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Abstract
Introduction—Total volume of distribution (VT) determined by graphical analysis (GA) of PET
data suffers from a noise-dependent bias. Likelihood estimation in GA (LEGA) eliminates this bias
at the region of interest level (ROI), but at voxel noise levels, the variance of estimators is high,
yielding noisy images. We hypothesized that incorporating LEGA VT estimation in a Bayesian
framework would shrink estimators towards prior means, reducing variability and producing
meaningful and useful voxel images.

Methods—Empirical Bayesian estimation in GA (EBEGA) determines prior distributions using a
two-step k-means clustering of voxel activity. Results obtained on 8 [11C]-DASB studies are
compared with estimators computed by ROI-based LEGA.

Results—EBEGA reproduces the results obtained by ROI LEGA while providing low-variability
VT images. Correlation coefficients between average EBEGA VT and corresponding ROI LEGA
VT range from 0.963 to 0.994.

Conclusions—EBEGA is a fully automatic and general approach that can be applied to voxel-
level VT image creation and to any modelling strategy to reduce voxel-level estimation variability
without pre-filtering of the PET data.
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Introduction
Quantitative analysis of a positron emission tomography (PET) activity requires a
mathematical model of the underlying physiological process in order to convert the radioactive
tracer concentration into important physiological parameters such as the product of receptor
density and the binding affinity. In graphical analysis (GA), the linear relationship found in
[1] between the transformed concentration of the radioligand in the plasma and in each target
brain region allows one to estimate the total volume of distribution (VT) as the slope of this
linear relationship. This approach has been widely adopted across a variety of different
radiotracers [2–4]. However, straightforward application of linear regression procedures on
the transformed data violates the assumptions underlying these methods. In particular, there is
a well-known negative bias in the estimation of the slope, and thus of VT, when ordinary least
squares (OLS) methods are used to fit a line to the transformed data, and this becomes more
pronounced in regions with high noise levels [5].

Due to the importance of this method and its wide spread use, several strategies have been
proposed to correct or reduce this bias, which include incorporating a pre-smoothing step [6–
8], minimizing the squared perpendicular distance to the regression line [9], or multi-linear
analysis [10]. Likelihood estimation in GA (LEGA) [11] incorporates, in the original non-
transformed PET domain, the specific assumptions made on the noise inherent in the
measurements (i.e. independent Gaussian noise) and gives optimal estimators of the slope
parameter based on likelihood theory, thus yielding approximately unbiased estimators. This
yields good estimates when applied at the region of interest (ROI) level [12]. Moreover, LEGA
has been validated with test-retest data obtained with the radioligand [11C]N, N-dimethyl-2-
(2-amino-4-cyanophenylthio) benzylamine ([11C]-DASB) and proved to be the method of
choice among competitive approaches, including one- and two-tissue compartment model
[13].

LEGA has recently started to be considered by other groups of investigators as a valid
alternative to GA [14]. However, so far one potential barrier for the widespread use of LEGA
has been the inability to use it in voxel-based modelling approaches. In fact, at the higher noise
levels encountered with voxel-based analysis LEGA estimates show a variance too high for
routine application (e.g. SPM analysis) yielding noisy images of estimated VT.

Among the methods proposed in the literature, the multi-linear reference tissue model [15] has
been demonstrated to allow the rapid generation of parametric images with a relatively small
bias compared to kinetic analysis. This approach has been used extensively since its
introduction [16–19]. Nevertheless, as with every reference approach, it does not allow for
estimation of the VT and requires the existence of a reference region with little or no specific
binding that does not differ between groups of interest, which is not available for all
radioligands. Studies have been published in which a difference in the reference region has
been reported: in [20] the VT of the reference region (the cerebellum) was found to be higher
in the controls group thus obviating the possibility of detecting a difference between depressed
patients with bipolar disorder and controls when comparing just the non displaceable binding
potential (i.e. BPND = (VT – VTref)/VTref, with VTref the VT in the reference region), which is
the only outcome measure available when using reference tissue approaches. In [21] it was
suggested that reference region approaches cannot be used to detect differences in 5-HT1A
receptors between men and women, since the latter present a higher VT compared with men
in the reference region, even when a cerebellar subregion devoid of specific binding (i.e. no
5-HT1A receptors) was located.

