sarcomere, assuming that both halves behave in the same way.
Similarly, the formulation does not change if many sarcomeres are added in series. If many of
these units are added in parallel to make a muscle fiber, then force increases in proportion to
the cross-sectional area (AC). Tension, on the other hand, remains the same because: (Tension)
= (Force)/AC.
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X5 (AM*ADP.Pi) is a collision complex between P and X6 (AM*ADP). Tension supported
(or generated) by X5 and X6 must be the same, i.e., T5 = T6 because the conformation of a
protein (or proteins) cannot change instantly as the collision complex is formed. If the
conformation is the same, the tension must be the same. Because T34 = 0, force must be
generated at step 4, with the transition of X34 to X5. Experimental evidence in support of this
insight comes from an evaluation of force as the function of the Pi concentration (Fig. 5)
(Kawai and Halvorson 1991;Kawai and Zhao 1993;Wang and Kawai 1997;Ranatunga
1999;Tesi et al. 2002); force does not suddenly decrease as Pi is bound to cross-bridges
(Dantzig et al. 1992;Takagi et al. 2004). If additional force is generated upon ADP release, as
reported in the case of smooth muscles (Rosenfeld et al. 2001), then it follows that T6<T0,
T0<T1, or T6<T1. However, there is no evidence for this in skeletal muscle fiber studies as
shown in Fig. 5.

An examination of Fig. 5 shows that forces supported by AM.ADP and AM are not significantly
different (T0≈T1). This observation demonstrates that AM.ADP is indeed the collision
complex. However, force supported by AM*ATP is significantly less than that supported by
AM, indicating that a conformational change may occur by the time AM*ATP is formed. This
supposition is strengthened by the finding of yet another state AM†ATP(X1b) between the AM
and AM*ATP states, as discussed in Section 16 below. In this case, the tension data as a
function of S fit well to the model if we assume that T1 = T1b (Kawai and Zhao 1994; Wang
and Kawai 1997).

In parallel to force generation at step 4 and the transduction of chemical energy into elastic
(mechanical) energy, the series compliance (including cross-bridge compliance) is strained.
This must be the point of the cross-bridge cycle at which a swing of the lever arm (Dominguez
et al. 1998; Geeves and Holmes 1999; Cooke 2005) takes place. Once force is generated, the
cross-bridge is stabilized in this conformation by Pi release to result in X6. The contractile
system is now ready to perform external work. For this, it is convenient that the next step (step
6) is slow, as the muscle has to transfer both the mechanical energy and the momentum to the
load before/while lifting it. The momentum is calculated according to Eq. 56 and related to the
force application F(t) and its duration Δt:

(56)

where Fav is the average force. Equation 56 represents a quantity known as the “force-time
integral” among muscle physiologists. This equation shows that the momentum increases with
increased duration (Δt) of force application. Therefore, the longer the duration, the less force
is needed to generate the same amount of momentum. Consequently, the slowest step 6 in the
cross-bridge cycle is the most convenient and advantageous place to perform the work (Kawai
and Zhao 1993). Figure 5 shows that force progressively decreases as a cross-bridge transitions
from X6 to X0 to X1 to X2 and as external work is performed. As is clear from the above
discussion, “force generation” and “work performance” are two different entities, although the
term “power stroke” is often used interchangeably in referring to each. It would be highly
desirable that future publications clearly distinguish between these two distinct concepts.

16 Exponential process D and one extra cross-bridge state
In some of our publications on rabbit psoas fibers (e.g., Kawai and Zhao 1993; Zhao and Kawai
1994) as well as soleus slow-twitch fibers (Wang and Kawai 1996, 1997) and on myocardium
(Kawai et al. 1993; Zhao and Kawai 1996), an extra exponential process (termed process D)
that occurs at higher frequency than process C (2πd>2π c) was described. Similarly, in the case
of phase 2 of step analysis, Abbott and Steiger (1977), Coupland et al. (2001), and Davis et al.
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(2002) resolved two exponential processes in rabbit psoas fibers, and Ford et al. (1977)
recognized four exponential processes in frog tibialis anterior fibers. Because of the ATP
dependence of process D, we ascribed this process to an extra step that occurs immediately
after ATP binding to the myosin head as in Scheme 9:

