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Attempts to develop noise-suppression algorithms that can significantly improve speech
intelligibility in noise by cochlear implant �CI� users have met with limited success. This is partly
because algorithms were sought that would work equally well in all listening situations.
Accomplishing this has been quite challenging given the variability in the temporal/spectral
characteristics of real-world maskers. A different approach is taken in the present study focused on
the development of environment-specific noise suppression algorithms. The proposed algorithm
selects a subset of the envelope amplitudes for stimulation based on the signal-to-noise ratio �SNR�
of each channel. Binary classifiers, trained using data collected from a particular noisy environment,
are first used to classify the mixture envelopes of each channel as either target-dominated �SNR
�0 dB� or masker-dominated �SNR�0 dB�. Only target-dominated channels are subsequently
selected for stimulation. Results with CI listeners indicated substantial improvements �by nearly 44
percentage points at 5 dB SNR� in intelligibility with the proposed algorithm when tested with
sentences embedded in three real-world maskers. The present study demonstrated that the
environment-specific approach to noise reduction has the potential to restore speech intelligibility in
noise to a level near to that attained in quiet.
© 2010 Acoustical Society of America. �DOI: 10.1121/1.3365256�

PACS number�s�: 43.66.Ts, 43.71.Ky �JCM� Pages: 3689–3695
I. INTRODUCTION

Cochlear implant �CI� users face a number of challeng-
ing listening situations in their daily lives, some of which
include listening to speech in various types of background
noise �e.g., restaurant�, while others include listening to
speech corrupted by different degrees of reverberation �e.g.,
classrooms�. The temporal/spectral characteristics of the
various types of background noise vary widely and can be
for instance modulated �e.g., train noise�, can have narrow-
band spectra �e.g., siren noise, car noise� or relatively wide-
band �e.g., multi-talker babble� spectra. Given the inherent
spectral variability of background noise present in realistic
listening scenarios, the goal of effectively suppressing back-
ground noise in all listening conditions with a single suppres-
sion algorithm seems too ambitious. Yet, much research ef-
fort was devoted in the last two decades in developing such
algorithms.

A number of noise reduction algorithms for unilateral CI
users have been proposed �Hochberg et al., 1992; Weiss,
1993; Yang and Fu, 2005; Loizou et al., 2005; Kasturi and
Loizou, 2007; Hu et al., 2007�. Yang and Fu �2005� tested
subjects wearing the Clarion, Nucleus-22 and Med-EL de-
vices using a spectral-subtractive noise reduction algorithm
as a pre-processing step, and obtained significant improve-
ment for recognition of speech embedded in speech-shaped
noise. The improvement in multi-talker babble was modest
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and non-significant, and that was attributed partly to the fact
that it was extremely challenging to track and estimate the
masker spectrum needed in spectral-subtractive algorithms.
Hu et al. �2007� evaluated an SNR-weighting based noise
suppression algorithm that unlike other pre-processing algo-
rithms �Hochberg et al., 1992; Weiss, 1993; Yang and Fu,
2005�, directly operated on the vocoded temporal envelopes.
The noisy envelopes in each spectral channel were multi-
plied by channel-specific weighting factors that depended on
the estimated SNR of that channel. A total of nine Clarion
CII implant users were tested, and the results showed signifi-
cant improvement in speech recognition in babble noise. The
above noise suppression methods were promising with some
yielding small, but significant, improvements in intelligibil-
ity. There still remains, however, a substantial performance
gap between CI users’ speech recognition in noisy listening
conditions and in quiet.

