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Abstract
Sickle cell anemia (SCA) is a paradigmatic single gene disorder caused by homozygosity with
respect to a unique mutation at the β-globin locus. SCA is phenotypically complex, with different
clinical courses ranging from early childhood mortality to a virtually unrecognized condition.
Overt stroke is a severe complication affecting 6–8% of individuals with SCA. Modifier genes
might interact to determine the susceptibility to stroke, but such genes have not yet been
identified. Using Bayesian networks, we analyzed 108 SNPs in 39 candidate genes in 1,398
individuals with SCA. We found that 31 SNPs in 12 genes interact with fetal hemoglobin to
modulate the risk of stroke. This network of interactions includes three genes in the TGF-β
pathway and SELP, which is associated with stroke in the general population. We validated this
model in a different population by predicting the occurrence of stroke in 114 individuals with
98.2% accuracy.

Stroke is a severe vascular complication of SCA, more frequent in affected individuals
under the age of 20. Although recovery may be complete, stroke can cause permanent brain
damage and even death. Trans-cranial Doppler flow studies can predict the likelihood of
stroke in children with SCA, but only 10% of individuals with abnormal trans-cranial
Doppler values will have stroke in the year after the study, and stroke will occur in ~19%
individuals with normal trans-cranial Doppler values1. More accurate prognostic methods
would therefore help to target prophylactic treatments, such as transfusion2 or hydroxyurea,
to individuals at highest risk3,4.
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In individuals with SCA, the products of modifier genes may interact to determine the
likelihood of stroke and other complications. SNPs in VCAM1 (ref. 5), IL4R and ADRB2
(ref. 6) are significantly associated with stroke in SCA subjects. Furthermore, the risk of
stroke is reduced in individuals with α-thalassemia7, and increased fetal hemoglobin (HbF)
levels are associated with reduced risks for other complications8. To identify the genetic
basis of stroke in individuals with SCA, we selected 80 candidate genes involved in
vasoregulation, inflammation, cell adhesion, coagulation, hemostasis, cell proliferation,
oxidative biology and other functions. We analyzed 108 SNPs in these genes in 1,398
African Americans with SCA, 92 subjects with reported overt stroke and 1,306 subjects
without, enrolled in the Cooperative Study of Sickle Cell Disease (CSSCD)9. Extensive
clinical information was available for each of these individuals (Supplementary Table 1
online).

Genetic dissection of a complex trait requires disentangling the web of interactions among
genes, environment and phenotype10–12. To model these relationships, we carried out a
multivariate analysis using Bayesian networks, multivariate dependency models that account
for simultaneous associations and interactions among multiple genes and their interplay with
clinical and physiological factors. Bayesian networks have been already applied to the
analysis of several types of genomic data (gene expression13, protein-protein interactions14

and pedigree analysis15), and their modular nature makes them ideal for analyzing large
association studies. Furthermore, Bayesian networks can be used for prognosis: a network
capturing the relationship between genotypes and phenotype can be used to compute the
probability that a new individual with particular genotype will have the phenotype of
interest15,16.

A Bayesian network is a directed acyclic graph in which nodes represent random variables
and arcs define directed stochastic dependencies quantified by probability distributions.
Figure 1 depicts three Bayesian networks, starting with a simple network describing the
dependency of a phenotypic character P on a single SNP G (Fig. 1a). The graph decomposes
the joint probability distribution of the two variables into the product of the marginal
distribution of G (the parent node) and the conditional distribution of P (the child node)
given G. The marginal and conditional probability distributions are sufficient to define the
association between P and G because their product determines the joint probability
distribution. This property persists when we invert the direction of the arc in the graph (Fig.
1b) and when we expand the graphical structure to include several variables (Fig. 1c): the
overall association is measured by the joint probability distribution that is still defined by the
product of each child-parent conditional distribution. This modular nature of a Bayesian
network is due to the conditional independences among the variables encoded by the
directed acyclic graph16: the graph specifies the set of parents of each node as those having
an arc pointing directly to it, and each node becomes independent of its predecessors given
the parent nodes. This modular representation captures complex dependency models (able to
integrate associations between SNPs and phenotype; associations between SNPs due to
linkage disequilibrium or evolutionary patterns17; and interaction processes linking SNPs,
phenotype and modulating factors18) with a small number of parameters. Reducing the
number of parameters allows us to ‘learn’ large dependency networks from comparatively
small data sets, and well-established techniques exist to develop Bayesian networks from
data in an almost automated manner16.

