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SUMMARY
Results from animal models suggest gene therapy is a promising new approach for the treatment of
epilepsy. Several candidate genes such as neuropeptide Y and galanin have been demonstrated in
preclinical studies to have a positive effect on seizure activity. For a successful gene therapy-based
treatment, efficient delivery of a transgene to target neurons is also essential. To this end, advances
have been made in the areas of cell transplantation and in the development of recombinant viral
vectors for gene delivery. Recombinant adeno-associated viral (rAAV) vectors in particular show
promise for gene therapy of neurological disorders due to their neuronal tropism, lack of toxicity,
and stable persistence in neurons, which results in robust, long-term expression of the transgene.
rAAV vectors have been recently used in phase I clinical trials of Parkinson’s disease with an
excellent safety profile.

Prior to commencement of phase I trials for gene therapy of epilepsy, further preclinical studies are
ongoing including evaluation of the therapeutic benefit in chronicmodels of epileptogenesis, as well
as assessment of safety intoxicological studies.
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Gene therapy was traditionally defined as an approach to replace the defective copy of a gene
with a functional copy and restore normal function in a cell population. It is an elegant
therapeutic approach because it derives directly from our knowledge of the molecular biology
of a disease, targeting its most upstream level. This approach has proven effective in genetic
diseases such as hemophilia (Chuah et al., 2004), X-linked immunodeficiency (Hacein-Bey-
Abina et al., 2002), and other metabolic disorders. However, the field of application is indeed
broad, including both simple genetic as well as complex acquired disorders, as gene therapy
enables either overexpression or knockdown (using interfering RNA, antisense, or ribozymes)
of genes within a pathological network and is therefore applicable to any disease for which the
cascade of pathophysiological events has been identified. There is a significant unmet need for
new therapeutic approaches in epilepsy. About one-third of epileptic patients suffer from
pharmacoresistant seizures despite the development of new antiepileptic drugs. For many of
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these patients, surgical resection is often the only effective therapeutic approach available.
Moreover, antiepileptic drugs do not prevent the progression of the disease, and for epileptic
patients, seizure management is often synonymous with lifelong pharmacological treatment,
with side effects that can be debilitating, and the risk of increasing refractoriness over time.

WHICH EPILEPSIES ARE GOOD CANDIDATES FOR GENE THERAPY?
Approximately 30% of epilepsies are believed to be idiopathic or of genetic origin (Berkovic
et al., 2006). Most of them are complex diseases with both genetic and environmental causation,
however autosomal dominant monogenic epilepsies have also been identified, with the
majority resulting from polymorphism in ion channels. A mutation in the nicotinic
acetylcholine receptor α4 was the first autosomal defect identified in epileptic patients with
nocturnal frontal lobe epilepsy (Steinlein et al., 1995). Since then, more than 12 mutations
associated with channelopathies have been identified (Berkovic et al., 2006). However, pure
monogenic epilepsies are relatively rare, and in complex epilepsies, the impact of
environmental influences compared to genetic factors is difficult to assess. In addition, because
of the compensatory mechanisms that take place in the brain, the link between the mutation
and the hyperexcitability phenotype is sometimes difficult to identify. This may explain why
some genetic mouse models reproducing the mutation of a gene sometimes fail to develop
spontaneous seizures. Although significant insights into the pathophysiological mechanisms
of epilepsy have been gained from these models, the single gene mutations often do not
reproduce the full cascade of events that lead to an epileptic phenotype (Noebels, 1996).
Finally, it is very difficult to design an approach with gene therapy for a disease that often
involves a large area of the brain simply because of the technical limitations of achieving
widespread gene transfer. For these reasons, genetic forms of epilepsy are among the most
challenging and may not be the most suitable initial targets for development of gene therapy-
based treatments. Focal epilepsies, and in particular temporal lobe epilepsy, appear to be better
candidates for gene therapy. The physiopathology of temporal lobe epilepsy has been well
studied in animal models, as well as from the analysis of surgical resection tissue, and several
candidate genes have been identified as potential therapeutic targets (Vezzani, 2004).
Furthermore, the epileptogenic area can be well defined by imaging and recording techniques.
Gene therapy allows specific targeting of the epileptogenic region, thus sparing the surrounding
healthy tissue and minimizing side effects that often go hand in hand with antiepileptic drug
treatment.