where X1b is the collision complex, step 1b is a conformational change, and step 2 is yet another
conformational change. X1b corresponds to AM†ATP, X2 to AM*ATP and X3 to AM.ATP.
Processes D and C appear to be better separated in slow-twitch fibers (Wang and Kawai
1996, 1997) and in myocardium (Kawai et al. 1993) than in fast-twitch fibers. The rate constants
of step 1b are entered in Table 2 where available. While it is entirely possible that process D
corresponds to the extra step in the cross-bridge cycle that is shown in Scheme 9, we have not
performed this analysis in recent publications, primarily because the cross-bridge scheme and
associated math become more complex, and we do not wish to over interpret our results. We
have been using phenomenological correlations between observed exponential processes and
the elementary steps among various muscle preparations (the columns in Table 2), but this
correlation may differ depending on which muscle type being tested, in particular in the case
of slow-twitch fibers and in myocardium. It is possible that the process D becomes more
important in slow-twitch fibers and in myocardium than in fast-twitch fibers.

17 Stiffness
Stiffness depends on the number of attached cross-bridges as well as on series compliance
(Huxley et al. 1994; Wakabayashi et al. 1994; Kojima et al. 1994; Higuchi et al. 1995) and
parallel stiffness (Fig. 6). Because these elements are intermixed and distributed, the formal
mathematical treatment becomes extremely complex, as was shown by Mijailovich et al.
(1996). The particular patterns in which cross-bridges are arrayed and linked to thin filaments
add another degree of complexity with respect to determining the relationship between the
force of individual cross-bridges and measured stiffness or tension (Tanner et al. 2007). For
practical applications, however, we have previously proposed a simple model in which a
parallel array of attached cross-bridges “y” is connected to a series compliance q (Fig. 6)
(Wang and Kawai 1997; Kawai 2003), and the entire structure is connected to parallel stiffness
SP. Both series compliance and the parallel stiffness can have viscous components at the same
time. Hence, in general, q and SP are frequency-dependent, complex numbers. In this model:

(57)

and Ya is the stiffness contribution from the cross-bridges when all cross-bridges are attached
(Xa = 1). The contribution of the parallel stiffness can be removed by subtraction of the
viscoelasticity of a muscle fiber when all cross-bridges are detached (when ⊗ is open in Fig.
6). Classically, SP would be the viscoelasticity of relaxed muscle fibers. However, it may be
better to measure this quantity on fibers that are relaxed by using 40 mM 2,3- butanedione
monoxime (BDM) (e.g., Fujita et al. 2002) in the presence of Ca2+ in new experiments, because
the property of connectin (titin) has been reported to change once Ca2+ is bound to it (Labeit
et al. 2003). Connectin, residual sarcolemma, and collagen in the extra cellular matrix
contribute most to parallel stiffness. In rabbit psoas fibers at a sarcomere length of 2.5 μm,
SP is small and almost negligible (Kawai and Brandt 1980) making parallel stiffness a minor
consideration. Because Eq. 57 approaches 1/q + SP as Xa becomes large, stiffness cannot be
used to index the number of attached cross-bridges as is the case for the high temperature range
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in rabbit psoas fibers (Kawai 2003). When Xa is small, stiffness can be used to index the number
of attached cross-bridges. In this case, Eq. 57 becomes YaXa + SP.

18 ATP hydrolysis rate and the rate constant of step 6
The formula for calculation of the ATP hydrolysis rate can be derived from Eq. 40 (Zhao and
Kawai 1994):

(58)

In practice, the k−6 term is dropped as shown, both because this reaction is highly unidirectional
(K6~50, hence k6 ≫ k−6; Sleep and Hutton 1980) and due to the fact that X0 is very small
(<0.01) under normal experimental conditions in which the ADP concentration is 0.01–0.02
mM in the presence of CP/CK. AT is the total myosin S1 concentration, and it is 0.17–0.2 mM
in psoas fibers (Yates and Greaser 1983; Tikunov et al. 2000), 0.13–0.14 mM in soleus fibers
(Tikunov et al. 2000), and 0.15 mM in myocardium (Barsotti and Ferenczi 1988). k6 = 16–18
s−1 was deduced using Eq. 58 and data from the ATP hydrolysis rate in rabbit psoas fibers at
15–20°C (Zhao and Kawai 1994).