A different approach is taken in this study to improve
speech intelligibility in noise by CI users. Rather than focus-
ing on the development of a single, universal, coding strat-
egy that could be applied to all listening situations, we focus
on the development of an environment-specific noise sup-
pression algorithm. Such an approach can be implemented
and utilized in commercially available implant speech pro-
cessors �or hearing aids� in two different ways. One possibil-
ity is for the audiologist to program the speech processors
with multiple MAPs, one for each listening situation that a
CI user might encounter. The CI user can then switch to a
different program each designed for different listening envi-
ronments. A second possibility is to include a sound classi-
fication algorithm at the front-end of the CI processing,

which will automatically identify the listening environment.
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A number of such sound classification algorithms have al-
ready been developed for hearing aids applications
�Nordqvist and Leijon, 2004�. Following the identification of
the listening environment, the appropriate noise reduction
algorithm can be initiated automatically. Some hearing aids
manufacturers �e.g., Phonak� and cochlear implant manufac-
turers �e.g., Cochlear Corporation’s Nucleus 5 system� have
recently adopted such an environment-specific approach for
noise reduction, but no studies have yet been reported about
the efficacy of the adopted algorithms.

The proposed noise suppression coding strategy builds
upon our previous work on the study of optimum channel
selection criterion �Hu and Loizou, 2008�, that can poten-
tially be used in lieu of the traditional maximum selection
criterion. The ACE strategy adopted by Cochlear, Ltd, uses
the maximum selection criterion whereby out of a total of up
to 22 envelope amplitudes, only electrodes corresponding to
the 8–12 largest amplitudes are selected for stimulation. This
has been found to work well in quiet, however, in noise this
criterion could be problematic: first, the selected amplitudes
could include information from the masker-dominated chan-
nels; second, the maximum criterion may be influenced by
the spectral distribution �e.g., spectral tilt� of the target
and/or masker. The study by Hu and Loizou �2008� proposed
the use of SNR as the selection criterion. Based on this cri-
terion, target-dominated envelopes �SNR�0 dB� are re-
tained, while masker-dominated envelopes �SNR�0 dB�
are discarded. The results by Hu and Loizou �2008� demon-
strated that the SNR channel selection criterion has the po-
tential to restore the speech intelligibility in noise for CI
listeners to the level attained in quiet, and for this reason, it
is denoted as optimal ACE �opACE� in the present study.

Although the opACE strategy is a very promising strat-
egy, its implementation poses a considerable challenge in
real-world applications, as the SNR of each spectral channel
needs to be estimated from the mixture envelopes, which is a
formidable task. Conventional noise estimation algorithms
have been found to perform poorly in terms of estimating the
SNR �Hu and Loizou, 2008�. This was not surprising, since
most conventional noise estimation algorithms are not opti-
mized for a particular listening situation, and thus do not take
into account the differences in temporal/spectral characteris-
tics of real-world maskers. By taking advantage of the dis-
tinctive temporal/spectral characteristics of different real-
world maskers, which can be learned using machine learning
techniques �Duda et al., 2001�, an algorithm can be designed
to select channels based on the estimated SNRs of each chan-
nel. Such an algorithm can be optimized for a specific listen-
ing environment, and is thus expected to yield substantial
improvements in intelligibility. The present study evaluates
the performance by CI users of a noise suppression algo-
rithm, which has been optimized for three different real-
world environments, namely multi-talker babble, train and
exhibition hall.

II. PROPOSED NOISE-REDUCTION ALGORITHM

The proposed algorithm consists of two steps: a training

stage, which can be executed off-line, and an enhancement
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stage. The training stage uses the temporal envelopes of the
clean speech signals �typically taken from a large corpus�
along with the envelopes of the masker signals, to compute
the true SNRs of each channel. Using the true channel SNRs,
the binary status of the channels is determined as being ei-
ther speech dominated �i.e., SNR�0 dB� or being masker-
dominated �SNR�0 dB�. In our present study, we found out
that better classification performance can be obtained if an
SNR threshold of �10 dB, rather than 0 dB, is used. Then,
features extracted from the noisy mixture temporal envelopes
and the corresponding binary classification of each channel
are used to train a binary classifier for each channel. Gauss-
ian mixture models �GMMs� were used in the present study
as classifiers, as they were found to perform well in normal-
hearing studies �Kim et al., 2009�. Features similar to ampli-
tude modulation spectra �AMS; Kollmeier and Koch, 1994;
Tchorz and Kollmeier, 2003� were used to train the binary
classifiers. In the enhancement stage, a Bayesian classifier is
used to classify each channel into two classes: target-
dominated and masker-dominated channels. A channel is se-
lected for stimulation only if it is classified as target-
dominated. Figure 1 shows the block diagram of the
enhancement stage of the proposed noise reduction algo-
rithm. Note that the binary classifiers are designed and
trained separately for each individual masker of interest. In
doing so, we are able to achieve high classification accuracy.
A different classifier is thus used for different listening envi-
ronments.