Recently, a maximum a posteriori (MAP)-based estimation algorithm has been applied to
graphical analysis (MEGA) to reduce the variance of the VT images obtained by LEGA by
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shrinking the estimators of VT towards a prior mean [22]. The results obtained in [22] on both
simulated and clinical data suggest that MEGA represents a valid alternative to LEGA, since
it improves the signal-to-noise ratio in clinical VT images with a high correlation with results
obtained on the ROI level and a relatively small underestimation. However, the selection of
the priors proposed in [22], as well as the parameters of the algorithm setting, seem to be bound
to the a priori knowledge of the investigated radioligand (i.e. the [11C]SA4503) and are not
data dependent.

To overcome this limitation, we propose to estimate VT using LEGA embedded within a
Bayesian framework in order to shrink estimators of VT towards a prior mean by determining
reasonable prior distributions and weighting the prior information appropriately, thus reducing
variability, as done in [22]. Differently from [22], however, we adopt the so-called empirical
Bayesian approach, in which the prior information is determined in a fully automated way from
the observed data to eliminate reliance of the estimators on subjectively chosen prior
distributions. We term the application of this approach “empirical Bayesian estimation in
graphical analysis” (EBEGA).

This fully automatic approach is tested on a serotonin transporter radioligand ([11C]-DASB).
We hypothesize that EBEGA reduces the outliers found in LEGA VT images while at the same
time maintaining agreement with results obtained by using LEGA on the ROI level, thus
lowering the barrier to a more widely use of LEGA as a ROI- and voxel-based graphical
modelling approach.

Materials and methods
Subjects

Eight healthy volunteers studied with [11C]-DASB were included in this study. The
Institutional Review Board of the New York State Psychiatric Institute approved the protocols.
Subjects gave written informed consent after an explanation of the study.

PET protocol
Preparation of the radioligand, emission data acquisition and reconstruction, and determination
of arterial input indices were obtained as previously described for [11C]-DASB [13,23]. All
emission data were acquired in 3D mode on an ECAT HR+ (Siemens/CTI, Knoxville, TN,
U.S.A.) after a 10 minute transmission scan. Emission data were collected for 120 minutes by
using 21 frames of increasing duration: 3 × 20 seconds, 3 × 1 minute, 3 × 2 minutes, 2 × 5
minutes, and 10 × 10 minutes post-injection.

Images were reconstructed to a 128 × 128 matrix, with a pixel size of 2.5 × 2.5 mm2.
Reconstruction was performed with attenuation and scatter correction using the transmission
data. The reconstruction and estimated image filters were Shepp 0.5, with 2.5 mm in full width
at half maximum (FWHM); the Z filter was all-pass 0.4, with 2.0 mm in FWHM, and the zoom
factor was 4.0, leading to a final image resolution of 5.1 mm in FWHM at the center of the
field of view [24].

The un-metabolized fraction data were fitted as described in [25]. The input function was
calculated as the product of total plasma counts and fitted parent fraction and was fitted using
a sum of three exponentials [25].

Image analysis
Images were analyzed using Matlab Release 2006b (The Mathworks, MA) with extensions to
the following open source packages: Functional Magnetic Resonance Imaging of the Brain’s

Zanderigo et al. Page 3

Nucl Med Biol. Author manuscript; available in PMC 2010 July 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Linear Image Registration Tool (FLIRT) v5.2 [26], Brain Extraction Tool (BET) v1.2 [27] and
University College of London’s Statistical Parametric Mapping (SPM5, Wellcome Department
of Imaging Neuroscience, London, UK) normalization and segmentation routines. Motion
correction was applied and anatomical ROIs were traced on the basis of brain atlases and
published reports, as described in [12,25]. On average, 50 ROIs were considered in each
subject, which include the anterior cingulate, amygdala, cingulate, dorsolateral prefrontal
cortex, hippocampus, insula, medial prefrontal cortex, occipital, ventral prefrontal cortex,
parietal, parahippocampal gyrus, temporal, dorsal caudate, dorsal putamen, entorhinal cortex,
midbrain, posterior parahippocampal gyrus, thalamus, and ventral striatum.