19 Series compliance, force development, and the slowest step in the cross-
bridge cycle

As discussed in Section 17, series compliance makes an important contribution on muscle
mechanics (Huxley et al. 1994; Wakabayashi et al. 1994; Kojima et al. 1994; Higuchi et al.
1995; Wang et al. 1999; Kawai 2003). This is particularly evident at the onset of contraction,
when force develops from a zero load to the maximum load. In the following, we define that
η is the step size, ν is the number of steps that take place in 1 sec, and ρ′ is the stiffness of one
half sarcomere, which includes the contribution from both series compliance and cross-bridges
(Eq. 57). For simplicity, we assume that SP = 0. Under isometric conditions, the increase in
force (dF) during dt is:

(59)

In Eq. 59, ην is the distance in 1 sec to pull the thin filament toward the M-line (hence ην is
the velocity of filament elongation), which at the same time stretches series compliance and
other compliant elements of cross-bridges to result in a force increase by ρ′ (ην). Let us assume
that developed force (F) affects η in the following way:

(60)

where F0 is the maximum isometric force. That is, a step of the cross-bridge becomes
increasingly more difficult as force develops, and as discussed by Piazzesi et al. (2007).
Equation 60 can be actually derived from the force–velocity relationship (see e.g., Woledge et
al. 1985; Debold et al. 2005) by a linear extrapolation of the velocity at F0. An alternative to
Eq. 60 can be generated if we assume that:

(61)

Equation 61 is an expression of the Fenn effect (Fenn 1923), i.e. the rate of stepping becomes
increasingly more difficult as force develops. From Eq. 59 and Eq. 60 (or Eq. 61), we get:
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(62)

(63)

(64)

Thus, from Eq. 62 (Appendix 1) we arrive at:

(65)

This system has one exponential process with an apparent rate constant of λ4 and amplitude
F0. Note that F(0) = 0 is assumed. Equation 65 would be the form of a force time course in
which a fiber is suddenly activated by Ca2+, or in which the length of the active fiber is suddenly
released to zero load and restretched to its original length (resulting in force redevelopment
like that seen by ktr measurement). The exponential function (Eq. 65) may be a good
approximation for describing the time course data. In fact, available data are consistent with
the exponential function (e.g. Regnier et al. 1995; Stehle et al. 2002; Piroddi et al. 2003).

Now, let us evaluate the right side of Eq. 64. With single myofibrils, Piroddi et al. (2003)
observed ktr = 8.0 s−1 and kact = 7.9 s−1 in rabbit psoas at 15°C. These are the values of λ4. 1/
ν0 is the average time a cross-bridge spends for one cycle, and is related to the elementary steps
by:

(66)

In Eq. 66, each term on the right-hand side corresponds to a time constant: 1/λ2 is the time
constant of step 2, which is the average time a cross-bridge spends to complete step 2; similarly,
1/λ3 to is the average time spent to complete step 4, and 1/(k6 + k−6) is the average time spent
to complete step 6. If k6≪ λ3 (note that: k−6 ≪ k6, λ3<λ2), then from Eq. 66,

(67)

k6 ≅ 16–18 s−1 was reported in rabbit psoas fibers at 15–20°C (Zhao and Kawai 1994); hence
ν0~17 s−1. η0 = 5.3 nm was reported by Kitamura et al. (1999) for the step size (see also Molloy
et al. 1995; Guilford et al. 1997). Thus, the right side of Eq. 64 is:

The left side of Eq. 64 (F0/ρ′) is the same as the (force):(stiffness) ratio, or the instantaneous
length release needed to abolish full tension. The ratio (active tension):(elastic modulus) was
measured to be T:Y∞ = 1.14% in rabbit psoas fibers at 15°C (Zhao and Kawai 1994). Therefore,
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where 1.25 μm is the half sarcomere length of the experiment. Thus, approximate agreement
can be reached for both sides of Eq. 64, which may validate this equation and the theory behind
it. Because ktr is slowest of all rate constants measured in the cross-bridge cycle, this parameter
has been thought to be limited by the slowest step in the cross-bridge cycle (Gordon et al.
2000). The above analysis provides support for this hypothesis.