A. Feature extraction

Figure 2 shows the block diagram of the feature extrac-
tion module. The noisy speech signal is first bandpass filtered
into a number of bands corresponding to the active elec-
trodes in the implant devices �e.g., if a CI user is using 14
electrodes, features are extracted in these 14 channels�. The
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FIG. 1. �Color online� Block diagram of the proposed coding strategy.
envelopes in each channel are computed via full-wave recti-
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fication and lowpass filtering with a cutoff frequency of 400
Hz. A 512-point fast Fourier transform �FFT� of the past
20-ms envelope segment is then computed every 4 ms �i.e.,
with an 80% frame overlap�. The magnitude spectrum is
sampled at k�25000 /512 Hz, k=0¯5, to provide six
modulation amplitudes for each channel, spanning the fre-
quency range of 0 to 250 Hz. We denote these amplitudes as
e�� ,n�, where � indicates the segment index and n indicates
the channel index. In addition to this AMS-like feature vec-
tor e�� ,n�, we also include delta features to capture varia-
tions across time and frequency �channel�. The final feature
vector is represented by:

E��,n� = �e��,n�,�eT��,n�,�eN��,n�� , �1�

where

�eT�1,n� = e�2,n� − e�1,n� ,

�eT��,n� = e��,n� − e�� − 1,n�, � = 2, ¯ ,T ,

�eN��,1� = e��,2� − e��,1� ,

�eN��,n� = e��,n� − e��,n − 1�, n = 2, ¯ ,N ,

where �eT�� ,n� and �eN�� ,n� are the delta feature vectors
computed across time and channel respectively, T is the total
number of segments in an utterance, and N is the number of
active electrodes in a CI user. The total dimension of the
feature vector E�� ,n� was 6�3 for each channel.

B. Training stage and enhancement stage

The probability distribution of the feature vectors in
each class was represented with a GMM. As in Kim et al.
�2009�, the two classes �target-dominated envelopes �1 and
masker-dominated envelopes �0� were further divided into
four smaller classes �1

0, �1
1, �0

0, �0
1 to improve convergence

speed and performance in GMM training. We used 256-
mixture Gaussian models for modeling the feature vector
distribution in each class. The a priori probability for each
sub-class was calculated by dividing the number of feature
vectors belonging to the corresponding class by the total
number of feature vectors. The expectation-maximization al-
gorithm was used to train the parameters �e.g., means, cova-
riances, mixture weights� of the GMM binary classifier. A
total of 32 IEEE lists �320 sentences� were used to train the
GMMs. A different classifier was trained for each of the
three maskers tested.

In the enhancement stage, using a Bayesian classifier
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FIG. 2. Block diagram of the feature extraction module.
�Duda et al., 2001�, the trained GMM models classify each
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channel envelope segment as either target or masker-
dominated based on the feature vectors extracted from the
mixture envelopes, and the binary status is deemed as sta-
tionary in each 4-ms envelope segment. More specifically,
the envelope segments are classified as �1 or �0 by compar-
ing two a posteriori probabilities, P��1 �E�� ,n�� and
P��0 �E�� ,n��; P��1 �E�� ,n�� denotes the probability that the
envelope segment belongs to class �1 when the feature vec-
tor E�� ,n� is observed, and P��0 �E�� ,n�� denotes the prob-
ability that the envelope segment belongs to class �0 when
the feature vector E�� ,n� is observed. This comparison
yields an estimate of the binary mask g�� ,n� as:

g��,n� = �1, P��1�E��,n�� � P��0�E��,n��
0, P��1�E��,n�� � P��0�E��,n�� � ,

where P��1 �E�� ,n�� is calculated using Bayes’ rule �Duda et
al., 2001�:

