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We show that the effect of driving force F on the effective mobility and diffusion coefficient of a
particle in a tube formed by identical compartments may be qualitatively different depending on the
compartment shape. In tubes formed by cylindrical �spherical� compartments the mobility
monotonically decreases �increases� with F and the diffusion coefficient diverges �remains finite� as
F tends to infinity. In tubes formed by cylindrical compartments, at large F there is intermittency in
the particle transitions between openings connecting neighboring compartments. © 2010 American
Institute of Physics. �doi:10.1063/1.3451115�

Mobility �0 and diffusion coefficient D0 of a point
Brownian particle in a cylindrical tube are independent of the
driving force. This is not true for a tube of varying diameter.
In this paper we discuss how a uniform driving force F af-
fects the particle motion in cylindrically symmetric tubes
formed by identical compartments of two different shapes,
spherical and cylindrical, schematically shown in Figs. 1�a�
and 2�a�. Neighboring compartments are connected by open-
ings of radius a, through which the particle can go from one
compartment to the other. On times when the particle dis-
placement significantly exceeds the compartment length l, it
is convenient to characterize the motion by effective mobility
�eff�F�, or effective drift velocity veff�F�=�eff�F�F, and ef-
fective diffusion coefficient Deff�F�. Both �eff�0� and Deff�0�
are smaller than their counterparts in a purely cylindrical
tube because of periodic entropy wells and barriers for the
particle motion along the tube axis. The major focus of the
present paper is on the F-dependences of the effective mo-
bility and diffusion coefficient in tubes of the two types as
well as on the particle transit times between neighboring
openings. Similar problems of transport in the presence of
periodic entropy barriers have attracted a lot of attention in
recent years.1–5 The reason is that entropy barriers are ubiq-
uitous. They are found in porous media and nanomaterials as
well as in biological cells and cellular compartments. Tradi-
tionally these problems are considered for diffusing point
particles, i.e., effects of inertia and hydrodynamic interac-
tions are neglected.1–5

At F=0 the major approach to the problem is based on
the Fick–Jacobs equation6 generalized by Zwanzig7 and
Reguera and Rubi;8 a more sophisticated approach has been
developed by Kalinay and Percus.9 The generalized Fick–
Jacobs equation is a one-dimensional Smoluchowski equa-

tion that describes diffusion in the entropy potential. For one-
dimensional Brownian motion in a regular periodic potential
it has been shown10 that �i� the effective mobility monotoni-
cally increases with F from �eff�0���0 to �eff���=�0,
where �0 is the particle mobility in the absence of the peri-
odic potential; �ii� dependence Deff�F� is nonmonotonic: first
it increases from Deff�0��D0 to its maximum value, which is
larger than the particle diffusion coefficient in the absence of
the periodic potential D0, and then decreases approaching
Deff���=D0 from above as F→�. Similar behavior of
�eff�F� and Deff�F� in the case of entropy potentials has been
reported in recent papers1�a�,2�a� devoted to the particle motion
in quasi-two-dimensional periodic systems �slits of periodi-
cally varying width�.

The question arises whether the effect of an external
driving force on Brownian motion in periodic entropy poten-
tials is always similar to that on motion in a periodic regular
potential or not. In the present paper we show that depen-
dences �eff�F� and Deff�F� are qualitatively different when
the tube is formed by cylindrical compartments �cc� sepa-
rated from each other by infinitely thin periodic partitions
containing circular openings in their centers �Fig. 2�a��. In
such a tube �eff

cc �F� monotonically decrease with F �Fig. 2�b��
from �eff

cc �0� to �eff
cc ��� given by

�eff
cc ��� = �0�2, � = a/R , �1�

where R is the tube radius. Effective diffusion coefficient,
Deff

cc �F�, monotonically increases with F �Fig. 2�c�� approach-
ing its large-F asymptotic behavior,