The fact that ktr is affected by Pi (Regnier et al. 1995; Tesi et al. 2000) is presumably related
to the approximation used in Eq. 67, which can be improved by inclusion of the Pi effect (λ3
is affected by the Pi concentration: Eq. 54). Assuming that the 1/λ2 term can be ignored in Eq.
66 (because λ2 ≫ k6), Eq. 66 can be rewritten by using Eq. 54 to result in Eq. 68.

(68)

(69)

(70)

Equation 68 is a hyperbolically increasing and saturating function with respect to P, which is
similar to Eqs. 53 and 54. Thus, an increase in P results in the increase in λ4 via Eq. 63 and as
reported (Regnier et al. 1995; Tesi et al. 2000). Similarly, an increase in S results in the increase
in λ4 via S → σ → λ3 → ν0 → λ4 (see Eqs. 52, 54, 66, 63, respectively).

Several colleagues in the field have suggested that exponential process A of sinusoidal analysis
(and hence phase 4 of step analysis) may represent the slowest step of the cross-bridge cycle
(step 3 in Scheme 3, and step 6 in Scheme 8). Until recently, we have discounted this possibility
because the three-state model, as represented in Scheme 3, can have only two exponential
processes (see Appendix 2 for an analysis of a general case) and, in principle, the rate constants
of the slowest step cannot be detected by the perturbation analysis method. The same is true
for Scheme 8. However, the introduction of series compliance changes this outlook
significantly. As shown above, series compliance may introduce an extra exponential process
with a slow rate constant, such as 2πa of process A, which is present in all three subtypes of
fast-twitch muscle fibers examined (Galler et al. 2005). In contrast, the amplitude of process
A(phase 4) is very small or even absent in the cases of insect indirect flight muscles (Fig. 3)
(Thorson and White 1969;Abbott 1973;Pringle 1978;Marcussen and Kawai 1990;Swank et al.
2006), myocardium (Saeki et al. 1978,1991;Zhao and Kawai 1996;Wannenburg et al.
2000;Fujita et al. 2002), and covalently but partially cross-linked rabbit psoas fibers (Tawada
and Kawai 1990). In slow-twitch fibers, process A is present but its amplitude is small (Kawai
and Schachat 1984;Wang and Kawai 1996,1997). These observations suggest that the
sarcomere structure is more rigid in these muscle preparations than in fast-twitch skeletal
muscle fibers, minimizing the amplitude of process A. In fact, in insect muscle fibers, an extra
C-filament is present to secure the connection between the thick filament and the Z-line, and
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to stabilize the sarcomere structure (White 1983). In cardiac muscles, there is a possibility that
myosin binding protein C (MyBP-C) reaches the thin filament (Spirito et al. 1997;Squire et al.
2003), which may give extra stability to sarcomeres. In partially cross-linked rabbit psoas
fibers, the extra covalent linkage (18% of cross-bridges) was created to stabilize the
preparation, causing process A to disappear (Tawada and Kawai 1990).

Let us perform a calculation to examine the possibility that process A (phase 4) represents the
slowest step of the cross-bridge cycle. Because 2πa = 6 s−1 was observed in rabbit psoas fibers
at 20°C (Zhao and Kawai 1994), the right side of Eq. 64 becomes:

Because T:Y∞ = 1.3% was observed in the same study (20°C), the left side of Eq. 64 becomes:

Thus, the values are consistent with process A being the slowest step of the cross-bridge cycle.
This insight is, however, limited to preparations in which process A (phase 4) can be observed.
In any case, this is a subject that will be exciting to pursue in future studies.

Conclusion 7
The apparent rate constant of tension development (kact, ktr) or of process A of sinusoidal
analysis (phase 4 of step analysis) appears to be proportionate to the rate constant of the slowest
step of the cross-bridge cycle (k6), with the proportionality constant ρ′η0/F0 (Eq. 63). This
proportionality exists because of the presence of in-series compliance in sarcomeres.

