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Abstract
Background—Environmental and genetic correlates of inflammatory marker variability are
incompletely understood. In the family-based Framingham Heart Study, we investigated heritability
and candidate gene associations of systemic inflammatory biomarkers.

Methods and Results—In Offspring participants (n=3710), we examined 11 inflammatory
biomarkers [CD40 ligand, C-reactive protein, intercellular adhesion molecule-1 (ICAM1),
interleukin-6, urinary isoprostanes, monocyte chemoattractant protein-1, myeloperoxidase, P-
selectin, tumor necrosis factor-alpha, tumor necrosis factor receptor II, fibrinogen]. Heritability and
bivariate genetic and environmental correlations were assessed by Sequential Oligogenic Linkage
Analysis routines (SOLAR) in 1012 family members. We examined 1943 tagging SNPs in 233
inflammatory pathway genes with ≥5 minor allele carriers using a general genetic linear model.
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Clinical correlates explained 2.4% (CD40 ligand) to 28.5% (C-reactive protein) of the variability in
inflammatory biomarkers. Estimated heritability ranged from 10.9% (isoprostanes) to 44.8% (P-
selectin). Most correlations between biomarkers were weak although statistically significant. A total
of 45 SNP-biomarker associations met the q-value threshold of 0.25. Novel top SNPs were observed
in ICAM1 gene in relation to ICAM1 concentrations (rs1799969, p=1.32×10−8) and MPO in relation
to myeloperoxidase (rs28730837, p=1.9×10−5).

Lowest p-values for trans-acting SNPs were observed for APCS with monocyte chemoattractant
protein-1 concentrations (rs1374486, p=1.01×10−7) and confirmed for IL6R with interleukin-6
concentrations (rs8192284, p=3.36×10−5). Novel potential candidates (APCS, MPO) need to be
replicated.

Conclusions—Our community-based data support the relevance of clinical and genetic factors for
explaining variation in inflammatory biomarker traits.

Keywords
single nucleotide polymorphism; heritability; systemic inflammation; biomarker; cohort study;
environmental factors

Chronic inflammation predisposes to long-term morbidity and mortality from cardiovascular
disease, chronic pulmonary disease, chronic kidney disease, osteoporosis, dementia and the
aging process.1–6 Chronic inflammation is associated with abdominal obesity, smoking, and
physical inactivity.7,8 Furthermore, the modern epidemic of metabolic syndrome, and its
sequelae insulin resistance and type 2 diabetes, have been attributed to an elevated
proinflammatory state, with adipose tissue being considered the main source of pro-
inflammatory cytokines.9 Environmental and lifestyle factors are likely to contribute to
increased low-grade inflammatory activity, as well as an individual’s genetic predisposition.

Systemically measurable inflammatory mediators provide a link between genetics and risk of
disease. Inflammatory biomarker concentrations are heritable phenotypes.10,11 For instance,
estimated C-reactive protein (CRP) concentration heritability is at least 20 per cent.12 Several
single nucleotide polymorphisms (SNPs) are associated with adjusted CRP concentrations and
the degree of chronic low-grade inflammation.13–15 However, the genetic contribution to
systemic concentrations of most inflammatory markers remains incompletely understood.

We hypothesized that in a community-based cohort, enrolled irrespective of phenotype, SNPs
in inflammatory gene regions are associated with concentrations of pro-inflammatory
biomarkers. The well-characterized Framingham Heart Study provides a unique opportunity
to examine the association of genetic and environmental factors with inflammatory biomarkers.

Methods
Study Sample

Participants were eligible if they attended the seventh examination cycle (1998–2001, n=5124)
of the Framingham Heart Study Offspring, a white, community-based cohort of European
ancestry enrolled in 1971.16,17 Reasons for exclusion from analyses were off-site visits
(n=207), none of the 11 biomarkers available (n=10), and missing covariate data (n=17).
Heritability and correlations were estimated in 1843 phenotyped individuals in 567 families,
in addition to 1468 unrelated participants. To be resource effective and to maximize statistical
power, we focused on unrelated individuals and hence genotyped 1565 randomly selected
individuals on the standard Offspring unrelated plate set. This plate set is one of several
standard Framingham plate sets that is publicly available to researchers.
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According to protocol, all participants underwent routine medical history, physical
examination, and laboratory testing at the Framingham Heart Study (see Supplement for
details). The study was approved by Boston University Medical Center Institutional Review
Board; participants signed informed consent.

