Skip to main content
. 2010 Mar 9;38(12):4011–4026. doi: 10.1093/nar/gkq112

Table 3.

Gene sets responding to shYY2 using gene set analysis

Name Type Size YY2 ES YY2 NES YY2 NOM P-value YY2 FDR Q-value
UV damage
UVB NHEK1 UP Gene set 123 0.485 2.171 0.000 0.000
UVB SCC UP Gene set 82 0.520 2.147 0.000 0.001
UVC HIGH D2 DN Gene set 36 −0.420 −1.547 0.020 0.600
Mitochondrial function
MOOTHA VOXPHOS Gene set 75 0.629 2.558 0.000 0.000
ELECTRON TRANSPORT CHAIN Gene set 92 0.561 2.376 0.000 0.000
Tissue type
PLATELET EXPRESSED Gene set 27 0.663 2.185 0.000 0.000
GNATENKO PLATELET UP Gene set 36 0.654 2.282 0.000 0.000
GNATENKO PLATELET Gene set 36 0.654 2.299 0.000 0.000
Transcription factors
KRCTCNNNNMANAGC UNKNOWN Cis 20 0.645 1.943 0.000 0.032
Growth factors
EGF HDMEC UP Gene set 38 0.598 2.131 0.000 0.001
Miscellaneous
ET743 SARCOMA UP Gene set 57 0.540 2.105 0.000 0.001
GUO HEX DN Gene set 40 0.602 2.193 0.000 0.000
PROTEASOME PATHWAY Gene set 21 0.708 2.175 0.000 0.000
MORF AP2M1 Computational 214 0.437 2.121 0.000 0.000
MORF ATOX1 Computational 79 0.540 2.218 0.000 0.000
MORF ERH Computational 113 0.482 2.132 0.000 0.000
MORF PRDX3 Computational 84 0.519 2.160 0.000 0.000
MORF RAD21 Computational 177 0.419 1.991 0.000 0.001
MORF RAN Computational 263 0.484 2.404 0.000 0.000
CTGAGCC,MIR-24 cis 140 −0.417 −1.976 0.000 0.027

As in Table 1 except that type refers to the type of database used, size identifies the number of genes tested in the indicated set and the ES is the non-normalized enrichment score, without normalization to the size of the dataset.