20 More realistic conditions
In the discussion in Sections 7–18, the condition (α + α′ ≫ β + β′ ≫ γ + γ′) was used for the
sake of simplicity. However, what would happen if this condition were not met, and if the
conditions were merely α + α′ > β + β′ > γ + γ′ as suggested from the kinetic constants listed
in Table 2? The answer to this question is simply that the approximation becomes less accurate
as these numbers get closer to each other, and that the analysis may become qualitative rather
than quantitative. That is, there will be an increasing contribution of steps 4–5 to the apparent
rate constant λ2 of phase 2, with the Pi concentration consequently having increasingly more
influence on phase 2. The conclusions derived then become qualitative, and their usefulness
depends on one’s own expectations. They include the assignment of phase 2 and its rate
constant λ2 to step 2 of Scheme 8, and the assignment of phase 3 and its rate constant λ3 to step
4 of the same scheme. If, however, one is not satisfied with this approximation, then an exact
derivation can be undertaken according to Appendix 2. Alternatively, one could use the method
used to analyze the data from experiments in myocardium (Section 21), as this does not rely
on approximation.

21 Cardiac muscle fibers
In cardiac muscle fibers (myocardium), the apparent rate constants λ2 (2π c) and λ3 (2π b) are
closer to one another than their counterparts in skeletal muscle fibers are, and thus the
approximation approach is not as accurate as in skeletal fibers. In fact, we have found that the
Pi concentration affects the apparent rate constant 2πc significantly. In this case, the sum (Eq.
71) and the product (Eq. 72) of the two apparent rate constants can be used to deduce the kinetic
constants of the elementary steps. If we take this approach, there is no need for approximation
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except that we still have to assume that k6 is much smaller (≪) than other rate constants. Under
these conditions,

(71)

(72)

(73)

ε is defined in Eq. 49 [ε = K1S/(1 + K0D + K1S)]. For the derivation of Eqs. 71 and 72, see Eqs.
14 and 15 of Kawai and Halvorson (1991). Both Eqs. 71 and 72 are hyperbolic functions of
S, P and D, as are the previously discussed Eqs. 50 and 54. By fitting the data (effects of S,
P and D) to these equations, we can deduce all rate constants (k2, k−2, k4, k−4) and association
constants (K0, K1, K5). This method enabled us to resolve the kinetic constants of the elementary
steps in ferret myocardium (Kawai et al. 1993) and bovine myocardium (Lu et al. 2005).

Martin and Barsotti (1994) used caged ATP on guinea pig heart muscle, and deduced the second
order ATP binding constant (our K1k2) to be ~39 mM−1 s−1 at 21°C. This number compares
with the values we have calculated from Table 2: ferret myocardium 48 mM−1 s−1 (2°C, Kawai
et al. 1993), porcine myocardium 138 mM−1 s−1 (20°C, Zhao and Kawai 1996), and bovine
myocardium 240 mM−1 s−1 (25°C, Fujita et al. 2002). Araujo and Walker (1996) used caged
Pi on rat ventricular myocytes, and found the second order Pi binding constant (our K5k−4) to
be 3.1 mM−1 s−1 (15°C). This number compares well with our values calculated from Table 2
(same references): ferret myocardium 6.4 mM−1 s−1 (20°C), porcine myocardium 1.1 mM−1

s−1 (20°C), and bovine myocardium 1.8 mM−1 s−1 (25°C). Thus, even when very different
techniques and different cardiac preparations are used, we are able to achieve approximate
agreement.

22 Conclusion and future direction
As shown in this mini review, the three-state model is adequate to account for the three phases
of force transients that are generated in response to a step length change. The six-state model
is an extension of the three-state model that includes ligand (ATP,ADP, Pi)-bound states. In
order to correlate each phase of a transient to individual elementary step of the cross-bridge
cycle correctly, it is necessary to examine the effects of these ligand concentrations on the
apparent rate constants and to fit their results to the model. Therefore, any future cross-bridge
models must be able to predict the effects of these ligands, in particular those of ATP and Pi.
When studying force transients, it is best not to make a large increase in force, because this
may cause a delay in the time course to stretch series elastic elements. Since multiple cross-
bridge cycles are needed to stretch series elastic elements, the time course may be limited by
the slowest step (rate-limiting step) of the cross-bridge cycle (Section 19).
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Appendix 1
The solution of the differential equation (A1) can be found in the following way.