Determination of inflammatory Biomarkers
Fasting biomarkers, selected to represent various phases and functions in the inflammation
process (Supplement Table 1) included: CD40 ligand, CRP, fibrinogen, intercellular adhesion
molecule-1 [ICAM1], interleukin-6, urinary isoprostanes indexed to urinary creatinine
(isoprostanes), monocyte chemoattractant protein-1, myeloperoxidase, P-selectin, tumor
necrosis factor receptor II, and tumor necrosis factor-alpha. Biomarkers methods have been
detailed previously.18 The mean inflammatory biomarkers’ intra-assay coefficients of variation
were <10%.

Genotyping
Genotyping (2942 SNPs in 233 candidate inflammation genes) was conducted by Perlegen
Sciences, Inc. (Mountain View, CA) using high-density oligonucleotide, photolithographic
microarrays (DNA chips). Common SNPs were chosen from a genome-wide compilation
discovered by Perlegen Sciences and supplemented with others from the HapMap project (build
35), if they had >4% (or unknown) minor allele frequency in the HapMap CEU samples or
were coding SNPs. To obtain maximum information, a binning procedure was used to identify
tagging SNPs with a criterion of r2>0.8 to create bins; one or two SNPs were selected from
each bin depending on bin size. Candidate gene selection details have been reported earlier.
18 Because SNPs with low call rates showed excess departure from HWE equilibrium, we
restricted our analyses to a subset of 1834 SNPs with call rate ≥98% and HWE p>0.01. Only
SNPs with at least 5 minor allele carriers in the Framingham sample were evaluated for
association. An additional 109 SNPs in 9 candidate inflammatory genes previously genotyped
by the CardioGenomics project (http://cardiogenomics.med.harvard.edu/genes/gene-list) on
the Sequenom MassARRAY platform, with call rate ≥90% and HWE p≥0.01 were included
in the present report, for a total of 1943 SNPs in 233 genes.

Statistical Analysis
Multiple regression analysis was performed on the log-transformed biomarker phenotypes to
obtain residuals adjusted for age, sex, cohort (Omni), current smoking, systolic and diastolic
blood pressure, hypertension treatment, body mass index, waist circumference, total/high-
density lipoprotein cholesterol, triglycerides, lipid lowering medication, glucose, diabetes,
aspirin (≥3 days per week), hormone replacement therapy and prevalent cardiovascular disease.
For genetic analyses, we adjusted for the same covariates across markers for simplification.
The residuals of the log-transformed biomarker phenotypes were rescaled to mean 0,SD 1.

Genetic analyses
The statistical methods for assessing heritability for biomarkers was described previously.10

Sequential Oligogenic Linkage Analysis (SOLAR,
(www.sfbr.org/pages/genetics_projects.php?p=37)) was used to estimate residual log-
biomarker concentration heritability for age- and sex-adjusted and multivariable-adjusted
models and to calculate correlations. The correlation coefficient between any two covariate-
adjusted natural log-transformed inflammatory biomarker concentrations was decomposed
into genetic and environmental components.

Analysis of variance (ANOVA) was performed to compare means of log-biomarker residuals
(model1: age and sex; model2: age, sex and multiple variables) among inflammatory SNP
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genotypes using a general genetic model (2 degrees of freedom). ANOVA is not robust for
SNPs with low MAF; we used the nonparametric Kruskal-Wallis test instead for SNPs with
fewer than 10 individuals in the lowest frequency genotype category. Within each biomarker
phenotype, the q-value method,19 a variation of the false discovery rate method, to adjust for
multiple testing. We used a threshold of q<0.25 to identify potentially important findings,
meaning that the expected proportion of false positive tests among the tests we report within
each phenotype is 25%.

Secondary analyses
We assessed potential interactions of 10 SNPs with the smallest p-value for each biomarker
with sex, age, smoking status, and body mass index using linear regression. The full set of
covariates were included in the model, as well as the SNP (coded with 2 degrees of freedom),
and a 2 parameter SNP by covariate interaction term.