Magnetic resonance imaging acquisition and segmentation
A detailed description of magnetic resonance protocol parameters, de-scalping, and image
segmentation between grey matter (GM), white matter, and cerebrospinal fluid voxels has been
already published for [11C]-DASB [13,23]. GM voxels are extracted on the basis of GM
probability masks (SPM5) with probability threshold of 1%.

Likelihood estimation in GA (LEGA)
The basis for GA is given by the linear relationship between the transformed concentration of
the radioligand in the plasma and in the target brain region [1]. For compartmental models
exhibiting reversible kinetics, the method by Logan et al. rearranges the plasma Cp(t)
radioligand concentration and the tissue time activity curve TAC(t) into a linear relation after
the equilibrium point t*:

(1)

The slope parameter β in Equation 1 represents the tissue VT, the parameter of interest, while
the intercept γ has no physiological meaning.

The simple linear regression model is written as Y = Iγ + xβ + ε, where Y = [Y1, …, Yn]T, I
is a n x 1 vector of ones, x = [x1, …, xn] T, and ε = [ε1, …, εn] T. In this model, the error ε is
assumed to be Gaussian, additive, uncorrelated, and to affect only the response variables.
However, if the quantities in Equation 1 are replaced with their noisy observed counterparts
and OLS is then applied, the error is multiplicative and strongly correlated for both x and the
response variables. The result of this violation of assumptions is that the estimator is negatively
biased for β [5].

LEGA [11,12] is an estimation technique that operates in the original non-transformed domain
by incorporating the specific assumptions made on the noise inherent in the measurements. It
is based on a rearrangement of Equation 1 for i = k, k + 1, …, n:

(2)

by denoting the idealized “noise-free” data as , with ti = (si−1 + si)/2, and expressing
the integral in terms of the  values, where si represents the end-point of the ith PET scan
frame. If the errors with which all the actual Ri values are observed are assumed to be
independent Gaussians (i.e. , i = 1,2,…n), then the maximum likelihood estimator is
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obtained by minimizing via non-linear optimization algorithms the quantity

 over all choices of β and γ, where the optimal weights wi should be inversely
proportional to the variances  of the Ri values (e.g., ). Several methods to
determine the time point t* after which Equation 1 holds, which could be applicable to
determine k in LEGA, have been proposed [10]. However, in the analysis described in this
work, the value of k has been chosen based upon visual inspection of many Logan plots [12,
13] and set to use only the last 8 samples in the estimation, corresponding to t* ≈ 45 minutes
after injection.

Empirical Bayesian estimation in GA (EBEGA)
Bayesian estimation is a widely accepted approach to shrink estimates towards a mean
determined by a priori knowledge about the parameters to be estimated. This prior information,
expressed by a probability density function (PDF), is updated from the observed data Ri, giving
rise to a posterior distribution for the parameters that is proportional to the product of the prior
and the likelihood of Ri.

Given this posterior PDF, several Bayesian estimators can be defined for β and γ. In particular,
the MAP estimates β ̂MAP and γ ̂MAP are obtained as the values that maximize the posterior PDF.
Assuming a Gaussian distribution for both the a priori PDF of β and γ, β ̂MAP and γ ̂MAP can be
expressed as

(3)

where W is the diagonal weight matrix of weights wi, i = k, k + 1, …, n, and Σ, β ̄ and γ ̄ are the
a priori covariance matrix and mean of β and γ, respectively. β ̂MAP and γ ̂MAP are obtained by
minimizing via non-linear optimization algorithms the cost function in Equation 3 over all
choices of β and γ (the Gauss-Newton approach was taken, [28, 29]).

In the so-called empirical Bayesian approach, the prior information is determined from the
observed data to eliminate reliance of the estimators on subjectively chosen prior distributions.
We term the application of this approach “empirical Bayesian estimation in graphical
analysis” (EBEGA). The a priori information plays an important role so that it has to be
properly chosen for each voxel. In particular, parameters β and γ should be shrunk towards the
mean of different priors able to cover the range of kinetic behaviours present across the brain.
The quantities Σ, β ̄ and γ ̄ may be determined by using the information embedded within each
voxel raw TAC. This is accomplished in EBEGA in a fully automatic fashion by allocating all
voxels to different clusters, determining a prior for each cluster, and then determining β ̂MAP
and γ ̂MAP for each voxel according to the cluster to which it belongs.