P��1�E��,n�� =
P��1,E��,n��

P�E��,n��

=
P��1

0�P�E��,n���1
0� + P��1

1�P�E��,n���1
1�

P�E��,n��
,

and P��0 �E�� ,n�� is computed similarly. The channels clas-
sified as target-dominated are retained and stimulated. No
stimulation is provided to the channels classified as masker-
dominated.

Figure 3 shows example plots of the temporal envelopes
of channel 1 �center frequency=383 Hz� obtained by the
proposed GMM-based noise reduction algorithm and the
opACE strategy in babble noise at a SNR at 5 dB SNR. As
can be seen, the GMM envelopes are close to those obtained
by opACE �Hu and Loizou, 2008�. Figure 4 shows an ex-
ample plot of the electrical stimulation pattern for a sentence
processed by the GMM-based noise reduction algorithm. As
can be seen, at many instances no electrode is selected for
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FIG. 3. �Color online� An example plot of the temporal envelopes of chan-
nel 1 �center frequency=383 Hz�. The masker is 5 dB babble. The top
panel shows the temporal envelopes of the clean and noisy speech. The
middle panel shows the opACE-processed envelope, and the bottom panel
shows the GMM-processed envelope.
stimulation.
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III. LISTENING EXPERIMENTS

A. Subjects and stimuli

Seven post-lingually deafened Clarion CII implant users
participated in this study. All subjects had at least five years
of experience with their implant devices, and were paid an
hourly wage for their participation. Table I shows the bio-
graphical data for all subjects.

The target speech materials consisted of sentences from
the IEEE database �IEEE, 1969� and were obtained from
Loizou �2007�. The IEEE corpus contains 72 lists comprising
of ten phonetically balanced sentences each. Sentences were
produced by a male speaker and recorded in a double-walled
sound-attenuation booth at a sampling rate of 25 kHz.

Three types of maskers were used: multi-talker babble
�ten female talkers and ten male talkers�, train noise and
exhibition hall noise. The babble recording was taken from
the AUDITEC CD �St. Louis, MO�; the train noise recording
and the exhibition hall noise recording were taken from the
Aurora database �Hirsch and Pearce, 2000�.

A total of 32 lists �320 sentences� were used to train the
GMMs. These sentences were degraded by the three types of
maskers at 0, 5, and 10 dB SNR. The remaining sentences in
the IEEE database were used to test the CI subjects. The
masker segments were randomly cut from the noise record-
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FIG. 4. An example plot of the electrical stimulation pattern obtained using
the GMM-based noise reduction algorithm. Black pixels indicate active
electrodes �stimulated� and white pixels indicate in-active electrodes �not
stimulated�.

TABLE I. Biographical data of the CI subjects teste

Subject Gender

Duration of deafness
prior to implantation

�yr�
CI

�y

S1 Male 1 5
S2 Female 2 5
S3 Female 2 5
S4 Female 1 	

S5 Female �1 5
S6 Male 1 5
S7 Female 	10 6
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ings and mixed with the target sentences. This was done to
evaluate the robustness of the proposed GMM-based noise
reduction algorithm in terms of testing sentences corrupted
using different segments of the masker signal.