DELIVERY OF GENES TO THE BRAIN
Route of administration

Delivery of genetic material to the brain is a technical challenge due to the presence of the
blood brain barrier, which limits access to the central nervous system (CNS). Intranasal
administration is a feasible approach, and transgene expression in neural cells has been
achieved with this method of administration. A proof of principle experiment utilizing
intranasal delivery of the antiapoptotic gene ICP10PK within a growth-compromised herpes
simplex virus vector resulted in transduction of hippocampal neurons, however the level of
transgene expression was limited (Laing et al., 2006). Furthermore, this method is not
appropriate for therapies in which transduction of only a limited region of the brain is required,
unless vectors are developed that target only selected subpopulations of cells (reviewed by
Muzyczka & Warrington, 2005).

An invasive approach, such as stereotactic surgery, is a more efficient route for delivery of a
therapeutic gene to a specific area of the brain, and high levels of transgene expression can be
achieved following injection of a viral vector such as adeno-associated virus (Ruitenberg et
al., 2002). To date, this is by far the most commonly used method of gene delivery to the brain.
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A major advantage of gene transfer to the brain is the limited immune response induced after
intraparenchymal delivery. The cell population within the CNS is devoid of antigen-presenting
cells with only a very limited lymphatic system present (Hickey, 2001). However, an invasive
surgery induces the breakage of the blood brain barrier and the penetration of activated
lymphocytes. Therefore, the notion that the brain is immunologically privileged has been
somewhat reevaluated (Barker & Widner, 2004), and while the immune response observed in
the brain is generally less pronounced than in other peripheral organs, it remains an important
factor in the choice and design of the technique for gene transfer. Other essential factors to be
considered are the efficiency of gene delivery, the level and stability of transgene expression,
and the ability to regulate transgene expression. Different techniques have been used to express
a gene in a specific region of the brain: Cells transplantation in an ex vivo approach (fetal cells,
immortalized cells, fibroblasts), nonviral vector delivery, liposomes, and viral vector delivery
including herpes simplex virus, retrovirus and lentivirus, adenovirus, and adeno-associated
virus.

Gene delivery vehicles
Lipid-based systems of gene delivery are the simplest technique for gene delivery. Their main
advantages are a high loading capacity, low immunogenicity, and the transfection of
nondividing cells (Ewert et al., 2004; Rettig & Rice, 2007). However, gene expression is
inefficient and transient, and they are yet not suitable for gene therapy in neurological disorders.
Similarly, nonviral delivery of a nude DNA is not currently feasible due to the low efficiency
of transfection and the high level of immune response.

The main gene transfer techniques used in clinical application are cell transplantation and
cellular transduction by viral vectors. Cell transplantation approaches currently emphasize the
use of stem cells, typically embryonic stem (ES) cells or adult stem cells. Their main advantage
is the high compatibility of the transplant with the host. Additionally, ES cells are pluripotent
and can differentiate into either glia or different neuronal phenotypes (Rathjen & Rathjen,
2001) and can be transfected in vitro to express a protein of interest. However, the use of human
ES cells in the clinic is limited due to ethical debate over destruction of the embryo as well as
the potential for generating tumors (Riess et al., 2007). The development of porcine fetal tissue
as xenograft material has been proposed to overcome the limitation of stem cells availability.
Xenotransplants have been implanted in patients with neurodegenerative diseases (Deacon et
al., 1997; Fink et al., 2000). Although the grafts successfully developed synaptic contacts with
host cells (Deacon et al., 1997), their use is still limited because they carry an additional risk
of infection due to animal pathogens, and the probability that the graft will be rejected is
increased compared to allogeneic grafts (Isacson & Breakefield, 1997).