The general idea is to create a first set of clusters, which grossly identify the principal different
kinetics present across the brain. A second set of smaller sub-clusters is then formed starting
from the first ones in order to discriminate between different shapes in the TACs within each
original cluster. In the end, the latter are used to form the prior information for each voxel. To
achieve this goal, in each study a two-step k-means clustering algorithm [30] is applied to all
GM voxels raw TACs. In the first step, a k-means clustering algorithm with K clusters is
repeated several times, each time with a new set of initial cluster centroid positions randomly
selected from among the TACs; at the end, the solution with the lowest value of the within-
cluster sums of point-to-centroid squared Euclidian distances is selected. The number K is
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automatically determined for each subject by applying a subtractive clustering algorithm to a
subset of randomly chosen raw TACs [31]. This algorithm treats each TAC as a potential cluster
center, calculates a measure of the likelihood that each TAC would define the cluster center,
based on the density of surrounding TACs, and iterates the process until each of the TACs falls
within some distance d of a cluster center. Naturally, smaller choices for d tend to give larger
values for K, so in order for our results to depend less on a specific value of d, we apply the
subtractive clustering algorithms with values for d ranging from 0.2 to 0.5 (see Discussion for
details) and take K to be the average of the number of clusters determined each time by the
algorithm.

In the second step, the k-means clustering algorithm is applied to each one of the K clusters
extracted during the first step to discriminate in detail among the different kinetics composing
the cluster. The number of sub-clusters to be extracted is automatically selected for each cluster
by using the subtractive clustering algorithm [31] with values for d ranging from 0.2 to 0.5, as
in the first step, but with the requirement of a total number of sub-clusters extracted in the
subject lower than 100 (see Discussion for details). On average, the number of voxels included
in the final subcluster ranges from a minimum of 50 to a maximum of 7000 voxels.

For each sub-cluster, original ROI-based LEGA [11] is then used to estimate β and γ for the
(1) average TAC of all the TACs belonging to the voxels within the extracted cluster (with
corresponding estimates denoted here β ̂mean and γ ̂mean); (2) average TAC plus m times the
standard deviation (SD) at each time point of all the TACs belonging to the voxels within the
extracted cluster (β ̂SD+ and γ ̂SD+); and (3) average TAC minus m times the SD at each time
point of all the TACs belonging to the voxels within the extracted cluster (β ̂SD− and γ ̂SD−).
These estimates represent the basis on which β ̄, γ ̄ and the diagonal elements of Σ of the a
priori Gaussian distribution of β and γ are set for each cluster: β ̄ = β̂mean, γ ̄= γ ̂mean, and

, with σβ =min[|β ̂mean − β ̂SD−|, |β ̂mean − β ̂SD+|] and σγ= min[|γ ̂mean −
γ ̂SD−|, |γ ̂mean − γ ̂SD+|], respectively. This can be done for any choice of multiplier m, noting that
as m increases, the quantities |β ̂mean − β ̂SD−|, |β ̂mean − β ̂SD+|, |γ ̂mean − γ ̂SD−| and |γ ̂mean − γ ̂SD+|
also increase, thus leading to higher values for σβ and σγ, and ultimately, to less shrinkage. In
our application we set m equal to 1.

Once the prior distributions have been determined, the MAP estimation of both β and γ as
expressed in Equation 3 is then performed using for each voxel the prior of the sub-cluster to
which it belongs.

Outcome measures and performance indices
Different estimates of VT values were computed for comparison:

1. EBEGA: EBEGA was applied to obtain parametric VT images for all the subjects.
Mean, SD, and coefficient of variation (CV) of all estimated VT values within each
ROI were computed for each subject.

2. VOX LEGA: LEGA was applied at the voxel level to obtain parametric VT images
for all the subjects. Mean, SD, and coefficient of variation (CV) of all estimated VT
values within each ROI were computed for each subject.