We focused on those networks that describe the dependencies of genotypes on phenotype,
because analysis conditional on phenotype reduces the complexity of the search18 and can
identify larger sets of associations between SNPs and phenotype. This modeling strategy
describing the diagnostic rather than prognostic associations is commonly used in data
mining to build predictive models in large data sets19. Figure 2 shows the overall
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dependency network that we identified, linking 69 SNPs in 20 genes, HbF levels, total
hemoglobin concentration and coincidence of α-thalassemia to stroke. Thirty one SNPs in
12 genes interact with HbF to modulate the risk of stroke. Of these, 25 SNPs in 11 genes are
directly associated with the phenotype, meaning that they have the largest independent effect
on the prediction of risk of stroke. The strength of the dependency of each of these nodes is
summarized by the odds of the model with the dependency versus the model without the
dependency (Table 1). The conditional probability tables quantifying the network are
estimated from the data (Supplementary Table 2 online).

The network dissects the genetic basis of stroke into 11 genes whose variants have a direct
effect on the disease that is modulated by HbF levels and 9 genes whose variants are
indirectly associated with stroke. An example is the cluster of five SNPs in EDN1 that is
associated with SNPs in ANXA2 and BMP6. Both EDN1 and BMP6 are on chromosome 6
(at 6p24.1 and 6p24.3, respectively), and their association suggests that this chromosomal
region may be associated with an increased risk of stroke. ANXA2 has a regulatory role in
cell surface plasmin generation20; EDN1 might be a potent vasoconstrictor and mitogen
secreted in response to hypoxia21, supporting the hypothesis that EDN1 antagonists may be
useful in the prevention and treatment of sickle vaso-occlusive crises. Our model suggests
that variants in BMP6 are the strongest risk factors, whereas variants in EDN1 are associated
with stroke through BMP6 and ANXA2 but are not as relevant for risk prediction. Stroke is
also directly associated with variants in TGFBR3 and indirectly associated with variants in
TGFBR2, which have essential, nonredundant roles in TGF-β signaling22. BMP6 is part of
the TGF-β superfamily, and the simultaneous association of three genes with functional
roles in TGF-β signaling suggests that this pathway might be involved with increased risk of
stroke. This conjecture is further supported by the association of stroke with CSF2, a protein
necessary for the survival, proliferation and differentiation of leukocyte progenitors.
Variants in SELP are associated with stroke in the general population23; our analysis
confirms its important, though insufficient, prognostic role.

By decomposing the overall distribution into interrelated modules, the network summarizes
all relevant dependencies without losing the multigenic nature of stroke. Using the network
in Figure 2, we can compute the probability distribution of the phenotype (stroke) given the
genotype of any SNP and, conversely, compute the conditional distribution of any genotype
given values of other variables in the network. In this way, the model is able to describe the
determinant effects of genetic variants on stroke, to predict the odds for stroke of new
individuals given their genotypes and to find the most probable combination of genetic
variants leading to stroke.

Table 2 reports the risk of stroke predicted by the network in Figure 2 for some genotypes
and shows the impossibility of predicting this risk using individual SNPs. For example,
homozygosity (TT) with respect to BMP6.10 is, by itself, associated with both negligible
and very large risk, and only the simultaneous consideration of other SNPs can determine
the actual risk of stroke. This situation is confirmed by the analysis of single-gene accuracy
and contribution (Table 1), highlighting the small effect of individual genes. On the other
hand, the 98.5% predictive accuracy reached by the model in fivefold cross-validation
shows the determinant role of the simultaneous presence of all SNPs and their interplay with
clinical variables for the correct prediction of stroke susceptibility.

We validated our results in a different population by predicting the occurrence of stroke in
114 individuals not included in the original study: 7 with reported stroke and 107 without, a
proportion consistent with the phenotype distribution in the original cohort study. Our model
predicted the correct outcome for all 7 individuals with stroke and for 105 of 107 individuals
without stroke, with a 100% true positive rate and a 98.14% true negative rate, for an overall
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predictive accuracy of 98.2%. Figure 3 shows the difference between the predictive
probabilities of stroke, which show that the predictions were not only correct but also
inferred with high confidence. The individuals with stroke were not part of the original
cohort study. The 107 individuals without stroke were part of the original study but were not
used to build the Bayesian network. For these subjects, the follow-up period was 5.2 ± 2
years (mean ± s.d.), and their age at the beginning of the study was 22 ± 2.6 years (mean ±
s.d.; Supplementary Table 1). Because the risk of stroke in individuals with SCA decreases
rapidly after the age of 10 years (ref. 24), these individuals without stroke provide a reliable
test set.