(A1)

Now we substitute Y(t) with Z(t) so that

(A2)

is satisfied. From Eq. A2,

(A3)

By substituting Eqs. A2 and A3 to Eq. A1, we arrive at

(A4)

By integrating Eq. A4, we get

(A5)

where Y0 is the integration constant. From Eqs. A2 and A5, we get

(A6)

Therefore, Eq. A1 has an exponential process with the rate constant λ, amplitude Y0, and the
steady state value h/λ (Eq. A6). Y0 is determined by the initial conditions.

Appendix 2
In Scheme 3, the following differential equations can be set up.
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(A7)

(A8)

(A9)

Eqs. A7–A9 can be written in matrix form.

(A10)

(A11)

(A12)

(A13)

Note the similarity of Eqs. A1 and A10. Note also that |H| = det(H) = 0, which is consistent
with Eq. A13. The eigen values (λ) of matrix H can be found by determining the roots of Eq.
A14.

(A14)

where I is the identity matrix. From Eq. A14,

(A15)
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and

(A16)

Equation A15 has three roots λ1, λ2, and λ3.

(A17)

(A18)

where R ≡ Q2 − M

With Eqs. A17 and A18, Eq. A10 can be solved to result in:

(A19)

(A20)

The elements Ui2 and Ui3 (i = 1, 2, 3) are 2 eigen vectors (column vectors) of matrix H (Eq.
A12) corresponding to λ2 and λ3, respectively, and they are time-independent variables. Their
size (length) is determined by the initial conditions (2 independent variables). A1, B1 and C1
are the steady-state concentrations (see below). The correctness of Eq. A19 can be examined
by substituting it into Eq. A10 keeping in mind that:
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From Eqs. A19 and A20, the individual solutions are:

(A21)

(A22)

(A23)

Therefore, according to Eq. 34, a force transient has two exponential processes that correspond
to phases 2 and 3, with the rate constants λ2 and λ3, respectively.

If R<0, then λ2, λ3, Ui2 and Ui3 are complex numbers, and λ3 = λ2* (Eqs. A17 and A18), and
Ui3 = Ui2*, where * indicates the complex conjugate. In this case, Eq. A19 can be rearranged
to result:

(A24)

where ℜ (Uij refers to the real, and ℑ (Uij) to the imaginary part of the complex number Uij.
Equation A24 shows that this system has a damped oscillation. However, in literature dealing
with muscle fibers, it is rare to find force transients with a damped oscillation in response to a
sudden change in an experimental condition. If a force transient should oscillate, a resonance
of the force transducer should be suspected before a conclusion is drawn. The fact that an
oscillation is absent implies that the intrinsic rate constants among the three steps in Scheme
3 differ significantly.

Steady state
By setting dA/dt = 0 and dB/dt = 0 in Eqs. A7 and A8, and with the constraints of Eq. A13, we
can solve the steady-state concentrations of A1, B1 and C1. These three values constitute an
eigen vector (column vector) which belongs to the eigen value λ1 M is defined in Eq. A16.

(A25)

(A26)
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(A27)

The turnover (ATP hydrolysis) rate is:

(A28)