3. ROI LEGA: For each ROI and for each subject, VT values were estimated by
modelling the average TAC within the ROI using LEGA.

The results were compared using the linear correlation coefficient r across all ROIs both for
all subjects and separately for each subject. To evaluate the possible bias between VOX LEGA
and ROI LEGA, and EBEGA and ROI LEGA, respectively, the slope and the intercept of the
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fitted regression line, with ROI LEGA being the independent variable and the mean of voxel
methods the dependent one, were also calculated for each subject.

LEGA at the ROI level was selected as the reference for evaluating the performance of EBEGA
at the voxel level since it has been validated in a test-retest reliability paradigm for [11C]-DASB
proving to be the method of choice among competitive approaches [13].

Results
A representative case of the parametric images obtained from applying VOX LEGA and
EBEGA is displayed in Fig. 1. This representative case was chosen by averaging the r values
obtained in each subject in the comparison EBEGA vs. ROI LEGA and selecting the subject
with the closest r to the average value. All subsequent analyses are for all regions, all subjects.
VOX LEGA (panel A) often results in noisy parametric images unsuitable for subsequent
analysis. The corresponding VT images obtained by EBEGA (panel B) show a significant
improvement in terms of variance (i.e. decreased variance). In order to quantify these
qualitative differences we compare VOX LEGA and EBEGA to our ‘gold standard’, ROI
LEGA (Fig 2). The slope for VOX LEGA considering the regression line is 0.999 with a narrow
range (0.905 to 1.044) with a mean of 0.971 ± 0.052. This reflects the fact that VOX LEGA
estimators are nearly unbiased at a voxel level, although the intercept often differs from zero
(0.788 to 4.278) with a mean of 1.930 ± 1.094.

EBEGA is associated with a slight reduction in the value of the slope (0.929) obtained
considering the regression line. However, EBEGA slope values in each subject are not
significantly different from those obtained by VOX LEGA (p = 0.0640; range = 0.906 to 0.976,
mean = 0.929 ± 0.026), and intercept values are significantly closer to zero than those obtained
by VOX LEGA (p = 0.0039; range = 0.205 to 0.952, mean = 0.555 ± 0.264).

Table 1 reports a summary of the r and CV values in the comparison between VOX LEGA vs.
ROI LEGA and EBEGA vs. ROI LEGA. The average CV values of the VT estimated with
EBEGA are significantly lower than those obtained with VOX LEGA (p = 0.000013). The
improvement in CV by EBEGA is not obtained at the cost of quantitative accuracy; the overall
correlation is higher (r = 0.978) than between VOX LEGA and ROI LEGA (r = 0.946). The
r values obtained in each subject for EBEGA are significantly higher than those for VOX
LEGA, thus suggesting that EBEGA is able to more accurately reproduce the results obtained
by ROI LEGA (p = 0.0039). Of note, looking specifically at the midbrain, a region of particular
clinical significance, the correlation between EBEGA and ROI LEGA is higher than that
between VOX LEGA and ROI LEGA (i.e. correlation across subjects of midbrain ROIs: 0.977
vs. 0.964).

The decreased variance obtained by EBEGA in the VT images, which is reflected by the CV
values reported in Table 1 and the narrower SD bars reported for EBEGA VT estimates in the
lower panel of Fig. 2, is in large part due to the elimination of VOX LEGA outliers in the
VT distribution. As shown in Fig. 3, where the distributions of VT values estimated by VOX
LEGA and EBEGA within three specific ROIs (i.e. amygdala, GM cerebellum, and midbrain)
are displayed for the same representative case of Fig. 1, VOX LEGA estimates fall in a wider
range of VT values than EBEGA, thus accounting for the outliers that can be detected in VOX
LEGA parametric images (Fig. 1, panel A). Considering the VT estimates in the amygdala
across all subjects, VOX LEGA shows an average CV value of 41% vs. 28% with EBEGA.
The difference is even higher when VT estimates in the GM cerebellum are considered (41%
vs. 16%), while results are comparable for midbrain (48% vs. 40%).