Viral vectors are currently the most promising tools to directly introduce a gene into the brain,
in particular herpes simplex virus (HSV), lentivirus, and adeno-associated virus (AAV).
Retroviruses are not a suitable gene delivery vehicle for transduction of neuronal cells because
they require the cell to undergo mitosis. Furthermore, the use of retrovirus in gene therapy has
raised safety issues due to the possibility of insertional mutagenesis (Hacein-Bey-Abina et al.,
2003). HSV, AAV, and lentivirus transduce both dividing and nondividing cells, and the use
of cell type-specific promoters allows targeted gene transfer to selected populations of neurons.
Thus further research to optimize the efficacy of these gene delivery systems is a reasonable
approach towards the development of gene-based treatments for neurological disorders.

HSV allows packaging of approximately 20 kb and has strong neuronal tropism. In addition,
this vector has the ability to spread through the nervous system, and injection of HSV has
resulted in widespread distribution of gene transduction (Berges et al., 2007). The main
limitation to the use of HSV is cytotoxicity and elicitation of a cellular immune response
(McMenamin et al., 1998). The development of helper virus-free HSV1, in which genes
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involved in viral replication have been deleted, decreases the vector neurotoxicity (Krisky et
al., 1998). Recently, further development of the vector has included the use of the neuron-
specific tyrosine hydroxylase promoter, which effectively restricts the transduction to a subset
population of cells (Cao et al., 2008).

Lentiviral vectors hold potential for gene therapy due to their ability to integrate into the host
chromosome and transduce most cell types in the brain, which facilitates a high level of
sustained transgene expression (Jakobsson & Lundberg, 2006). They also have a relatively
large cloning capacity of around nine kilobases (Zhao & Lever, 2007). Lentiviruses are derived
from primate or nonprimate immunodeficiency viruses with human immunodeficiency virus
(HIV)-based vectors having undergone the most development so far. However, safety concerns
arise from the potential for recombination events to occur that may generate a replication-
competent virus, and therefore more vigilant safety measures are required compared with other
viral vectors. These include removal of the virulence genes from the packaging plasmids and
introduction of the genes involved in capsid assembly on two separate plasmids to reduce the
chances of recombination (Zufferey et al., 1997). In addition, self-inactivating vectors, with
part of the long terminal repeat (LTR) promoter removed, have been developed to abolish
transcriptional activity upon vector integration. Various promoters have been evaluated in
lentiviral cassettes. When pseudotyped to the glycoprotein of the vesicular stomatitis virus
(VSV-G), most promoters displayed a pronounced tropism for neurons, although some pan-
specific promoters such as human cytomegalovirus (hCMV) and human CMV/β-actin (CAG)
also transduced glia at a lower frequency. On the other hand, the cellular human glial fibrillary
acidic promoter (hGFAP) and rat neuron-specific enolase promoter (rNSE) were shown to
almost exclusively restrict expression to glia or neurons, respectively (Jakobsson et al.,
2003). Lentiviral vectors have been used successfully for therapeutic benefit in animal models
of neurological disorders. Lentiviral mediated overexpression of nerve growth factor in
cholinergic neurons improved neuron survival following lesion in rats (Blesch et al., 2005),
and the introduction of an RNA interference (RNAi) targeting human SOD1 into the muscle
of mice overexpressing mutant human SOD1 resulted in increased survival of motor neurons
and a substantially extended life span (Ralph et al., 2005).

