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The giant protein titin is thought to play major roles in the assembly and function of muscle sarcomeres. Structural details, such
as widths of Z- and M-lines and periodicities in the thick filaments, correlate with the substructure in the respective regions of the
titin molecule. Sarcomere rest length, its operating range of lengths, and passive elastic properties are also directly controlled by
the properties of titin. Here we review some recent titin data and discuss its implications for sarcomere architecture and elasticity.

1. Introduction

The complex but extremely ordered structure of the sarcom-
ere is the elemental force-producing machinery of striated
muscles. Recent studies of sarcomere assembly [1, 2], protein
turnover [1, 3], and signalling cascades [4, 5] provide new
insights into the spectrum of intermolecular interactions
that support sarcomere structure and function. There is
increasing evidence that many of sarcomere properties
involve the giant protein titin [2, 6-10].

The titin molecule is more than one micrometer long
and in situ spans half the sarcomere, with the N-terminus
in the Z-line and the C-terminus in the M-line (Figure 1(a))
[11-13]. Different isoforms (MW ~ 3.0-3.7 MDa [14]) vary
in the size and structure of the elastic I-band part of the
molecule, which connects the end of the thick filament to
the Z-line, as well as in the Z- and M-line regions. The size
and structure of the thick filament part of titin is conserved,
which is consistent with the conserved structure of thick
filaments in vertebrates. Sequence shows that titin consists
mainly of about 300 domains similar to immunoglobulins
(Ig, I-set) and fibronectins (Fn, type-3). The elastic I-band
part consists mainly of Ig domains arranged in tandem. Near
the N2-line in the I-band, this arrangement is interrupted
by unique sequences that bridge the “proximal” and “distal”
(to the Z-line) tandem-Ig segments. In contrast, the thick
filament part of titin is formed by both Ig and Fn3 domains.

Purified titin molecules visualized by metal shadowing
appear in electron micrographs as strings about one microm-
eter in length and four nanometers in diameter [15-18]. In
negatively stained samples, a distinct “beads-on-the-string”
appearance can be seen [15], showing the chain of Ig and
Fn3-like domains [19, 20].

2. Titin Structure—Conformational Periodicity
in the Thick Filament Region

Sequence shows that the titin Ig and Fn3 domains are
arranged in long-range patterns or super-repeats. Two types
of super-repeats are found in the constitutively expressed
thick filament region [19-21]: seven consecutive copies of the
seven-domain or small superrepeat occupy the N-terminal
part of this region; these are followed by eleven copies of
the eleven-domain large superrepeat. In the I-band region,
only the differentially expressed Ig-segments have super-
repeats: in human soleus isoform, the N-terminal three
copies of a six-domain superrepeat are followed by three
copies of a ten-domain superrepeat [22, 23]. In both A- and
I-band regions, the super-repeats show increased sequence
conservation between domains at comparable positions in
the super-repeats.

The two super-repeats of Ig and Fn3 domains in A-band
titin (Figure 1(b)) closely reflect the underlying periodic
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FiGure 1: Schematic representation of titin layout in the sarcomere (a) and of the domain periodicity in the thick filament bound part (b).
Striated zones in the sarcomere and the titin molecule (a) show the location of the large superrepeat.

structure of the thick filament. The size of the large
superrepeat (~45nm) is same as the myosin and C-protein
periodicities of the filament, while the number of the large
super-repeats (eleven) is the same as the number of binding
sites for C-protein and related molecules. A single Ig domain
in each large superrepeat binds C-protein and this defines the
~43 nm interval of C-protein localization in the C-zone [24].
Interactions between titin and myosin are probably grouped
in three clusters of Fn3 domains, defining a period of ~15 nm
in titin-myosin interactions [19].

Atomic structures of recombinant titin fragments, sup-
ported by homology modelling [25, 26], indicate that the Ig
and Fn3 domains are unlikely to be similarly oriented along a
titin molecule but bend and twist relative to each other. The
likelihood of periodic interactions with other thick filament
proteins requires titin domains spaced by 43 nm to be in
the same orientation. This indicates that in the A-band the
orientation of Ig and Fn3 domains in the super-repeats is
periodically repeated.

There are only two main possibilities for such peri-
odic architecture: either planar and zigzag-like or three-
dimensional and helical. Homology modelling [26, 27]
and crystallography studies [28, 29] show that small, two-
or three-domain recombinant fragments have rather flat
conformations, in which the long axes of the molecules

bend in a single plane. However, longer segments may well
have a tendency to bend three-dimensionally, as suggested
by modelling of the periodic differentially expressed I-band
Ig-segment [30]. The latter shape is supported by electron
microscopy of purified titin also suggesting helicity [31]. A
tendency of the relaxed titin molecule to adopt a helical
conformation is likely to be controlled by a preferred inter-
domain orientation [25, 30, 32] and may reflect a long-
distance directional regularity in the bending and twisting
angles. The existing atomic structures of titin fragments
appear to be consistent with this possibility [30], although
the number of these is still too small to discern a long-
distance pattern.