The average number of clusters and sub-clusters extracted during the first and second step
across all subjects is 12 (range = 7 to 15) and 68 (range = 32 to 100), respectively. To exemplify
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the effect of the second step of the clustering on the mean of the priors, Fig. 4 shows the maps
of the β ̂mean value obtained in each voxel after the first and second clusters extraction,
respectively, for the representative case of Fig. 1. On average across all subjects, the highest
binding cluster β ̂mean moves from 29.13 after the first to 60.59 after the second step. A similar
trend can be observed with the absolute values of γ ̂mean (not shown).

Discussion
To overcome the noise-dependent bias of the GA and simultaneously produce high quality
images, LEGA has been incorporated into a Bayesian framework. The resulting fully automatic
EBEGA approach, which implements the MAP estimation and sets the a priori information
empirically by applying a two-step k-means clustering to GM voxels raw TACs, has been tested
on [11C]DASB data. EBEGA results have been compared to those obtained on a ROI level by
LEGA on the basis of correlation coefficients r, and slope and intercept of the fitted regression
line.

Some of the assumptions included in the EBEGA algorithm deserve further consideration.
First, the number of the clusters to be extracted in both the steps involved in the determination
of the a priori information is automatically selected for each subject by applying a subtractive
clustering algorithm. This solution is intended to make EBEGA applicable to a wide set of
radioligands and/or clinical studies including subjects with diseases, at the same time reducing
or eliminating the amount of human supervision required in application. The only parameter
that needs to be carefully considered for its impact on the performance of the algorithm is the
value of d specifying the cluster center range of influence. In its application inside EBEGA,
for each subject the subtractive clustering uses a set of 7 values for d ranging from 0.2 to 0.5.
Preliminary investigation outside this range led to values for K which were unreasonably high
when d is set below 0.2 (i.e. comparable to the 10% of the total number of GM TACs) and
lower than the 5 different tissue types expected, from a physiological point of view, in the GM
when d is set over 0.5.

In the application of the subtractive clustering during the second step of the algorithm, a clear
trend was observed across all the subjects towards 0.45 as a good choice for d in order to
determine the number of sub-clusters for each main cluster. Nevertheless, the EBEGA
algorithm was made general by automatically selecting the number of sub-clusters with the
only requirement of a total number of sub-clusters extracted in the subject lower than 100. This
choice seemed acceptable considering both the kinetics variety present in each subject and the
corresponding final performance obtained in VT estimation.

It is however true that experience with a specific radioligand may help in setting a
predetermined value for d thus saving computational time, keeping in mind that the principal
aim of the clustering is to provide a summary of the varied kinetic behaviours present
throughout the brain, to set the a priori information for the MAP estimation, and not to obtain
an exhaustive anatomical separation among brain areas. The setting of the priors could also be
accomplished by taking more than two steps in the clustering of the voxel TACs. However,
given the results obtained for EBEGA in comparison to ROI LEGA, we consider the two-step
clustering an acceptable trade-off between computational time and discrimination across
different kinetics throughout the brain for all the reported subjects. . In the case of [11C]-DASB
in fact, a radioligand that can be described reasonably well with a one-tissue compartment
model and shows a narrow range of different kinetics across the brain, to add a further layer
of clustering would only result in smaller final subclusters (i.e. with a lower number of voxels)
with noisier average TACs and thus potentially leading to noisier VT parametric images. It is
also true that, once the Bayesian framework has been defined, alternative prior distributions
might be assumed if they prove to be more suitable to the specific data set under analysis. For
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example, for kinetically richer radioligands, like [11C]-WAY-100635, to add a third step of
clustering as well as alternative clustering strategies might be preferable.