A similar analysis based on Scheme 8 is found in the Appendix of Kawai (2003).
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Fig. 1.
A sketch of stretch (at A) and release (at B) experiments during a plateau of active tension in
frog semitendinosus fibers. Four phases of tension transients are indicated. Modified from Fig.
1 of Heinl et al. (1974) and reproduced with permission from The Journal of Physiology
(London)
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Fig. 2.
A record of the force time course that occurs in response to a step-length increase (at ↑, 1.5
nm/half sarcomere, which is about 0.12%) in rabbit psoas fibers at 5°C during Ca2+ activation.
Numbers indicate four phases of tension transients. Modified from Fig. 3 of Davis et al.
(2002), and reproduced with permission from the Biophysical Society
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Fig. 3.
A record of the force time course that occurs in response to a step-length increase (0.1%) (at
A) and the ensuing decrease (at B), in insect fibrillar muscle fibers. Three phases of the tension
transient are indicated. Phase 3 is most prominent in this muscle preparation, and is known as
“delayed rise in tension” on stretch, and as “delayed fall in tension” on release. 10 mg force =
98 μN. Modified from Fig. 5a of Pringle (1978), the original data having been generated by
Roger H. Abbott. Reproduced with permission from the Royal Society (London)
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Fig. 4.
The reaction profile of Scheme 1 with stretch (δl > 0) that either (1) decreases the activation

energy (Eα) of force-generating state A by δW, or (2) increases the activation energy ( ) of
the detached state B by δW, where δW = φδl, and φ is unitary force (force/cross-bridge). From

this it follows that δEα = −δW = −φδl and/or . All equations are the same for
release, except that δl < 0
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Fig. 5.
Force generated (or supported) by each cross-bridge state. □ Rabbit psoas fibers (replotted
from Kawai and Zhao 1993). ■ Rabbit soleus slow twitch fibers (plotted from data published
by Wang and Kawai 1997). The data are normalized to the force generated in response to
standard activation (TC), which is a mixture of all states. The Det state includes both weakly
attached states (AM.ATP, AM.ADP.Pi) and truly detached states (M.ATP, M.ADP.Pi). Error
bars represent SEM
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Fig. 6.
A mechanical equivalent of one half sarcomere. Cross-bridges are arranged in parallel, and
this assembly is connected to a series compliance (q). The parallel stiffness (SP) is added to
the entire structure. Although each element is written as elastic, each can have a viscous
property at the same time. Modified from Fig. 9 of Wang and Kawai (1997), and reproduced
with permission from the Biophysical Society
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Scheme 1.
The two-state model
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Scheme 2.
The expanded two-state model
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Scheme 3.
The three-state model
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Scheme 4.
The medium-speed approximation of the three-state model
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Scheme 5.
The model representing ATP (S) binding and the conformational change
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Scheme 6.
The model showing ADP (D) as a competitive inhibitor of ATP
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Scheme 7.
The two-step mechanism of phosphate (P) release
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Scheme 8.
The combined cross-bridge model with six states
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Scheme 9.
An additional step (step 1b) to account for process D
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Table 1

Mathematical symbols used; (t) indicates time-dependent variable; Sch = Scheme

Symbol Section Definition

A(t) 2 Concentration of cross-bridges in A

A1 2 Steady-state concentration of A

AC 5 Cross-sectional area

AT 2, 18 Total concentration of myosin S1

α 2, 6 Rate constant of detachment (A → B), Sch 1–3

α′ 2, 6 Rate constant of attachment (B → A), Sch 1–3

B(t) 2, 6 Concentration of detached cross-bridges

B1 2 Steady-state concentration of B β 6 Rate constant of attachment (B → C), Sch 3

β′ 6 Rate constant of detachment (C → B), Sch 3

C(t) 6 Concentration of attached cross-bridges in C

C1 6 Steady-state concentration of C D 12 MgADP concentration

δ, δx 3 Perturbation

δl 4 Stretch applied to a cross-bridge (δl>0). δl<0 for release

δW 4 Work performed on a cross-bridge by stretch (δW>0). δW<0 for release. Eq. 16