B. Procedure

The listening task involved sentence recognition in three
types of real-world maskers. Subjects were tested at six dif-
ferent noise conditions: 5 and 10 dB SNR in babble noise, 5
and 10 dB SNR in train noise, and 5 and 10 dB SNR in
exhibition hall noise. The SNR is defined as:

SNR = 10 � log10

�k=1

k=K
s2�k�

�k=1

k=K
n2�k�

where s and n are speech and masker signals, respectively;
and K is the number of samples in each speech sentence.
Two sentence lists were used for each condition. The sen-
tences were processed off-line in MATLAB �The MathWorks,
Natick, Massachusetts� by the opACE algorithm and the pro-
posed GMM-based noise reduction algorithm, and presented
directly to the subjects using the Clarion CII research plat-
form at a comfortable level. More specifically, after MATLAB

processing, an encoded set of stimulus parameters for the
electrical signals were stored in binary files with one binary
file corresponding to one speech sentence; during testing, the
binary files were downloaded to the Clarion CII research
platform and presented to the subjects using customized soft-
ware. The opACE condition was added as it can provide the
upper bound in performance that can be achieved. For com-
parative purposes, subjects were also presented with unproc-
essed �corrupted� sentences using the experimental proces-
sor. More specifically, the corrupted sentences were
processed via our own CIS implementation that utilized the
same filters, same stimulation parameters �e.g., pulse width,
stimulation rate, etc� and same compression functions used
in the subjects’ daily strategy. The opACE algorithm and the
proposed GMM-based noise reduction algorithm also used
the same filters, same stimulation parameters and same com-
pression functions used in the subjects’ daily strategy. In to-
tal, subjects participated in 18 conditions �� 2 SNR levels �5
and 10 dB� � 3 processing conditions �unprocessed noisy
speech, opACE, and GMM-based noise reduction algorithm�
� 3 types of maskers�. Subjects were also presented with
sentences in quiet during the practice session. Sentences

Number of
active electrodes Etiology

15 Hydrops/Menier’s syndrome
16 Unknown
15 Medication
14 Unknown
16 Medication
16 Fever
16 Unknown
d.

use
r�

5
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were presented to the listeners in blocks, with 20 sentences/
block per condition.

Different sets of sentences were used in each condition.
The presentation order of the processed and control �unproc-
essed sentences in noise� conditions was randomized for
each subject. Subjects were allowed to take breaks at their
leisure, and they were instructed to write down the words
they heard. No feedback was given during testing.

C. Results

The mean percent correct scores for all conditions are
shown in Figs. 5 and 6. Performance was measured in terms
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FIG. 5. Mean percent correct scores for babble noise, train noise and hall
noise at 5 dB SNR. The error bars denote 
1 standard error of the mean.
UN indicates the baseline condition with unprocessed �corrupted� sentences,
GMM indicates the proposed GMM-based noise reduction algorithm, and
opACE indicates the strategy proposed in Hu and Loizou �2008�.
of percent of words identified correctly �all words were
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scored�. To examine the effect of SNR level �5 and 10 dB�
and processing conditions �UN, GMM, and opACE�, we sub-
jected the scores to statistical analysis using the percent cor-
rect score as the dependent variable, and the SNR levels and
processing conditions as the two within-subjects factors. For
babble noise, analysis of variance �ANOVA� with repeated
measures indicated significant effects of both SNR level
�F�1,6�=14.16, p�0.0005� and processing condition
�F�2,12�=60.96, p�0.0005�. There was significant interac-
tion between SNR level and processing conditions
�F�2,12�=23.44, p�0.0005�. For train noise, ANOVA with
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FIG. 6. Mean percent correct scores for babble noise, train noise and hall
noise at 10 dB SNR. The error bars denote 
1 standard error of the mean.
UN indicates the baseline condition with unprocessed �corrupted� sentences,
GMM indicates the proposed GMM-based noise reduction algorithm, and
opACE indicates the strategy proposed in Hu and Loizou �2008�.
repeated measures indicated significant effects of both SNR
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level �F�1,6�=36.49, p=0.001� and processing conditions
�F�2,12�=115.88, p�0.0005�. There was significant inter-
action between SNR levels and processing conditions
�F�2,12�=20.31, p�0.0005�. For hall noise, ANOVA with
repeated measures indicated significant effects of both SNR
levels �F�1,6�=9.44, p�0.0005� and processing conditions
�F�2,12�=42.78, p�0.0005�. There was significant interac-
tion between SNR level and processing conditions
�F�2,12�=30.49, p�0.0005�. The above interactions were
introduced by the fact that the improvement in intelligibility
with the proposed algorithm was larger at 5 dB SNR than at
10 dB SNR, as shown by the post hoc tests below. The im-
provement at 10 dB SNR might have been limited by ceiling
effects.