Replication from the literature
We searched PubMed for English-language literature that reported SNP-biomarker
associations with the inflammatory phenotypes characterized in our sample in studies
comprising at least 500 individuals that reached statistical significance level of p≤0.05 and
provided the direction of association. We identified SNPs reported in the publications or
allowed for proxies with an LD r2 of ≥0.5 in our database and provided the association p-value.
We omitted CRP and P-selectin associations in cis-acting SELP and CRP genes because we
have previously reported on both.20,21 In the online supplement we provide the comprehensive
results on SNP-circulating biomarker association studies that were available for the search
terms inflammation, inflammatory biomarkers, and single nucleotide polymorphisms, or
genetics (August 2008). Phenotype residuals were created using SAS version 8.1 (Cary, NC,
http://www.sas.com/presscenter/guidelines.html). Genetic analyses were performed with R
(www.r-project.org). All authors had full access to the data, take responsibility for its integrity,
and have read and agree to the manuscript as written.

External replication
External replication was attempted in the previously described AtheroGene cohort22 in up to
1752 patients with documented coronary artery disease and 430 controls free of manifest
cardiovascular disease. We confined replication to top findings in the current study to limit the
number of tests performed. SNPs were selected if they had not been reported in the literature
in comparable studies, were in trans-acting genes and were in low linkage disequilibrium
(r2<0.5) with other top SNPs. Residuals were created using age, sex, case-control status,
smoking status, body mass index, total/HDL cholesterol, triglycerides, serum glucose,
diabetes, hypertension, and lipid treatment.

Results
Participant Characteristics

The clinical and laboratory characteristics of the study cohort have been reported before.20 The
heritability and genotype samples’ characteristics are outlined in Supplement Table 2. Briefly,
the mean age of the genotyped sample was 62±9 years, 51% were women, and the
cardiovascular disease prevalence was 13%. Clinical variables explained between 2.4 (CD40
ligand) to 28.5% (CRP) of inflammatory biomarker variability (Supplement Table 3).

Heritability
All inflammatory traits were heritable (p<0.05; Table 1, second/third column); estimated
multivariable-adjusted heritability values ranged from 10.9% (isoprostanes) to 44.8% (P-
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selectin); age- and sex-adjusted results were generally slightly higher. The Pearson correlation
coefficients and portion of correlation due to genetic factors also are displayed. Significant
environmental correlations were observed for 24 biomarker combinations. Strongest overall
pairwise correlations were observed for CRP with fibrinogen (ρ=0.48), and interleukin-6
(ρ=0.39). Six genetic correlations were seen with highest correlation coefficients for fibrinogen
and CRP (0.14), and for interleukin-6 and P-selectin (0.12).

Genetic association—To account for multiple testing we computed false discovery rates.
23 A total of 45 associations were significant at a cutoff q-value<0.25. Lowest p-values for
trans-acting (not involving the protein-coding gene) SNPs were observed for APCS
(rs1374486, p=1.01*10−7, and rs6695377, 5’ near gene, p=1.85*10−7) with MCP-1
concentrations, IL6R (rs8192284, Ala/Asp missense, p=3.36*10−5) with interleukin-6
concentrations, and MPO in relation to myeloperoxidase (rs28730837, Val/Ala missense ,
p=1.9×10−5). SNPs with a q-value<0.25 across phenotypes not previously reported in the
Framingham Study (SNPs in the CRP, CCL2 and SELP genes) are tabulated (Table 2). The
top cis-acting associations for SNPs not previously reported by our group (SELP SNPs- P-
selectin concentrations were previously reported20) were observed in the ICAM1 gene in
relation to ICAM-1 concentrations (rs1799969, Arg/Gly missense, p=1.32*10−8). Results for
the top SNPs (q-value<0.25) presented in Table 2 were consistent with age- and sex-adjusted
models (Supplement Table 10).

Secondary analyses
Interactions—Accounting for multiple testing, there was no evidence for strong interactions
between the SNPs most highly associated with each phenotype and sex, age, smoking status,
and body mass index (Supplement Table 4).

Replication from the literature—We were able to replicate two previously reported
ICAM1 SNPs in our database (Supplement Table 6); rs1799969 was congruent with our top
ICAM1 finding. SNPs in IL6, CD14 and NOS3 genes in relation to interleukin-6 concentrations
were not replicated. We could confirm rs8192284 in the IL6R gene in relation to interleukin-6
concentrations, as well as three SNPs in the CCL2 gene in association with MCP-1.