Another important question concerning titin interac-
tions with other thick filament proteins is the significance
of the fact that super-repeats in the A-band titin, although
very similar, are not identical. Average sequence identity,
even for domains at comparable positions, is below 40%
[27], and only about 60% of their surface is conserved [33].
It is unclear at present how these small differences affect
periodic interactions of titin with C-protein and myosin,
both of which provide identical sites for interaction with
super-repeats. It may be noted, however, that if there are
dissimilar titin-myosin and titin-C-protein interactions in
different super-repeats, this would agree with predictions
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of nonequivalency of the ~43 nm repeats in thick filament
structure suggested by X-ray diffraction studies of muscle
[34].

3. Titin Flexibility—Persistence Length of
the Elastic I-Band Region

Providing elasticity to sarcomeres is one of the major
functions of titin [35-39]. This role derives from the ability
of titin to increase the length under applied force and then
to shorten to the original length when the force is removed.
The mechanism of extensibility is known to be multiphase:
overall shape changes that occur under small applied forces
are followed at higher forces by hierarchical unfolding of the
polypeptide [40-43]. While the physiological relevance of
relatively large sarcomere lengths that lead to titin unfolding
can be disputed, there is no doubt that conformational
changes must occur in the molecule during both passive
extension and active contraction of muscle. However, the
exact pattern of these changes remains unknown. It is
generally thought that they are entropic in nature and
occur according to rod-coil transitions seen in individual
titin molecules in vitro (e.g., [31]). However, the likely
bundled state of titin molecules in the sarcomere is not
usually taken into account [44-48]. In the following, we
present some estimates related to titin flexibility in vitro and
in situ.

Electron and atomic force microscopy (AFM) of purified
titin molecules illustrate a tendency to coil up in the absence
of applied extensional force (Figure 2(a)) [15, 16, 31, 49] or
to straighten when a small pulling force is applied [17, 18,
31, 38, 50]. The persistence length (Lp) of monomeric titin is
estimated to be 9-19 nm [31, 49, 51, 52]. A somewhat smaller
range of values, 2-10 nm, was suggested by AFM and optical
tweezer mechanical experiments on single molecules [43, 53—
55], and a tendency of the protein to unfolding was discussed
[53, 55].

The estimates of Lp are likely to mainly reflect average
flexibility of the Ig/Fn3 parts of the molecule, since the
unique sequences and other structures are a small proportion
of the molecule. In a multidomain protein, overall bending
flexibility mainly derives from the mobility at the inter-
domain interfaces. Taking average interdomain distance s to
be about 4.0 nm [27] and the average persistence length Lp
to be about 13.5nm, the average inter-domain angle can
be approximately estimated from the relationship (6%(s)) =
2s/Lp [56], from which a (0) value of ~44° can be obtained.
This value (i.e., 180°— 44° = 136°) is close to the average
inter-domain angle in the NMR and crystal structures of titin
fragments, ~140° [25, 26, 28-30, 32, 57, 58]. This suggests
that the inter-domain angles and shapes of titin constructs
reflect the equilibrium-relaxed conformation of the native
titin molecule. In this conformation, the inter-domain angles
and twists are likely to be different from those in situ, at least
in the case of A-band titin, which is extended and stressed
by the interactions with myosin and C-protein in the thick
filament backbone.

FiGure 2: Electron micrographs of negatively stained titin, illus-
trating domain substructure and flexibility (a), and the effect of
bundling on the apparent stiffness of the molecule (b). (a) Note
that each of the flexibility “waves” seen in the titin contour contains
about 4 domains. This number is comparable with the number
of domains (3-4) expected for segments of about the persistence
length of the protein. (b) This micrograph shows partially dissolved
titin “end-filament”. The “wavy” contours of the molecules in the
unbundled region contrast with their relatively straight shapes in
the bundled part. Magnification: bar (a) 20 nm; (b) 50 nm.

Only slightly higher Lp values (15-40 nm) were esti-
mated for individual titin molecules from mechanical exper-
iments on muscle fibres [41] and myofibrils [59]. The
difference between the in vitro and in situ results is smaller
than might be expected since, in the sarcomere, the extensible
I-band parts of titin are known to be bundled [44-48].
Inspection of the bundled and unbundled parts of I-band
titin seen in electron microscope images (Figure 2(b)) clearly
illustrates different bending properties. As was estimated
earlier for an analogous case [60], the persistence length of a
bundle scales with the square of the number of subfilaments
in the bundle, that is, Lp ~ N2. In the case of titin, this means
that a bundle of six molecules will make Lp at least 500 nm,
that is, 36 times larger than Lp for a single molecule, taken as
13.5nm. Even for smaller bundles, composed of only two-
three molecules, the expected Lp value is in the region of
~55-120 nm.