Deff
cc �F� =

�4

4
�ln� 1

�2� − 1 + �2���FR�2D0, �2�

where �=1 / �kBT� with the standard notations kB and T for
the Boltzmann constant and absolute temperature. At the
same time, when the tube is formed by spherical compart-a�Electronic mail: berezh@helix.nih.gov.
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ments �sc� �Fig. 1�a��, dependences �eff
sc �F� and Deff

sc �F� are
similar to those reported in Refs. 1�a�, 2�a�, and 10. In this
case �eff

sc �F� monotonically increases with F �Fig. 1�b�� from
�eff

sc �0� to �eff
sc ���=�0, while Deff

sc �F� first increases from
Deff

sc �0� to its maximum value which is larger than D0, and
then decreases approaching Deff

sc ���=D0 from above as
F→� �Fig. 1�c��. In addition to unconventional behavior of
�eff

cc �F� and Deff
cc �F�, motion in the tube separated into cylin-

drical compartments has another interesting feature: when
the driving force is large enough, there are two different
scenarios of the particle transition between neighboring
openings, fast and slow. In other words, there is
intermittency11 in the transitions.

We begin our discussion of the dependences �eff�F� and
Deff�F� with consideration of the limiting cases of very small

and very large driving force. Small-F asymptotic behavior of
�eff�F� can be found using known results for Deff�0� and the
Einstein relation. For the tube formed by spherical compart-
ments of radius R connected by circular openings of radius
a=	R2− l2 /4, it has been shown4 that Deff

sc �0�
�6� /��D0, if
��0.2, and Deff

sc �0�
�3� / �2+�2��D0, if 0.2���1, where
�=a /R=	1− l2 / �4R2�. This leads to

�eff
sc �0� = �Deff

sc �0� 
 �0 � � 6�/� , � � 0.2

3�/�2 + �2� , 0.2 � � � 1.
�

�3�

Asymptotic behaviors of �eff
sc �F� and Deff

sc �F� in the op-
posite limiting case can be found using the observation that
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FIG. 1. �a� Schematic representation of the tube formed by spherical com-
partments. �b� Effective mobility and �c� diffusion coefficient of a
point particle in such a tube found in Brownian dynamics simulations at
�=a /R=0.3 �l /R=2	1−�2
1.91� are shown by squares and circles, re-
spectively, while triangles in panel �b� show function w�F�, Eq. �7�. Dashed
lines represent asymptotic behaviors of the corresponding quantities. �eff

and Deff were calculated by mapping motion of the particle onto the random
walk among the openings and using the formulas for �eff and Deff derived in
Ref. 13. The results were obtained by averaging over 2.5�104 transitions
among the openings. If the trajectory crossed the compartment wall, the step
was rejected. The dimensionless time step 	t̃=D	t /R2 was different at dif-
ferent values of the driving force: 	t̃=10−6 at �FR�1, 	t̃=10−6 / ��FR� at
�FR
1. The error in our numerical results is smaller than the size of the
symbols in the figure.
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FIG. 2. �a� Schematic representation of the tube formed by cylindrical com-
partments. �b� Effective mobility and �c� diffusion coefficient of a point
particle in such a tube found in Brownian dynamics simulations at
�=a /R=0.3 and l /R=2 are shown by squares and circles, respectively.
Dashed lines represent asymptotic behaviors of the corresponding quantities.
�eff and Deff were calculated using the first two moments of the particle
displacement, which were obtained by averaging over 105 trajectories. If the
trajectory crossed the tube wall �the partition�, only the displacement along
the tube axis �normal to the axis� was accepted. The dimensionless time
step 	t̃=D	t /R2 was different at different values of the driving force:
	t̃�107=20 ��FR�10�, 5 ��FR=102 ,103�, 3.2 ��FR=104�, 1.25 ��FR
=105�. The number of time steps increased from 5�107 at small F to
1.2�108 at large F, so that the length of the trajectories varied from 15R2 /D
at large F to 100R2 /D at small F. The error in our numerical results is
smaller than the size of the symbols in the figure.
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when F→� the particle spends practically all time in the
cylinder of radius a surrounding the tube axis �Fig. 1�b��. As
a consequence, the particle is unaware about variation of the
tube diameter, and its effective mobility and diffusion coef-
ficient are identical to those in a cylindrical tube, �eff