Particular attention has been drawn to the use of recombinant AAV (rAAV) vectors for delivery
of transgenes to the brain after observing a general absence of toxicity, lack of induction of a
cellular immune response, and efficient transduction of the brain in animal models (McCown,
2005; Coura Rdos & Nardi, 2007). A large number of serotypes have now been isolated from
humans and nonhuman primates (Gao et al., 2005), some of which have been cloned and
packaged into recombinant vectors and found to display differing tropism for various neuronal
types and brain areas (Burger et al., 2004; Taymans et al., 2007). Methods have also been
developed for manufacture of extremely pure, high titer preparations, thus many different
rAAV serotypes can now be routinely packaged and purified to this level in the research
laboratory. When injected into the brain at moderate to high titers, transgene expression
spreading several millimeters can be consistently achieved with some AAV serotypes,
including AAV1, AAV5, AAV7, and AAV8 (Burger et al., 2004; Broekman et al., 2006;
Taymans et al., 2007). Conversely, precise stereotactic surgery combined with the use of a less
efficient serotype (such as rAAV2) now provide the means for targeted transduction of a focal
area, such as the hilus or CA1 area of the hippocampus.

The rAAV serotypes that have been characterized to date have primarily neuronal tropism and
are therefore not optimal for gene therapy of disorders requiring transduction of glial cells.
However it is highly possible that among the large number of serotypes that have been cloned,
some with glial tropism will be discovered. Further development of the vector is still needed
however, including improvement of expression cassettes, which have a packaging limit of
approximately 4.7 kb, and the further characterization of cell-specific promoters for restriction
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of expression to particular subclasses of neurons. This is of particular importance for gene
therapy of epilepsy, due to the laminar nature of the hippocampus with many layers of neurons
in close proximity that have different functions with respect to epileptogenesis. Several
promoters have been used with rAAV to restrict expression to a subclass of neuron, such as
melanin-concentrating hormone (MCH) neurons in the hypothalamus (Van den Pol et al.,
2004), yet promoters have not yet been isolated that restrict expression to neuronal subclasses
in the hippocampus, such as GABAergic neurons in the hilus, or principal neurons in the dentate
gyrus. This is a particularly difficult challenge for rAAV vectors, due to promoter activity
contained within the inverted terminal repeats (Flotte et al., 1993).

Immunization with AAV prior to intracerebral injection generates circulating antibodies that
can, in some circumstances, limit the transduction of AAV vector if the titer of neutralizing
antibodies is sufficiently high (Peden et al., 2004). Thus, the potential exists in human patients
for rAAV to be neutralized by preexisting antibodies. Without postmortem brain analysis, it
is difficult to assess the level of transgene expression following rAAV-mediated gene therapy,
however in a phase I clinical trial for Parkinson's disease involving intrasubthalamic injection
of rAAV-GAD, there was no correlation between the presence of preexisting neutralizing
antibodies and improvement in clinical motor scores (Kaplitt et al., 2007).

GENES TARGETED IN EPILEPSY
The goal of gene therapy for epilepsy is to obtain not only a sustained anticonvulsant effect,
but also an antiepileptogenic effect that will block the progression of the disease and maintain
focalization of the epileptic zone.