Post hoc tests �Schéffe, corrected for multiple compari-
sons� were run to assess the statistical significance between
conditions. For all noise conditions, performance with the
unprocessed sentences were significantly lower than both the
GMM-based noise reduction algorithm and the opACE strat-
egy. The performance of some subjects �e.g., S4� with sen-
tences processed via the GMM-based algorithm at 5 dB SNR
was above 90%, nearing their performance in quiet. For 5
and 10 dB train noise, 10 dB babble noise, and 10 dB hall
noise, there were no significant differences between the
GMM-based noise reduction algorithm and the opACE strat-
egy; for the other noise conditions, the opACE strategy was
significantly better than the GMM-based algorithm. The
highest performance was obtained with the opACE strategy.
This was not surprising since the opACE strategy assumes
access to the true SNRs of each channel.

To quantify the accuracy of the binary Bayesian classi-
fier, we calculated the average hit �HIT� and false alarm �FA�
rates across all channels for the six noise conditions using
120 sentences processed via the GMM-based noise reduction
algorithm. The HIT and FA rates were computed by compar-
ing the estimated SNRs �using the GMM models� against the
true SNRs of each channel. A false alarm error is introduced
when masker-dominated envelopes �i.e., envelopes with
SNR�0 dB� are wrongly classified as target-dominated en-
velopes. Table II shows the HIT, FA and HIT-FA rates for the
six noise conditions obtained by the proposed GMM-based
noise reduction algorithm. Compared with the conventional
noise reduction algorithms �Hu and Loizou, 2008�, the
GMM-based noise reduction algorithm produced much
higher HIT rates and much lower FA rates, thus much higher
HIT-FA rates. The difference metric HIT-FA is also reported
because it bears resemblance to the sensitivity index, d�,
used in psychoacoustics �this metric was found by Kim et al.
�2009� to correlate highly with intelligibility scores obtained
with normal-hearing listeners�. As demonstrated in Li and
Loizou �2008�, low FA rates are required to achieve high
levels of speech intelligibility, and this most likely explains
the high performance of the proposed GMM-based noise re-
duction algorithm.

IV. GENERAL DISCUSSION AND CONCLUSIONS

Large improvements in intelligibility were observed

with the proposed GMM-based noise reduction algorithm
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�Figs. 5 and 6�. In 5 dB babble noise, for instance, mean
subject scores improved from 32% to 73%; in 5 dB train
noise, mean subject scores improved from 34% to 80%; and
in 5 dB hall noise, mean subject scores improved from 31%
to 77%. Performance approached that obtained with opACE,
and the improvement in performance was consistent for all
three types of maskers tested.

Two factors most likely contributed to the high perfor-
mance of the proposed GMM-based noise reduction algo-
rithm: first, the AMS-like features are neurophysiologically
motivated �Kollmeier and Koch, 1994� and most likely cap-
ture reliably the difference between speech dominated and
masker-dominated envelopes; second, GMM-based Bayesian
classifiers are highly suitable for this binary mask applica-
tion. Other classifiers, such as neural networks �Tchorz and
Kollmeier, 2003�, could alternatively be used. Our attempt,
however, to use neural networks to estimate the binary
masks, did not yield much improvement �Hu and Loizou,
2009�, especially when randomly cut masker segments were
mixed with the test sentences.