sc ���
=�0, Deff

sc ���=D0.
For the tube formed by cylindrical compartments of

radius R and length l, with l�R, it has been shown5�b�

that Deff
cc �0�
2l�f��� / ��R+2l�f�����D0, where f���

= �1+1.37�−0.37�4� / �1−�2�2. Then the Einstein relation
leads to

�eff
cc �0� = �Deff

cc �0� 

2l�f���

�R + 2l�f���
�0. �4�

To find the large-F asymptotic behaviors of �eff
cc �F� and

Deff
cc �F�, Eqs. �1� and �2�, we use the fact that infinitely thin

partitions do not affect the equilibrium uniform distribution
of the particle over the tube radius. The distribution at arbi-
trary value of the driving force is given by peq���=1 / ��R2�,
where � is the radial coordinate of the particle counted from
the tube axis in the cylindrical coordinate system �x ,��, in
which x denotes the particle coordinate along the tube axis.
The radial distribution is obtained from the three-
dimensional distribution of the particle position in the tube
by integrating this distribution over x from minus to plus
infinity. When ����a, strong driving force presses the par-
ticle to the partition, so that the particle does not move along
the tube until it reaches the opening due to its radial diffu-
sion. As a result, at large F the uniform equilibrium radial
distribution is organized as follows. Its fraction 1−�2 is
mainly localized near the partitions, while the rest is spread
in the cylinder of radius a connecting the openings. This
distribution differs qualitatively from its counterpart in the
tube formed by spherical compartments where the particle
spends all the time in the cylinder connecting the openings.
Mean displacement of the particle along the tube axis,
�	x�t �F��, observed for a sufficiently long time t is given by

�	x�t�F�� = �0F��a�t�� , �5�

where ��a�t�� is the mean residence time spent inside the
circle of radius a by the particle that diffuses inside the larger
circle of radius R, which is concentric with the smaller circle.
Because of the ergodicity ��a�t��=�2t, t→�, and hence,
�	x�t �F��=�0�2Ft that leads to the result given in Eq. �1�.

To derive the expression for Deff
cc �F� given in Eq. �2�,

consider the variance of the particle displacement for a long
time t, 	x

2 �t �F�= ��	x�t �F��2�− �	x�t �F��2=2Deff
cc t. At large

F, 	x
2 �t �F� is due to the fluctuations of the particle residence

time in the circle of radius a,

	x
2 �t�F� 
 �0

2F2�a

2 �t�, F → � , �6�

where �a

2 �t�= ���a�t��2�− ��a�t��2 is the variance of this resi-
dence time. Using the exact asymptotic expression for the
variance derived in Ref. 12, ��

2 �t�=�4�ln�1 /�2�−1+�2�
��R2 / �2D0��t, t→�, we arrive at the result in Eq. �2�.

We find functions �eff�F� and Deff�F� over the entire
range of F by Brownian dynamics simulations performed by
numerical integration of the stochastic equation of motion

using the forward Euler algorithm �see more details in the
figure captions�. This is done at �=a /R=0.3 for both tube
geometries; the compartment lengths for the tubes of the two
types, respectively, are lsc=2R	1−�2
1.91R and lcc=2R.
The results presented in Figs. 1�b�, 1�c�, 2�b�, and 2�c� show
that both �eff�F� and Deff�F� have qualitatively different be-
haviors in tubes of the two types. This happens in spite of the
fact that the radii of the connecting openings are identical
and the compartment lengths are close.

For the tube formed by spherical compartments, we also
found mean times spent by the particle outside and inside the
cylinder of radius a surrounding the tube axis, ��out�F�� and
��in�F��, respectively. In Fig. 1�b� we show the ratio of these
times, ��out�F�� / ��in�F��, multiplied by the ratio of the
corresponding volumes, Vin /Vout, where Vin=�a2l and
Vout= ��l /3��2R2+a2�−Vin. We denote the product of the two
ratios by w�F�,

w�F� =
��out�F��Vin

��in�F��Vout
. �7�

Because of the ergodicity w�0�=1. As shown in Fig. 1�b�,
w�F� monotonically decreases with F since the fraction of
time spent by the particle inside the cylinder increases with
F. As F→�, w�F�→0 since the particle spends practically
all time in the cylinder. This contrasts sharply with the par-
ticle behavior in the tube formed by cylindrical compart-
ments. In such a tube the fraction of time spent by the par-
ticle in the narrow cylinder of radius a is independent of the
strength of the driving force and equal to �2=a2 /R2, so that
w�F�=1. Note that localization of the particle probability
density in the central part of the elementary cell induced by
the driving force has been reported in quasi-two-dimensional
periodic systems.1�b�

