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Abstract
We introduce Generalized Multilevel Functional Linear Models (GMFLMs), a novel statistical
framework for regression models where exposure has a multilevel functional structure. We show
that GMFLMs are, in fact, generalized multilevel mixed models (GLMMs). Thus, GMFLMs can be
analyzed using the mixed effects inferential machinery and can be generalized within a well
researched statistical framework. We propose and compare two methods for inference: 1) a two-stage
frequentist approach; and 2) a joint Bayesian analysis. Our methods are motivated by and applied to
the Sleep Heart Health Study (SHHS), the largest community cohort study of sleep. However, our
methods are general and easy to apply to a wide spectrum of emerging biological and medical data
sets. Supplemental materials for this article are available online.
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1 Introduction
Recording and processing of functional data has become routine due to advancements in
technology and computation. Many current studies contain observations of functional data on
the same subject at multiple visits. For example, the Sleep Heart Health Study (SHHS)
described in Section 7 contains, for each subject, quasi-continuous electroencephalogram
(EEG) signals at two visits. In this paper we introduce a class of models and inferential methods
for association studies between functional data observed at multiple levels/visits, such as sleep
EEG or functional magnetic resonance imaging (fMRI), and continuous or discrete outcomes,
such as systolic blood pressure (SBP) or Coronary Heart Disease (CHD). As most of these data
sets are very large, feasibility of methods is a primary concern.

Functional regression is a generalization of regression to the case when outcomes or regressors
or both are functions instead of scalars. Functional Regression Analysis is currently under
intense methodological research [7,23,31,34,45] and is a particular case of Functional Data
Analysis (FDA) [21,24,44,42]. Two comprehensive monographs of FDA with applications to
curve and image analysis are [33,34]. There has been considerable recent effort to apply FDA
to longitudinal data, e.g., [14,37,47]; see [30] for a thorough review. However, in all current
FDA research, the term “longitudinal” represents single-level time series.
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FDA was extended to multilevel functional data; see, for example, [2,13,19,29,28,40].
However, all these papers have focused on models for functional data and not on functional
regression. The multilevel functional principal component analysis (MFPCA) approach in
[13] uses functional principal component bases to reduce data dimensionality and accelerate
the associated algorithms, which is especially useful in moderate and large data sets. Thus,
MFPCA provides an excellent platform for methodological extensions to the multilevel
regression case.

We introduce Generalized Multilevel Functional Linear Models (GMFLMs), a novel statistical
framework for regression models where exposure has a multilevel functional structure. This
framework extends MFPCA in several ways. First, GMFLMs are designed for studies of
association between outcome and functional exposures, whereas MFPCA is designed to
describe functional exposure only; this extension is needed to answer most common scientific
questions related to longitudinal collection of functional/image data. Second, we show that
GMFLMs are the functional analog of measurement error regression models; in this context
MFPCA is the functional analog of the exposure measurement error models [5]. Third, we
show that all regression models with functional predictors contain two mixed effects sub-
models: an outcome and an exposure model. Fourth, we propose and compare two methods
for inference: 1) a two-stage frequentist approach; and 2) a joint Bayesian analysis. Using the
analogy with measurement error models we provide insight into when using a two-stage
method is a reasonable alternative to the joint analysis and when it is expected to fail. Our
methods are an evolutionary development in a growth area of research. They build on and
borrow strength from multiple methodological frameworks: functional regression,
measurement error and multilevel modeling. Given the range of applications and
methodological flexibility of our methods, we anticipate that they will become one of the
standard approaches in functional regression.

The paper is organized as follows. Section 2 introduces the functional multilevel regression
framework. Section 3 describes estimation methods based on best linear prediction. Section 4
presents our approach to model selection. Section 5 discusses the specific challenges of a
Bayesian analysis of the joint mixed effects model corresponding to functional regression.
Section 6 provides simulations. Section 7 describes an application to sleep EEG data from the
SHHS. Section 9 summarizes our conclusions.