One of the first logical targets for gene therapy of epilepsy was the GABAergic system, based
on the pharmacologically validated approach that an increase in GABA levels in the
epileptogenic area increases the threshold of neuronal excitability, hence decreasing seizure
occurrence. Different techniques of in vitro or in vivo transfection of glutamic acid
decarboxylase (GAD; the enzyme that catalyzes the synthesis of GABA) were used to increase
GABA levels in the tissue of interest (Table 1). Transplantation of fetal GABAergic neurons
into the substantia nigra (SN), a structure involved in the propagation of seizures, induced a
transient decrease in seizure severity in the kindling model (Loscher et al., 1998). Similarly,
transplantation of engineered mouse cortical neurons and glia expressing GAD65 into the SN
or piriform cortex showed an anticonvulsant effect (Thompson et al., 2000;Gernert et al.,
2002). Viral vector-based approaches have also been used to express GAD in cultured rat
hippocampal neurons (Liu et al., 2005), but this technique has not yet been applied in vivo.
The different techniques used in these studies were thus able to induce the expression of
exogenous GAD in the epileptic tissue and locally increase GABA levels. However, this
expression obtained with cell transplantation was only transient. In addition, the effects
observed are the consequence of a global increase of GABA levels, and the effect of a strategy
targeting a specific cell population are more difficult to predict. Indeed, the loss of interneurons
and consecutive feedback inhibition described in epilepsy is restricted to certain population of
interneurons. Conversely, some interneurons are preserved and are believed to underlie
network synchrony (Bertrand & Lacaille, 2001;Stief et al., 2007). Haberman and colleagues
(2002) demonstrated the importance of the preferential transduction of a neuronal population.
In their study, the infusion of an rAAV vector coding for a N-methyl D-aspartate receptor 1
(NR1) cDNA fragment in the antisense orientation showed preferential transduction of either
inhibitory inter-neurons or primary output neurons depending on the promoter used in the
vector construct. Transduction of these two different systems had dramatically opposite effects
on focal seizures (Haberman et al., 2002). This study showed the importance of the promoter
choice, and more importantly, demonstrated the utility of rAAV vectors in engineering a
precise and cell-targeted gene therapy approach to transduce a specific cell population.
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Recently, Raol and colleagues (2006) used a different approach targeting the GABA receptor
subunits rather than direct modulation of GABA levels. They designed an AAV5 construct
coding for the α1 subunit of the GABA receptor under control of the α4 subunit (GABRA4)
promoter, which is upregulated after status epilepticus. Intrahippocampal injection of this
vector 2 weeks prior to induction of status epilepticus protected against recurrent seizures and
demonstrated the importance of GABA receptor composition in the development of epileptic
circuits (Raol et al., 2006).

Over the past decade, the roles of two neuropeptides, neuropeptide Y (NPY) (Noe et al.,
2006) and galanin (McCown, 2006), as well as the neuromodulator adenosine (Boison,
2007), in the modulation of neuronal excitability have been established. The observation that
epileptic seizures induce the release of these neuropeptides led to the hypothesis that they
played an important role in epileptic activity. Experimental studies further confirmed their
anticonvulsant and neuroprotective role, and suggested that these neuropeptides and their
receptors constitute an endogenous system to control epileptic activity. These systems thus
appear a promising target for the development of new therapeutics and in particular for gene
therapy.

Experimental studies showed that galanin is released during epileptic seizures and has an
inhibitory effect on neuronal activity through presynaptic inhibition of glutamatergic
transmission, as well as a strong neuroprotective effect (Mazarati & Lu, 2005). Administration
of galanin (Mazarati et al., 2000; Kokaia et al., 2001) or nonpeptide ligands (Saar et al.,
2002) also induces a robust anticonvulsant effect in animal models of limbic seizures. In a
study by Lin and colleagues (2003), an rAAV constitutively overexpressing preprogalanin was
injected into the rat hippocampus. Kainic acid-induced seizure activity was significantly
decreased, confirming the antiepileptic effect of galanin in vivo (Lin et al., 2003). Interestingly,
administration of rAAV-preprogalanin resulted in not only long lasting expression of galanin,
but also in the transport of the neuropeptide along the axonal arborization. Haberman et al.
(2003) also demonstrated the antiseizure properties of galanin in two rat seizure models. They
fused the fibronectin secretory sequence (FIB) onto galanin for constitutive secretion, AAV-
FIB-galanin was evaluated in a model of focal seizure genesis, which involves electrical
stimulation of the rat inferior collicular column (IC). Preinfusion of AAV-FIB-galanin into the
IC increased the threshold for seizures. Moreover, following infusion into the hippocampus,
AAV-FIB-galanin also resulted in suppression of electrographic and behavioral seizures
induced by kainic acid and also had a neuroprotective effect on the survival of hilar interneurons
(Haberman et al., 2003). In a subsequent study, the vector was injected after a series of daily
stimulations reached a predetermined threshold of seizure activity, that is, in an already
hyperexcitable system, and the sustained anticonvulsant effect observed demonstrated that
rAAV-galanin has a robust effect on hippocampal hyperactivity (McCown, 2006).