For comparison, we also built a logistic regression model using stepwise regression. The
model captured as significant only 5 SNPs (in SELP and BMP6) of the 25 identified by the
Bayesian network model, and HbF (Supplementary Table 3 online), with a consequent
decrease of predictive accuracy (Supplementary Fig. 1 online). Predictive validation of this
regression model on the same independent set produced ten errors in the individuals without
stroke (a false positive rate of 0.09) and three errors in the individuals with stroke (a false
negative rate of 0.43), with an overall accuracy of 88%.

Another feature highlighted by the network is that although SNPs on the same gene tend to
neatly cluster together, some dependencies extend across different genes and, sometimes,
across chromosomes. These patterns support the emerging view17 that physical distance
between two polymorphisms is not the only arbiter of their association: their time of origin
(as reflected by their distribution) and their evolutionary history shape a web of relationships
far more complex than that allowed by physical distances alone. Dependencies between
SNPs across different chromosomes can also be explained by their interactions to determine
other vaso-occlusive complications of SCA, such as osteonecrosis, priapism and acute chest
syndrome2,8. This explanation is consistent with the design of our study, which included
individuals with at least one vaso-occlusive complication of SCA. For example, the web of
interactions linking the SNPs in TGFBR2 (on chromosome 3) and BMP6 (on chromosome
6) can be explained by their simultaneous association to osteonecrosis25, a known
complication of SCA affecting 30% of individuals with SCA.

The inadequacy of traditional analysis methods can be a crucial impediment to the
identification of the genetic basis of complex traits in large association studies12,18,26,27.
Our results show the promise of Bayesian networks for the identification, representation and
prognostic use of the genetic basis of complex traits. The predictive accuracy of our model
is also a step toward the development of accurate prognostic tests to identify individuals at
risk of stroke and to help select better treatment options. Understanding the genetic networks
modulating the likelihood of stroke may provide additional insights into the pathogenesis of
the disease and suggest new therapeutic targets. Although further investigation is required to
establish the causative role of these genetic markers, our results support the emerging
hypothesis that stroke in individuals with SCA is a complex trait caused by the interaction of
multiple genes6. The presence among the risk factors of genes already associated with
stroke, such as SELP, suggests that some genetic factors predisposing to stroke are shared by
both individuals with SCA and stroke victims in the general population, and that our model
may offer some insights into the genetic basis of the third leading cause of death in the US.

METHODS
Data collection

Between October 1978 and September 1988, the first phase of the CSSCD enrolled 4,082
African Americans from 23 clinical centers across the US9. Newborns and any individual
who had visited a participating clinic for any medical reason between 1975 and 1978 were
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eligible for participation. Except for newborns, who were enrolled throughout the study
period, enrollment was closed in May 1981. Subjects were observed for 5.2 ± 2 years (mean
± s.d.). Five years after the start of the CSSCD, blood samples were obtained for the
determination of α-thalassemia and the β-globin gene cluster haplotype. DNA from this
sample was also deposited in a repository controlled by the US National Institutes of Health;
this DNA was used for SNP genotyping. We limited our genotyping to samples from
individuals with SCA (homozygous with respect to the hemoglobin S gene) with or without
coincident α-thalassemia, who presented at least one vaso-occlusive complication of SCA.
The CSSCD database provided the clinical information about the subphenotypes of SCA,
including overt stroke, osteonecrosis, acute chest syndrome, painful episodes, leg ulceration,
renal failure, priapism and proliferative retinopathy. Information about other clinical
features, including HbF levels, systolic and diastolic blood pressure, and gender, was also
collected. The DNA samples were used to genotype 235 SNPs in 80 candidate genes.

Strokes were classified by the investigator at each center on the basis of the available
clinical and imaging studies. For our analysis, we considered only those individuals with a
confirmed history of or incident complete nonhemorrhagic stroke, documented by imaging
studies. Ninety-five percent of the individuals classified as having infarctive stroke
underwent computed tomography scan, brain scan or magnetic resonance imaging at the
time of the event. Magnetic resonance imaging information was not collected before
December 1986. A detailed description of stroke in individuals who participated in the
CSSCD was reported previously28. This study was reviewed and approved by the
Institutional Review Board of Boston University School of Medicine. Samples from
individuals with stroke of the independent validation set were obtained from the Medical
College of Georgia and the University of Mississippi Medical Center, with the approval of
their respective Institutional Review Boards.