2 Multilevel functional regression models
In this Section we introduce the GMFLM framework and inferential methods.

2.1 Joint mixed effects models
The observed data for the ith subject in a GMFLM is [Yi, Zi, {Wij(tijm), tijm ∈ [0, 1]}], where
Yi is the continuous or discrete outcome, Zi is a vector of covariates, and Wij(tijm) is a random
curve in L2[0, 1] observed at time tijm, which is the mth observation, m = 1, …, Mij, for the jth
visit, j = 1, …, Ji, of the ith subject, i = 1, …, I. For presentation simplicity we only discuss the
case of equally spaced tijm, but our methods can be applied with only minor changes to
unequally/random spaced tijm; see [13] for more details.

We assume that Wij(t) is a proxy observation of the true underlying subject-specific functional
signal Xi(t), and that Wij(t) = μ(t) + ηj(t) + Xi(t) + Uij(t) + εij(t). Here μ(t) is the overall mean
function, ηj(t) is the visit j specific shift from the overall mean function, Xi(t) is the subject i
specific deviation from the visit specific mean function, and Uij(t) is the residual subject/visit
specific deviation from the subject specific mean. Note that multilevel functional models are
a generalization of: 1) the classical measurement error models for replication studies when
there is no t variable and ηj(t) = 0; 2) the standard functional models when Ji = 1 for all i, ηj(·)
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= 0 and Uij(·) = 0; and 3) the two-way ANOVA models when Xi(·) and Uij(·) do not depend on
t. This is not important because “a more general model is better”, but because it allows us to
borrow and adapt methods from seemingly unrelated areas of Statistics. We contend that this
synthesis is both necessary and timely to address the increasing challenges raised by ever larger
and more complex data sets.

To ensure identifiability we assume that Xi(t), Uij(t), and εij(t) are uncorrelated, P that Σj ηj(t)
= 0 and that εij(t) is a white noise process with variance . Given the large sample size of the
SHHS data, we can assume that μ(t) and ηj(t) are estimated with negligible error by W ̄··(t) and
W ̄·j(t) − W ̄··, respectively. Here W ̄·· (t) is the average over all subjects, i, and visits, j, of Wij(t)
and W ̄ ·j(t) is the average over all subjects, i, of observation at visit j of Wij(t). We can assume
that these estimates have been subtracted from Wij(t), so that Wij(t) = Xi(t) + Uij(t) + εij(t). Note
that consistent estimators of W ̃ij(t) = Xi(t) + Uij(t) can be obtained by smoothing {t, Wij(t)}.
Moreover, consistent estimators for Xi(t) and Uij(t) can be constructed as estimators of

 and , respectively.

We assume that the distribution of the outcome, Yi, is in the exponential family with linear
predictor ϑi and dispersion parameter α, denoted here by EF(ϑi, α). The linear predictor is

assumed to have the following form , where Xi(t) is the subject-specific
deviation from the visit-specific mean, β(·) ∈ L2[0, 1] is a functional parameter and the main

target of inference,  is a vector of covariates and γ are fixed effects parameters. If { }

and { } are two orthonormal bases in L2[0, 1] then Xi(·), Uij(·) and β(·) have unique
representations

(1)

This form of the model is impractical because it involves three infinite sums. Instead, we will
approximate model (1) with a series of models where the number of predictors is truncated at
K = KI,J and L = LI,J and the dimensions K and L increase asymptotically with the total number
of subjects, I, and visits per subject, J. A good heuristic motivation for this truncation strategy
can be found, for example, in [31]. In section 4 we provide a theoretical and practical discussion
of alternatives for estimating K and L. For fixed K and L the multilevel outcome model becomes

(2)

Other multilevel outcome models could be considered by including regression terms for the
Uij(t) process or, implicitly, for ζijl. However, we restrict our discussion to models of the type
(2).

We use MFPCA [13] to obtain the parsimonious bases that capture most of the functional
variability of the space spanned by Xi(t) and Uij(t), respectively. MF-PCA is based on the
spectral decomposition of the within- and between-visit functional variability covariance
operators. We summarize here the main components of this methodology. Denote by

 and  for j ≠ k the total and between
covariance operator corresponding to the observed process, Wij(·), respectively. Denote by
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KX(t, s) = cov{Xi(t), Xi(s)} the covariance operator of the Xi(·) process and by
 the total covariance operator of the Uij(·) process. By definition,

 for j ≠ k. Moreover,  and
, where δts is equal to 1 when t = s and 0 otherwise. Thus,

KX(s, t) can be estimated using a method of moments estimator of , say . For

t ≠ s a method of moment estimator of , say , can be used to estimate

. To estimate  one predicts  using a bivariate thin-plate spline smoother

of  for s ≠ t. This method was proposed for single-level FPCA [44] and shown to work
well in the MFPCA context [13].