In several animal models of epilepsy, seizure-induced increases of NPY messenger RNA
(mRNA) and protein have been observed in the dentate gyrus of the hippocampus, suggesting
a modulatory role of the neuropeptide on neuronal activity (Vezzani et al., 1999). This role
was confirmed by in vitro data showing that application of NPY to hippocampal slices reduces
glutamatergic synaptic excitation (Klapstein & Colmers, 1997), as well as in vivo studies that
showed a strong anticonvulsant effect of NPY mediated by the Y2 and Y5 receptors (Sperk &
Herzog, 1997; Reibel et al., 2000). In addition, NPY knockout mice develop spontaneous
epileptic seizures, confirming the importance of NPY in controlling neuronal excitability
(Baraban et al., 1997; Lin et al., 2006; Morris et al., 2007). In human tissue from temporal lobe
resection, NPY-mediated neurotransmission is altered by seizures (Vezzani et al., 1999;
Vezzani & Sperk, 2004), and the modulatory role of NPY on epileptic activity has also been
validated on hippocampal slices (Patrylo et al., 1999). The effect of chronic overexpression of
NPY in the hippocampus was examined in the kainic acid model in rats. rAAV1/2 (a
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pseudotyped vector consisting of a 1:1 mixture of AAV1 and AAV2 capsid proteins)-mediated
gene transfer of preproNPY to the hippocampus delayed seizure onset and dramatically
decreased the occurrence of epileptic seizures (Richichi et al., 2004). In order to more closely
approximate the effect of rAAV-NPY on epileptogenesis, the vector was evaluated in a chronic
model of spontaneous and progressive temporal lobe epilepsy. In this model, spontaneous
seizures develop after recurrent electric stimulation of the hippocampus, and the frequency of
seizures increases over time. In rats treated with rAAV1/2-NPY, progression of seizure activity
was repressed, and moreover, the frequency of seizures was decreased in some animals (Noe
et al., 2008). Together these results show that AAV-mediated overexpression of NPY shows
promise for gene therapy of epilepsy.

The inhibitory neuromodulator adenosine has also raised interest as an endogenous
anticonvulsant (Lee et al., 1984; Dragunow et al., 1985; Boison et al., 2002). Decreased
adenosine levels have been observed in different models of epileptogenesis and epileptic
activity (Young & Dragunow, 1994; Gouder et al., 2004; Fedele et al., 2005; Rebola et al.,
2005). More recently, adenosine has also been shown to restrict the site of epileptogenesis via
activation of A1 receptors (Fedele et al., 2006). Using a different approach of ex vivo gene
therapy based on transplantation of cells engineered to release the active modulator, Boison,
Huber, and colleagues showed that implantation of encapsulated fibroblasts engineered to
release adenosine could protect from seizures in the kindling model (Huber et al., 2001). The
antiepileptic effect from released adenosine was however transient due to the short-term
survival of the encapsulated fibroblasts. To increase the survival time of the transplant, a recent
study was designed with mouse C2C12 myoblasts genetically engineered to release adenosine
by genetic inactivation of adenosine kinase (Guttinger et al., 2005). Intra-ventricular graft of
the myoblasts induced a short-term antiepileptic effect on kindling seizures and significantly
reduced seizures duration for a period of 3 weeks after transplantation.

Neurotrophic factors play an important role in epileptogenesis (Simonato et al., 2006). Whereas
neurogenesis is increased after status epilepticus and might contribute to the formation of
aberrant circuits, a decrease is observed during the chronic phase. Glial cell line-derived
neurotrophic factor (GDNF) administration has been proposed as a neuroprotective and
anticonvulsant approach. To examine the role of GDNF as a potential target for gene therapy,
rAAV-GDNF was injected in the hippocampus either before or after status epilepticus, which
resulted in a decrease in the severity and the number of seizures (Kanter-Schlifke et al.,
2007). Similarly, hippocampal fetal cell pretreated and grafted with fibroblast growth factor-2
(FGF2; in addition with a caspase inhibitor) and transplanted in the hippocampus of chronically
epileptic rats also decreased the number of recurrent seizures (Rao et al., 2007).