To gain additional insight into the driving force effect on
the particle motion, we studied the distributions of the par-
ticle transit time � between neighboring openings in tubes of
the two types. The mean transit time, ���= l / ��eff�F�F�,
monotonically decreases as F increases. The large-F
asymptotic behaviors of ��� in tubes of the two types are
different,

��sc� =
lsc

�0F
, ��cc� =

lcc

�0F�2 , �8�

where we have used �eff
sc ���=�0 and �eff

cc ���=�0�2, Eq. �1�.
At large F the probability density of the transit time in the
tube formed by spherical compartments �sc��� takes its lim-
iting form, �sc���=���− lsc / ��0F��. As a consequence, in
such a tube the moment ratios ��sc

n � / ��sc�n tend to unity as
F→�.

In tubes formed by cylindrical compartments the situa-
tion is different. Here at large F the transit time probability
density in addition to a delta-function-like peak centered at
�= lcc / ��0F� has a long tail. Because of this tail ��cc� is
�−2=R2 /a2 times larger than the pick center time, lcc / ��0F�.
During rare slow transitions, which are responsible for the
tail, the particle diffuses at ����a that maintains its uniform
distribution over the cross section of the tube. Consider a
particle that made N�1 transitions between neighboring
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openings in a tube with cylindrical compartments at large F.
Let � be the fraction of slow transitions contributing into the
tail. Then 1−� is the fraction of fast transitions of duration
lcc / ��0F�. Denoting the mean duration of a slow transition
by ��out�, we can write the mean residence times spent by the
particle inside and outside the cylinder of radius a, respec-
tively, as �1−��Nlcc / ��0F� and �N��out�. Since the distribu-
tion over the cross section is uniform, the ratio of these times
is equal to a2 / �R2−a2�=�2 / �1−�2�. Using this we obtain

�

1 − �
=

lcc�1 − �2�
�0F��out��2 . �9�

This shows that the fraction of slow transitions tends to zero
as F→�, ��1 /F.

Thus, the pattern of the particle transitions between
neighboring openings is as follows. Series of many fast tran-
sitions, during which the particle stays in the cylinder of
radius a, are interrupted by slow transitions, during which
the particle travels outside the cylinder. Such intermittency in
transitions occurs when F is large enough so that the fast
transit time lcc / ��0F� is much shorter than time R2 /D0 asso-
ciated with the slow transitions.

The intermittency also manifests itself in the
F-dependence of the moment ratios, ��cc

n � / ��cc�n. Table I
shows these ratios found in simulations as a function of F.
As F→� the ratios with n
2 diverge, while for the tube
formed by spherical compartments similar moment ratios
tend to unity. The divergence is a consequence of the long
tail in the probability density �cc��� that is due to the slow
transitions between neighboring openings. The rate of diver-
gence increases with n. It can be shown that ��cc

n � / ��cc�n

�Fn−1, F→�. Numerical results presented in Table I support
this estimation of the asymptotic F-dependence of the mo-
ment ratios.

In summary, the main result of the present paper is that
there are two patterns of the particle motion under the action
of strong driving force in tubes of periodically varying diam-
eter. The pattern realized in the tube formed by cylindrical
compartments differs qualitatively from its counterpart in the
tube formed by spherical compartments. As a consequence,

dependences of the effective mobility and diffusion coeffi-
cient on the driving force are qualitatively different �Figs. 1
and 2�. In addition, in the tube formed by cylindrical com-
partments there is intermittency in the particle transitions
between neighboring openings. To emphasize the striking
difference between the dependences, we compare the depen-
dences �eff

sc,cc�F� and Deff
sc,cc�F� in tubes with similar param-

eters, namely, the same radius of the connecting openings,
a=0.3R, and close values of the compartment lengths,
lsc=2R	1−�2
1.91R and lcc=2R. It would be interesting to
learn how these dependences change when the compartment
lengths and the opening radii vary. These studies are in
progress.

After the manuscript was submitted, Marchesoni14 has
published some of the results discussed above in a short note.
These results are the formula for the effective mobility in the
tube formed by cylindrical compartments at F→�, Eq. �1�,
and its counterpart at F→0, Eq. �4�, in the limiting case of
small openings, �=a /R→0, when f���=1.
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