External replication—In the AtheroGene cohort, predominantly consisting of coronary
artery disease patients (n=895–1752), only rs3732764 in the P2RY12 gene, reached borderline
significance, p=0.05. None of the other top findings could be replicated (Supplement Table 7).

Discussion
Principal Findings

We report heritability and genetic associations for a broad panel of carefully selected
inflammatory biomarkers and SNPs in a moderately-sized community-based sample. We
observed significant heritability for 11 inflammatory biomarker traits, with heritability
estimates ranging from 10.9% to 44.8%, including estimates for isoprostanes, myeloperoxidase
and tumor necrosis factor receptor II that have not been published before. We detected
substantial environmental correlations between many systemic biomarkers, and some pairwise
genetic correlations between biomarker traits. Top findings of the broad candidate gene
approach, comprising 1943 SNPs, confirmed recent results from the literature for cis-acting
SNPs in ICAM1 and CRP genes and trans-acting IL6R association with interleukin-6
concentrations. In addition, novel associations we report were significant cis-acting MPO SNPs
with myeloperoxidase concentrations, and trans-acting APCS SNPs in relation to monocyte
chemoattractant protein-1. We were not able to replicate our results in a cohort of patients with
prevalent coronary artery disease. We present age- and sex-adjusted, as well as multivariable-
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adjusted phenotype-genotype associations online, so that investigators can download the data
and conduct their own analyses. Furthermore, to place our results into perspective, we include
comprehensive reviews of the inflammatory biomarker heritability and candidate gene
literature in the Supplement.

Environmental and genetic correlations
The examination of bivariate biomarker trait correlations, partitioned into shared genetic and
environmental components,24 clearly revealed that environmental factors contributed a larger
extent to observed correlations of circulating biomarker concentrations compared to additive
genetic effects. The strength of the genetic and environmental correlations we observed was
lower than reported in recent twin studies.25 Only CRP in relation to fibrinogen, and ICAM1
and interleukin-6 showed moderate genetic, as well as environmental correlations. Compared
to the prior literature, we provide correlations for a large inflammatory marker panel.

Heritability
Heritability for inflammatory biomarkers has been reported by Framingham and other
researchers for extensively investigated traits like CRP, interleukin-6, ICAM1 and monocyte
chemoattractant protein-1 (Supplement Table 5).10–12,26,27 The present cohort convincingly
demonstrated a modest to moderate proportion of variability explained by descent in a large
panel of distinct inflammatory biomarkers, even biomarkers with known higher intra-
individual variability and measurement coefficients of variation like isoprostanes.28

Genetic Association
As coding genes have the highest likelihood of association with encoded proteins, the majority
of biomarker candidate gene association analyses have been performed for cis-acting genes.
Not surprisingly, our strongest association finding was in the SELP gene in relation to P-selectin
concentrations, which has previously been reported in Framingham20 and independent studies.
29,30 For several tagging SNPs we and others were able to show moderate associations between
common genetic variation in the respective coding genes for CRP14,21,31 and ICAM132,33

concentrations after accounting for known covariates (for additional replication please see
Supplement Table 6).

We further hypothesized that inflammatory genes are related to circulating biomarkers not
coded for by the gene (trans-acting genes). We extended current knowledge by examining a
broad panel of 233 inflammatory candidate genes. The aim was to capture trans-acting
genotypes that might contribute at the genetic level to the known strong interrelations of
inflammatory pathways at the biomarker level. We confirmed the strong association of SNP
rs8192284 in IL6R with interleukin-6 phenotype.34 The observed relation has a functional
explanation since the amino acid exchange leads to an alteration at the receptor cleavage site,
which increases soluble interleukin-6 receptor concentrations and thus affects, circulating
interleukin-6.34,35 The independent evidence in ethnically different groups and a plausible
pathophysiological explanation have turned this SNP into a very promising candidate
polymorphism.