TOWARD THE CLINIC
Currently, more than a thousand clinical trials using gene therapy have been designed, among
which 17 target neurological diseases. The clinical outcomes of the phase I to phase III trials
are very encouraging and have proven that gene therapy does not present an overall increase
in risk factors associated with the technique compared with other surgical approaches. Gene
therapy-based treatments for neurological disorders including Alzheimer disease (Tuszynski
et al., 2005), late infantile neuronal ceroid lipofuscinosis (Worgall et al., 2008), Canavan
disease (McPhee et al., 2006), and Parkinson's disease (Kaplitt et al., 2007; Fiandaca et al.,
2008; Marks et al., 2008) have now been tested in human clinical trials with no serious adverse
events that were attributed to the gene therapy agent. However, many of the clinical trials did
not result in positive results with regard to efficacy.

In the first ex vivo gene therapy trial for epilepsy, a xenograft of GABA-expressing cells in a
patient candidate for a temporal lobe resection failed to show an antiepileptic effect (Diacrin
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Inc., Charlestown, MA, U.S.A.). Several issues arise from the use of transplant in neurological
diseases. In addition to the limited availability of ES cells, the survival of the graft is very
variable between patients (Bjorklund, 2000). Experimental results in animal models also tend
to show a limited survival time of cell transplants in the epileptic brain. The temporal lobe is
a highly heterogeneous region organized into complex layers, and the type of synaptic
connections the graft would develop in this multisynaptic circuit is unknown. In addition, the
transplanted cells would be subject to recurrent hyperexcitability in the epileptogenic area,
which may affect their survival. Data obtained from in vivo experiments using AAV vectors
demonstrate that this method of gene delivery may be a more feasible approach for clinical
trials. An early proof of principle study demonstrated that gene transfer using adeno-associated
vector on human resection slices resulted in an appreciable level of cell transduction of epileptic
tissue (O'Connor et al., 1997).

The therapeutic approach in epilepsy targets a disruption of the abnormal epileptic activity
rather than reintroducing a cell population that has been lost as has often been the focus for
gene therapy of neurodegenerative diseases. The potentiation of an endogenous system of
seizure modulation may induce fewer compensatory effects and be more efficient than trying
to compensate for a loss of a specific neuronal population. In view of the experimental data on
animal models, the modulation of the endogenous system constituted by galanin, NPY, or
adenosine appears to be the most likely to translate to clinical trial, and indeed following
positive results in preclinical studies, a proposal for the treatment of temporal lobe epilepsy
with rAAV-NPY was presented to the Recombinant DNA Advisory Committee of the U.S.A.
with favorable review
(http://www4.od.nih.gov/oba/RAC/meetings/Sept2004/RACagenda092304.pdf).

In conclusion, the experimental and clinical data obtained from other neurological diseases
show the feasibility of gene therapy for epilepsy. However the field of gene therapy is new,
and the potential for adverse effects is relatively unknown. As with antiepileptic drugs, there
is a possibility of alteration in limbic system function including memory or mood disturbances.
Subjects who are good candidates for temporal lobectomy are an ideal population, since the
gene transfer would occur in the brain region that has been planned for resection, providing a
built in rescue procedure if the gene therapy was ineffective or associated with significant
adverse events. An advantage of gene therapy over current drug regimens is the long lasting
expression of the therapeutic gene, as well as the ability to target it to only the regions of the
brain that it is intended. However the persistence of vector-mediated transgene expression is
a double-edged sword; if expression escapes from the targeted area into another brain area,
there is a chance of unanticipated negative effects that may not be easily remedied. For this
reason, for a gene therapy product to reach phase I clinical trials, it must pass through rigorous
animal testing for safety and efficacy at different dose levels, including but not limited to
comprehensive assessments of general health, behavior, organ histology, and vector
biodistribution.