Genotyping
DNA samples were used for SNP genotyping by high-throughput mass spectrometry. We
selected SNPs with population frequency information and heterozygosity values >0.2 in the
candidate genes from dbSNP and the Celera database. We compared the amplification
primers used in all reactions with the SNP database to ensure that there were no hidden
SNPs in the amplification priming site that would result in inaccurate genotyping. We used
the Sequenom Mass Spectrometry HME assay for genotyping29. We amplified the region
containing the SNP by PCR, treated it with shrimp alkaline phosphatase, hybridized it to
with a primer upstream of the polymorphism and extended the primer with a combination of
a normal and a di-deoxy dNTP that corresponds to the SNP. We then removed salt from the
sample and analyzed the primer extension products on a Bruker Biflex II Mass
Spectrometer. For assay design, we tagged the amplification primers. The melt temperature
of the unique portion of the amplification primers was 56–58 °C and the product size was
80–150 bp. The mass of the detecting primer was 4,000–8,000 Da. We assembled multiplex
groups of five to eight SNPs, with similar sequence context, into single reactions for
analysis. We assembled information about phenotypes, clinical features and genotypes into a
large database and assigned a unique identifier to each sample to anonymize the data.

Statistical analysis
Of the 235 SNPs genotyped in CSSCD subjects, 116 were not included in the statistical
analysis either because they were monomorphic or because the primers failed. Of the
remaining 118 SNPs, we included in the analysis those with <30% missing genotypes
satisfying Hardy Weinberg equilibrium in the individuals with stroke, for a total of 108
SNPs in 39 candidate genes. Continuous variables were discretized into four bins with equal
frequencies.
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To build the Bayesian network, we used a popular Bayesian approach30 implemented in the
program Bayesware Discoverer. The program searches for the most probable network of
dependency given the data. To find such a network, the Discoverer explores a space of
different network models, scores each model by its posterior probability conditional on the
available data and returns the model with maximum posterior probability. This probability is
computed by Bayes theorem as p(M|D) ∝ p(D|M)p(M), where p(D|M) is the probability that
the observed data are generated from the network model M and p(M) is the prior probability
encoding knowledge about the model M before seeing any data. We assumed that all models
were equally likely a priori, and so p(M) is uniform and p(M|D) becomes proportional to
p(D|M), a quantity known as marginal likelihood. The marginal likelihood averages the
likelihood functions for different parameters values and is calculated as p(D|M) = ∫ p(D|
θ)p(θ)dθ, where p(D|θ) is the traditional likelihood function and p(θ) is the parameter prior
density. For categorical data in which p(θ) follows a Dirichlet distribution, the integral p(D|
M) = ∫ p(D|θ)p(θ)dθ has a closed-form solution16 that is computed in product form as p(D|
M) = Πi p(Di|Mi), where Mi is the model describing the dependency of the ith variable on its
parent nodes and Di are the observed data of the ith variable16. The factorization of the
marginal likelihood implies that a model can be learned locally, by selecting the most
probable set of parents for each variable and then joining these local structures into a
complete network, in a procedure that closely resembles standard path analysis. This
modularity property allows us to assess, locally, the strength of local associations
represented by rival models. This comparison is based on the Bayes factor that measures the
odds of a model Mi versus a model M ̃i by the ratio of their posterior probabilities p(Mi|Di)/
p(M ̃i|Di) or, equivalently, by the ratio of their marginal likelihoods ρ = p(Di|Mi)/p(Di|M ̃i).
Given a fixed structure for all the other associations, the posterior probability p(Di|Mi)
equals ρ/(1 + ρ) and a large Bayes factor ρ implies that the probability p(Di|Mi) is close to
one, meaning that there is very strong evidence for the associations described by the model
Mi versus the alternative model M ̃i. When we explore different dependency models for the
ith variable, the posterior probability of each model depends on the same data Di.

To reduce the search space, we used a bottom-up search strategy known as the K2
algorithm30. We specified the space of candidate models to be explored by imposing a
search order on the database variables in which older SNPs (more uniformly distributed in
the population) were tested as children of more recent SNPs (asymmetrically distributed
SNPs). Results of simulations that we have carried out suggest that this heuristic leads to
better networks with largest marginal likelihood. We focused on models in which the
phenotype is the root node of the network and the genotypes can be either conditionally
dependent or marginally independent of it. As in traditional regression models, in which the
phenotype is dependent on the genotypes, this inverted dependency structure can represent
the association of independent as well as interacting SNPs with the phenotype16. But this
structure is also able to capture more complex models of dependency19, because the
marginal likelihood measuring the association of each SNP with the phenotype is
functionally independent of the association of other SNPs with the phenotype. In contrast, in
regression structures, the presence of an association between a SNP and the phenotype
affects the marginal likelihood measuring the association between the phenotype and other
SNPs, reducing the set of SNPs that can be detected as associated with the phenotype. In our
Bayesian network, the nodes associated with the phenotype are the children nodes of stroke
(26 nodes that are directly associated with stroke) and the parents of the children nodes (6
nodes that are associated to stroke, given the common children nodes).