Finally, EBEGA sets the a priori mean and diagonal elements of the covariance matrix of the
parameter priors for each extracted sub-cluster by applying ROI-based LEGA on the average
and the average plus and minus m times the SD of the sub-cluster TACs. Preliminary
investigation (not shown) considering the application of LEGA to just the average TAC of
each cluster to estimate β ̄ and γ ̄, and the use of the accuracy of these estimates (i.e. via the
Jacobian matrix) to set the diagonal elements of Σ, resulted in priors that were too constraining.
Considering the average curve plus and minus m times the SD of the TACs enables one to
choose σβ and σγ in a way that reflects the variety of the corresponding TACs family. Increasing
the value of m over 1 (not shown) resulted in high values for the diagonal elements of Σ, leading
to noisier VT images. A simulated [11C]-DASB mathematical brain phantom created as
suggested in [32] was also considered to investigate the effect of the parameter m on the
determination of the priors. Specifically, three realizations of the same noisy brain were
considered and EBEGA was applied to all of them with three different values of the parameter
m: 0.5, 1, and 2. The effect of an increasing value of m in the final outcome measures was a
slightly increased SD value in the VT estimates within each ROI as well as a prolonged tail
towards higher VT values in the VT estimates distribution, especially for the regions with higher
binding. However, considering the percentage difference between the average VT estimated
in each ROI by using two different values of m (e.g., in the case of m = 0.5,

), the difference in the estimates obtained by using two
values of m is small and ranges between 1.42% and 8.10% for m = 0.5, and 0.37% and 7.20%
for m = 2, respectively, across ROIs (i.e. 98 ROIs were considered in the simulated phantoms
[32]). These results are consistent with what we would expect from theory: as m increases, the
diagonal elements of the covariance matrix of the priors increase thus leading to a more relaxed
constraint on the final VT estimates and to potentially noisier parametric VT images. Since the
aim of this work was to reproduce the estimates obtained on a ROI level by LEGA, while
reducing the variance of VOX LEGA VT images, we consider m = 1 an acceptable trade-off
for all the reported studies. One could argue that, in a more complex pathological configuration
of cerebral tissue, m = 1 may not be sufficient to describe the variability within a cluster. In
such a case, the automated prior determination by itself should be flexible enough to capture
the heterogeneity of the different kinetics present in realistic pathological cases.

From a computational point of view, EBEGA does not significantly increase the amount of
time needed to obtain VT parametric images with respect to VOX LEGA [12], since the setting
of the a priori information before the MAP estimation is reasonably fast.

Conclusion
OLS in graphical analysis can be useful for voxel-based modelling of PET data both because
of lower computational time demand and because there are never any convergence problems.
However, the violation of assumptions necessary for performing OLS on transformed data
leads to biased estimates. On the other hand, to solve this bias by taking into account the nature
of the noise in the data and applying more sophisticated estimators can lead to high variability
of the estimates. EBEGA has proved to be a reliable fully automatic method able to solve
simultaneously the issue of bias and high variability of the estimates while providing low-
variability VT images without any pre-filtering of the PET data. Furthermore, the approach
adopted inside EBEGA represents a general and flexible method that can be potentially applied
to any radioligand and modelling approach to set the prior information from the observed data
when Bayesian estimation is used to create parametric images.
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Fig. 1.
Panels A and B: Estimated VT images obtained by VOX LEGA (A) and EBEGA (B) for a
representative case, based on the correlation coefficients between EBEGA and ROI among the
8 considered [11C]-DASB studies.
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Fig. 2.
Upper panel: Scatterplot of VOX LEGA (y axis) vs. ROI LEGA (x axis) estimated VT values
obtained on all the 392 ROIs considered for the 8 [11C]-DASB studies. Lower panel:
Corresponding scatterplot of EBEGA (y axis) vs. ROI LEGA (x axis) estimated VT values.
The grey dotted line is the identity line and the black solid line is the fitted regression line. SD
bars of VT estimates within each ROI are shown as dashed grey lines in both plots.
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Fig. 3.
Distribution of VT estimates obtained by VOX LEGA (grey solid line) and EBEGA (black
solid line) within three specific ROIs (amygdala, upper, GM cerebellum, middle, and midbrain,
lower panel) for the representative case shown in Fig. 1. In each panel, the x axis represents
the VT range and the dashed grey vertical line represents the VT estimated by modelling the
average TAC for the ROI using LEGA.
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Fig. 4.
Effect of the second step of clustering on the mean of the Gaussian priors distributions: sagittal
view of the β ̂mean values that can be obtained in each voxel if the algorithm stops after the first
(left) and second (right) clusters extraction, respectively, for the subject shown in Fig. 1.
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