Less evidence is available that would help to explain the top finding of two SNPs in the
APCS gene in relation to serum monocyte chemoattractant protein-1 concentrations. The
APCS SNPs, all located in the 5’ gene region without relevant LD to SNPs with known function,
belong to a gene with multiple polyadenylation sites encoding a highly conserved glycoprotein
of the pentraxin family, serum amyloid P component.36 Serum amyloid component shares
considerable sequence homology with CRP resulting from gene duplication during evolution.
Serum amyloid P opsonizes apoptotic cells, an important step in their clearance.37 Amyloid P
is found in atherosclerotic plaques38 and circulating concentrations have been related to clinical
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cardiovascular disease in an elderly, multiethnic community-based cohort.39 Genetic data in
humans are scant. We reported a linkage peak for MCP-1 on chromosome 1 which extends
over the APCS gene locus and provides additional evidence for a potential association.10

Ongoing genome-wide association studies will help to identify the true variants. None of the
polymorphisms in the CCL2 gene reported in the Framingham Heart Study cohort reached
experiment-wide significance, but showed nominally significant associations with the same
directionality.40

Myeloperoxidase, has been recognized for its role in non-infectious inflammatory diseases,
and as an important modulator of vasomotor function in vascular inflammation.41 Two non-
HapMap SNPs have been described in association with myeloperoxidase activity (rs28365049,
rs34097845). The functional promotor polymorphism (−463G/A) containing an Alu element
is related to myeloperoxidase expression.42 It has been linked to inflammatory diseases like
Alzheimer’s disease,43 and atherosclerotic disease.44 In the current cohort we provide
evidence on the significance of a new SNP, rs28730837, a Val/Ala missense variation, with
regard to myeloperoxidase concentration.

Replication from the Literature
Compared to the large number of published studies, only few met our inclusion criteria of
sample size ≥500 participants for an in-silico replication attempt. We were able to replicate
mostly cis-acting SNPs from the literature for ICAM1 and CCL2 genes and one prominent
trans-acting association of the recently reported SNP rs8192284 in IL6R gene in relation to
interleukin-6. Associations for SNPs in CD14 and NOS3 genes with interleukin-6, previously
seen in patients with coronary artery disease could not be confirmed and may indicate spurious
or disease-specific findings.45,46

Strengths and Limitations—The Framingham Study constitutes a single center family-
based community cohort with limited referral bias, stringent biomarker quality control, well-
documented, and routinely ascertained environmental confounders, which facilitate
multivariable models and heritability analyses. The choice of multiple biomarkers from
scientifically sound candidate pathways based on basic and human studies further increases
the current study’s comprehensiveness. The broad range of SNPs chosen for association
reduces bias observed in candidate gene approaches and may uncover both cis and trans
regulators.47 Whereas our study underscores the problems of multiple testing, in contrast to
many recent publications, a q-value method was applied with conservative thresholds, to
minimize false positive findings without instituting overly strict Bonferroni corrections. In
addition, we provide a downloadable excel file at our website of all inflammatory marker-SNP
associations tested that will facilitate replication by external investigators.a Furthermore, we
provide a comprehensive review of most prior publications examining heritability and the
associations between SNPs and circulating inflammatory biomarkers.

Some limitations meriting consideration are that the significant results are currently restricted
to one study group. We were unable to replicate our findings in an independent cohort with
coronary artery disease. Non-replication may be due to a relatively low number of genotyped
individuals and their pre-existing coronary disease, which is known to elevate biomarker
concentrations. As noted by Chanock and colleagues, phenotype and participant heterogeneity
will compromise the likelihood of replication.48 The selected nature of AtheroGene, is
corroborated by the observation, that the repeatedly validated association of IL6R
rs819228434 was replicated in the FHS cohort but not in the AtheroGene cohort. We used an
older HapMap build (build 35) and thus may have missed important variants.

aData file included as reviewers’ electronic supplement will be posted upon publication.
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Intermediate cardiovascular phenotypes (i.e. hypertension) are strongly correlated with
inflammatory activity; multivariable-adjustment may limit our ability to detect pleiotropic
environmental and genetic effects related to inflammation. To reduce the high multiple testing
burden, we specified à priori that our primary analyses would be multivariable-adjusted
models.

Generalizability of the results is limited by the ethnically homogenous cohort; biomarker
concentrations vary by ethnicity.49 For other ethnicities, a slightly different set of informative
SNPs would have been chosen.50 On the other hand, the potential for population stratification
was reduced by racial homogeneity.51 We acknowledge that our cohort had only moderate
power to detect modest effects; a potential for false negative findings is evident. Inherent to
single-cohort genetic association studies, our results should be viewed as hypothesis
generating; replication in independent samples is necessary.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Abbreviations

CRP C-reactive protein

LD linkage disequilibrium

ICAM1 intercellular adhesion molecule 1

SNP single nucleotide polymorphism
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