Eα 4 Activation energy of α (A → B), Fig. 4A

4 Activation energy of α′ (B → A), Fig. 4B

ε 12 ε ≡ K1S/(1 + K0D + K1S), Eq. 49

η 19 Step size

F(t) 5 Force time course

F0 19 Isometric force at steady sate

FA(t) 5 Force contribution by state A

FG(t) 5 Force contribution by state G

φ 4, 9 Unitary force, force/cross-bridge

G(t) 5 Concentration of strained cross-bridges, Sch 2

G1 5 Steady-state concentration of G

γ 6 Rate constant of C → A, Sch 3

γ′ 6 Rate constant of A → C, Sch 3

H A2 Reaction matrix, Eq. A12

J 8, 18 Turnover rate (ATPase), Eqs. 40, 58

K0 12 Association constant of MgADP, Sch 6

K1 11 Association constant of MgATP, Sch 5

k1b 16 Rate constant of step 1b, Sch 9

k−1b 16 Reversal rate constant of step 1b, Sch 9

k2 11 Rate constant of step 2, Sch 5

k−2 11 Reversal rate constant of step 2, Sch 5

K2 12 Equilibrium constant of step 2, K2 ≡ k2/k−2

k4 13 Rate constant of step 4, Sch 7
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Symbol Section Definition

k−4 13 Reversal rate constant of step 4, Sch 7

K4 15 Equilibrium constant of step 4, K4 ≡ k4/k−4

K5 13 Association constant of Pi, Sch 7

k6 14, 18 Rate constant of step 6, Sch 8

k−6 14 Reversal rate constant of step 6, Sch 8

K6 14 Equilibrium constant of step 6, K6 ≡ k6/k−6

Kα 7 Equilibrium constant of A ↔B. Kα ≡ α/α′

Kβ 7 Equilibrium constant of B ↔C. Kβ ≡ β/β′

kB 4 Boltzmann’s constant, kB = 1.381 × 10−23 JK−1

l0 5 Half sarcomere length

λ 2 Apparent rate constant, λ ≡ α + α′, Eq. 4

λ2 7, 11 Apparent rate constant of phase 2. λ2 = 2πc. Eqs. 32, 44, 50

λ3 7, 13 Apparent rate constant of phase 3. λ3 = 2πb. Eqs. 37, 53, 54

λ4 19 Rate constant of force development, Eq. 63

M 8, A2 Eqs. 39, A16

μ 5 Perturbed rate constant α by stretch δl. μ ≡ α + δα

NA 5 Avogadro’s number, NA = 6.022 × 1023/mole

ν 19 Number of cross-bridge cycles in 1 sec

P 13 Phosphate concentration

2πa 19 Rate constant of process A (phase 4)

2πb 10 Rate constant of process B (phase 3)

2πc 10 Rate constant of process C (phase 2)

q 17 Series compliance of half sarcomere

R 15 Gas constant, R≡kBNA = 8.314 JK−1mol−1

ρ 5 Cross-bridge stiffness

ρ′ 19 Stiffness of half sarcomere

S 11 Substrate (MgATP) concentration

σ 12 σ ≡K1SK2/[1 + K0D + K1S(1 + K2)], Eq. 52

SP 17 Parallel stiffness of half sarcomere

t 2 Time

T 4 Absolute temperature

T0 15 Tension supported by X0 (AM.ADP)

T1 15 Tension supported by X1 (AM), Eq. 55

T1b 15 Tension supported by X1b (AM†ATP)

T2 15 Tension supported by X2 (AM*ATP), Eq. 55

T34 15 Tension supported by X34 (Det), T34 = 0

T5 15 Tension generated/supported by X5 (AM*ADP.P)

T6 15 Tension generated/supported by X6 (AM*ADP)

TC 15 Tension of standard activation, C=control

U A2 3×3 eigen matrix consisting of 3 eigen (column) vectors. Eq. A20
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Symbol Section Definition

X0(t) 12 Probability of cross-bridges at AM.ADP

X1(t) 11 Probability of cross-bridges at AM

X1b(t) 11 Probability of cross-bridges at AM†ATP

X2(t) 11 Probability of cross-bridges at AM*ATP

X34(t) 14 Probability of cross-bridges at Det state

X5(t) 13 Probability of cross-bridges at AM*ADP.Pi

X6(t) 13 Probability of cross-bridges at AM*ADP

Xa(t) 12 Probability of strongly attached cross-bridges, Eq. 57, Xa ≡ X0 + X1 + X2 + X5 + X6

Ya 17 Stiffness of cross-bridges in half sarcomere when all are strongly attached

ζ 21 ζ ≡ K5P/(1 + K5P), Eq. 73
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