The Bayesian network induced by this search procedure was quantified by the conditional
probability distribution of each node given the parents nodes. The conditional probabilities
were estimated as
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where xik represents the state of the child node, πij represents a combination of states of the
parent nodes, nijk is the sample frequency of (xik,πij) and nij is the sample frequency of πij.
The parameters αijk and αij = Σk αijk encode the prior distribution with the constraint Σj αij =
α for all j, as suggested16. We chose α = 8 by sensitivity analysis16.

Predictive validation
To assess the robustness of the network to sampling variability, we first used fivefold cross-
validation in which we partitioned the original data set into five nonoverlapping subsets that
we used for learning the network dependency. We then used each network to predict the
phenotypes of the individuals not included in the learning process and measured the
accuracy by the frequency of individuals for whom the correct phenotypes were predicted
with probability >0.5. We calculated the predictive probability of stroke, given evidence in
the network, using the clique algorithm16 implemented in Discoverer. We determined the
predictive accuracy of the models using an independent set of 114 individuals with SCA,
including 7 individuals with stroke who were not part of the multicenter study and 107
individuals randomly selected from the original database for whom we had a complete
medical history and who were not used to build the Bayesian network model. We used the
model to predict the phenotypes of these individuals and to assess the predictive accuracy by
the frequency of individuals for whom the correct phenotypes were predicted with
probability >0.5.

Logistic regression
We built a logistic regression model to identify the SNPs associated with the phenotype
using the stepwise procedure implemented in the R program, which uses the Akaike
information criterion in the forward step. We then selected the significant regressors (P <
0.05).

URLs
The network and a tutorial introduction to the use of Bayesian networks in genomics are
available from our website (http://genomethods.org/sca/). dbSNP is available at
http://www.ncbi.nlm.nih.gov/SNP/. The program Bayesware Discoverer is available at
http://www.bayesware.com/.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Examples of Bayesian network structures. (a) A simple Bayesian network with two nodes
representing a SNP (G) and a phenotype (P). The probability distribution of G represents the
genotype distribution in the population, and the conditional probability distribution of P
describes the distribution of the phenotype given each genotype. (b) The association
between G and P can be reversed using Bayes theorem. (c) A Bayesian network linking four
SNPs (G1–G4) to a phenotype P. The phenotype is independent of the other SNPs, once we
know the SNPs G3 and G4. The joint probability distribution of the network is fully
specified by the five distributions representing the distribution of G1 (two parameters), of
G2 given G1 (six parameters), of G3 given G2 (six parameters), of G4 given G2 (six
parameters) and of P given G3 and G4 (nine parameters). The full probability distribution
requires 81 × 2 − 1 = 161 parameters; this network requires only 29.
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Figure 2.
The Bayesian network describing the joint association of 69 SNPs with stroke. Nodes
represent SNPs or clinical factors; the numbers after each gene distinguish different SNPs on
the same gene. SNP are shown as blue nodes; their rs numbers are given in Supplementary
Table 4 online. Clinical variables (HbF.G, fetal hemoglobin (g dL−1); HbF.P, fetal
hemoglobin (%); HbG, total hemoglobin concentration; Thalassemia, heterozygosity or
homozygosity with respect to a 3.7-kb α-thalassemia deletion) are shown as pink nodes.
Twenty-five SNPs in ADCY9, ANXA2, BMP6, CCL2, CSF2, ECE1, ERG, MET, SELP, TEK
and TGFBR3 are directly associated with the phenotype and have the largest independent
effect on the risk of stroke. Note the association of stroke with several SNPs in ADCY9,
BMP6, MET, SELP and TGFBR3, which usually reduces the possibility of false positives18.
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Figure 3.
Box plot of the predictive probability of stroke (risk in 5 years) in an independent set of 7
individuals with stroke and 107 individuals without stroke. The plot shows a split of the
predictive probabilities between these two outcomes: the predictive probabilities of stroke in
the 7 individuals with stroke are >0.6, whereas the predictive probabilities of stroke in the
107 individuals without stroke are close to 0 (for only 2 individuals is the probability >0.5).
The predictive probabilities are given in Supplementary Table 5 online.
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