In the present study, a total of 320 sentences were used
to train the GMM SNR classifiers for each masker. Alterna-
tively, GMM classifiers can be trained incrementally. Start-
ing with an initial GMM model �trained with a small number
of sentences�, the GMM parameters can be continuously up-
dated �Huo and Lee, 1997� as more training sentences are
added, and this model adaptation technique can be quite ef-
fective and more appropriate for real-world deployment of
the proposed technique. Ongoing work in our laboratory is
focused on further development of such model adaptation
techniques.

A different GMM SNR classifier was used for each
masker in the present study. Alternatively, a GMM classifier
can be trained using data from multiple maskers. In other
words, a GMM classifier can be built using more generalized
noise models. Data from normal-hearing listeners indicated
that a GMM classifier trained using data from 3 different
maskers �babble, factory, speech-shaped noise� performed
nearly as well as the GMM classifier trained using data from
a single masker �Kim et al., 2009�. In realistic scenarios
where the user knows a priori the types of background noise
he or she will be encountering daily, the multiple-masker
based GMM classifier could be a viable option.

There are several potential issues that warrant further
investigation of the GMM-based noise reduction approach:
first, the present study used speech materials produced from
a male speaker, and it is not clear whether the gender of the
speaker would have any impact on performance. Results

TABLE II. HIT and FA rates �expressed in percent� for the six noise con-
ditions.

Babble Train Hall

5 dB 10 dB 5 dB 10 dB 5 dB 10 dB

HIT 89.29 87.95 88.81 87.08 86.89 83.70
FA 14.19 13.83 13.18 12.18 13.03 12.46
HIT-FA 75.10 74.12 75.63 74.91 73.86 71.24
from Kim et al. �2009�, however, indicated that the speaker
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gender had no significant impact on performance; this is un-
derstandable as the extracted features do not carry much in-
formation about the identity of the speaker; second, the
present study used an FFT-based feature extraction process
and the envelope segment �20 ms duration� was not long
enough to capture modulations below 20 Hz, which are im-
portant for speech intelligibility �Drullman et al., 1994a,
1994b�. A potential solution to this issue is to use a wavelet-
based feature extraction procedure that is based on the use of
different window lengths for different frequency components
�Mallat, 2008�; third, realistic deployment of the proposed
GMM-based noise reduction method warrants further inves-
tigation. In the training stage of the proposed approach, sub-
stantial computational resources are needed to train the pa-
rameters of the GMM binary classifier, hence the training
must be done in an off-line fashion; after the training, in the
enhancement stage, the computational load is moderate and
can be easily handled by modern cochlear implant devices;
however, substantial memory space is required to store the
parameters of the trained GMMs. From the above discussion,
it can be seen that realistic deployment of the proposed
GMM-based noise reduction algorithm needs inexpensive
storage space and computational resources. As the memory
cost is dropping rapidly, the requirement for storage space
can be met in the near future; however from the perspective
of end users, computational resources still present a formi-
dable problem. Some solutions can be derived from the area
of automatic speech recognition systems �e.g., call centers
operated by computers�. Commonly used GMMs, for in-
stance, can be incorporated into the processors by the
cochlear implant device manufacturers. For GMM training
tasks initiated by end users, a viable solution is to use an
internet-based cloud computing platform, which will become
available in the near future.

In summary, an environment-optimized approach to
noise reduction was proposed in the present study for
cochlear implant users, and the proposed approach aligns
well with existing methods used in hearing aids �e.g., Pho-
nak’s Savia�, where sound classification methods are used to
first identify different listening situations, and then adjust
accordingly hearing-aid processing parameters �Zakis et al.,
2007�. The data collected in the present study demonstrated
that the proposed environment-optimized noise suppression
algorithm has the potential to restore speech intelligibility in
noise to a level near to that attained in quiet by CI listeners.
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