Importantly, results of human clinical trials of neurological disorders have been very promising
with excellent safety profiles (Fiandaca et al., 2008). In the first gene therapy trial for a
neurodegenerative disorder, AAV-aspartoacylase was administered intraparenchymally to 10
children with Canavan disease and was well-tolerated with minimal inflammatory or immune
response (McPhee et al., 2006). Moreover, in two recently completed clinical trials for AAV-
mediated gene therapy of Parkinson's disease, there were no adverse events relating to the gene
therapy (Kaplitt et al., 2007; Marks et al., 2008), and improvements in Parkinsonian symptoms
were also observed. In the first study, unilateral administration of AAV2-GAD to the
subthalamic nucleus of 12 Parkinson's patients resulted in a significant improvement in clinical
motor scores up to at least 12 months after surgery (Kaplitt et al., 2007). Fluorodeoxyglucose
positron emission photometry also revealed reductions in thalamic motor cortex activity on the
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injected side of the brain, which correlated with clinical rating scores (Feigin et al., 2007).
Similarly, following bilateral administration of AAV2-neurturin to the putamen of 12
Parkinson's patients, motor function was also improved at 1 year following surgery (Marks et
al., 2008). Randomized, controlled phase II trials are now underway for both treatments.

Taken together, the relative low risk associated with gene therapy and the promising preclinical
data on both NPY and galanin gene transfer in experimental animal models suggest that
temporal lobe epilepsy, a disease clearly refractory to a traditional pharmacological approach,
is an ideal candidate with gene therapy likely to have a significant impact on disease
management within the coming decade.
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Table 1

Summary of studies for gene therapy of epilepsy

Gene Vector Model Authors

Adenosine Cells expressing adenosine Kindling Huber et al., 2001

Myoblasts delivering adenosine Kindling Guttinger et al., 2005

CCK Lipofectin Audiogenic rats Zhang et al., 1997

ICP10PK HSV-2 Kainate ip Laing et al., 2006

GAD Cells expressing GAD65 Kindling Gernert et al., 2002

Fetal cells Kainate icv Shetty & Turner, 2000

Immortalized astrocytes expressing GAD67 In vitro Sacchettoni et al., 1998

Immortalized GABAergic cells Kainate ip Castillo et al., 2006

AAV-GAD67 In vitro Robert et al., 1997

Fibroblasts, GAD65, GAD67 In vitro Ruppert et al., 1993

Cells expressing GAD65 Kindling Thompson et al., 2000

AAV-antisense GABA-A alpha1 Stim. of IC Xiao et al., 1997

Galanin AAV-preprogalanin Kainate ih Lin et al., 2003

AAV-FIB-galanin Kainate ip/stim. of IC McCown, 2006

AAV-FIB-galanin/AAV-galanin Stim. of IC Haberman et al., 2003

GDNF Ad-GDNF Kainate ip Yoo et al., 2006

AAV-GDNF Kindling, SSLSE Kanter-Schlifke et al., 2007

Glut1 HSV1 Kainate ih McLaughlin et al., 2000

HSP72 HSV Kainate ip Yenari et al., 1998

Homer1 AAV SSLSE Klugmann et al., 2005

NPY AAV-preproNPY Kainate ip, kindling Richichi et al., 2004

NPY AAV-preproNPY SSLSE Noé et al., 2008

NR1 AAV – NR1 oral vaccine Kainate ip During et al., 2000

AAV-NR1A/AAV tet off Stim. of IC Haberman et al., 2002

Ad, adenovirus; CCK, cholecystokinin; icv, intracerebroventricular; ih, intrahippocampal; ip, intraperitonneal; SSLSE, self-sustaining limbic status
epilepticus; stim, stimulation.
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