The two Lp values, 55-120 nm and 500 nm, reflect the
expected stiffness of the two Ig-tandem segments of I-band



titin that are separated by the unique N2-PEVK region: the
proximal N-terminal segment, attached to the Z-line, and
the bundled distal C-terminal segment, attached to the tip
of the thick filament, known as the end-filament [44-48].
The fact that the Lp values from mechanical experiments
on muscle fibres and myofibrils closely correspond to the
in vitro Lp value of the monomeric molecule is unlikely to
correctly reflect titin’s state and flexibility in situ. Alterna-
tively, this may indicate dissociation of end-filaments during
experiments, possibly due to their fragility, or may reflect
the specificity of conformational changes in situ, related,
for instance, to helicity (see above) and/or the confined
environment in the sarcomere.

4. Adaptation of Titin Organization in
the Sarcomere to the Symmetry Mismatch
between Z- and M-Lines

How the arrangement of titin in the sarcomere accommo-
dates the different symmetries of thick and thin filament
lattices, and of the M- and Z-line regions, is a major
unresolved problem in sarcomere structure. The number of
six molecules bound to each half of thick filament [39, 47]
correlates well with the threefold rotational symmetry of
the filament [61], its three-stranded substructure [44, 62,
63], and with the hexagonal lattice of the M-line region
[61, 64]. However, titin extension through the I-band, and
especially its interaction with thin filaments near and within
Z-line region, suggests a rearrangement to fit to the twofold
rotational symmetry of thin filaments and the tetragonal
lattice of the Z-line. The question is thus how titin molecules
rearrange in the I-band.

One of the factors that may affect this rearrangement is
self-association (see also above). Titin self-association in the
I-band is suggested by electron microscope studies of muscle
and separate thick filaments, which show the ~100nm
stalk-like structures called end-filaments, referred to above,
projecting from the ends of thick filaments [44—46]. It is also
supported by in vitro observations of self-association of the
titin segment from this region [48]. This includes the entire
distal (with respect to the Z-line) tandem-Ig segment of I-
band titin, from the thick filament tip up to the PEVK-N2
region. At this point the bundle is likely to branch, although
not necessarily into single molecules.

The relatively high negative charge on the PEVK (N2B)
region(s) of titin would favour branching of the end-
filaments, unless the charge is neutralised by interactions
either with cations (e.g., Ca™ ions [65, 66]) or with other
cytoplasmic components. It should also be noted that the
N2-PEVK-region is the site where thin filaments appear to
rearrange from hexagonal to tetragonal packing, which then
becomes especially ordered near and within the Z-line [67].
However, structural studies have so far failed to provide an
unambiguous answer for the number of the branched subfil-
aments. Three alternatives end-filament branching schemes
are possible: (1) into two subfilaments, each containing three
titin molecules; (2) into three subfilaments with two titin
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molecules in each; and (3) into six subfilaments, each a
single titin molecule. In the first case, such a division would
give 1:1 ratio of titin to thin filaments, which would imply
interaction of each thin filament with a single bundle of
three titin molecules near and within the Z-line region. This
would satisfy tetragonal Z-line symmetry; however, there
would be no agreement with the twofold symmetry of thin
filament. Splitting the end-filament into a larger number
of subfilaments would not satisfy either the Z-line or thin
filament symmetries.

Thus, some asymmetry has to be assumed to exist in
the titin arrangement and interactions in either the I-band
or within the Z-line. A possible arrangement of titin in
the Z-line has been discussed [47]. This scheme suggests
splitting of end-filament into six individual titin molecules
with only four of these molecules interacting side-by-side
with two thin filaments of the same sarcomere and extending
throughout the Z-line. The remaining two titins would
attach to the tips of two incoming thin filaments of the
adjacent sarcomere. This arrangement gives a 2:1 ratio
of side-by-side interactions between titin molecules and
thin filaments and is in agreement with both thin filament
and Z-line symmetries. It would also provide the required
mechanical balance in Z-line region and appears to be in a
good agreement with structural data [68].

Another possibility relates to involvement of small titin
isoforms, for example, Novex-3, which are present in skeletal
and cardiac muscles in varying amounts in parallel with the
main full-length isoforms, but which span only half the I-
band, between the Z-line and N2-line [14, 69]. This location
potentially helps to resolve the problem of correlation of the
number of titin molecules with the thin filaments and Z-line
symmetries. However, the low amount of Novex-3 expressed
by muscles [14] is apparently not compatible with this role of
the protein. Also, involvement of additional isoforms would
not eliminate the asymmetry in titin interactions in the I-
band but will only shift the site of asymmetry from the Z-
line to the N2-line region of sarcomere where the different
titin isoforms meet.

5. Concluding Remarks

Although an enormous amount has been learnt about
the properties of the titin molecule, both in vitro and in
situ, integrating this information to give a comprehensive
picture is not straightforward. This is mainly because in
no part of the sarcomere—A- or I-band, Z- or M-line—
is the disposition of the components known in molecular
detail. Much therefore remains to be learnt about sarcomere
structure and titin layout and function, and how these are
compromised in disease.
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