Once consistent estimators of KX(s, t) and  are available, the spectral decomposition
and functional regression proceed as in the single-level case. More precisely, Mercer’s theorem
(see [22], Chapter 4) provides the following convenient spectral decompositions

, where  are the ordered eigenvalues and

 are the associated orthonormal eigenfunctions of KX(·,·) in the L2 norm. Similarly,

, where  are the ordered eigenvalues and

 are the associated orthonormal eigenfunctions of  in the L2 norm. The Karhunen-
Loève (KL) decomposition [25,26] provides the following infinite decompositions

 and  where

 are the principal component scores with E(ξik) = E

(ζijl) = 0, . The zero-correlation assumption between the Xi(·) and
Uij(·) processes is ensured by the assumption that cov(ξi, ζijl) = 0. These properties hold for
every i, j, k, and l.

Conditional on the eigenfunctions and truncation lags K and L, the model for observed
functional data can be written as a linear mixed model. Indeed, by assuming a normal shrinkage
distribution for scores and errors, the model can be rewritten as

(3)

For simplicity we will refer to  and  as the level 1 and 2 eigenfunctions
and eigenvalues, respectively.

We propose to jointly fit the outcome model (2) and the exposure model (3). Because the joint
model is a generalized linear mixed effects model the inferential arsenal for mixed effects
models can be used. In particular, we propose to use a Bayesian analysis via posterior Markov
Chain Monte Carlo (MCMC) simulations as described in Section 5. An alternative would be
to use a two-stage analysis by first predicting the scores from model (3) and then plug-in these
estimates into model (2).

2.2 BLUP plug-in versus joint estimation
To better understand the potential problems associated with two-stage estimation we describe
the induced likelihood for the observed data. We introduce the following notations ξi = (ξi1,
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…, ξiK)t and Wi = {Wi1(ti11), …, Wi1(ti1Mi1), …, WiJi(tiJiMiJi)}
t. With a slight abuse of notation

[Yi|Wi, Zi] = ∫[Yi, ξi|Wi, Zi]dξi, where [·|·] denotes the probability density function of the
conditional distribution. The assumptions in models (2) and (3) imply that [Yi, ξi|Wi, Zi] =
[Yi|ξi, Zi][ξi|Wi], which, in turn, implies that

(4)

Under normality assumptions it is easy to prove that [ξi|Wi] = N{m(Wi), Σi}, where m(Wi) and
Σi are the mean and covariance matrix of the conditional distribution of ξi given the observed
functional data and model (3). In Section 3 we provide the derivation of m(Wi) and Σi and
additional insight into their effect on inference.

For most nonlinear models the induced model for observed data (4) does not have an explicit
form. A procedure to avoid this problem is to use a two-stage approach with the following
components: 1) produce predictors of ξi, say b ξ ̂i, based on the exposure model (3); and 2)
estimate the parameters of the outcome model (2) by replacing ξi with ξ ̂i. It is reasonable to
use the best linear unbiased predictor (BLUP) of ξi, ξ ̂i = m(Wi), but other predictors could also
be used. For example, for the single-level functional model Müller and Stadtmüller [31] used

, which are unbiased predictors of ξik. Such estimators have even higher
variance than Σi because they do not borrow strength across subjects. This may lead to
estimation bias and misspecified variability. The problem is especially serious in multilevel
functional models as we discuss below.

Consider, for example, the outcome model Yi|ξi, Zi ~ Bernoulli(pi), where ,
and Φ(·) is the cumulative distribution function of a standard normal distribution. Under the
normality assumption of the distribution of ξi it follows that the induced model for observed
data is Yi|Wi, Zi ~ Bernoulli(qi), where

(5)

Thus, using the two-stage procedure, where ξi is simply replaced by mt(Wi), leads to biased
estimators with misspecified variability for β and γ. The size of these effects is controlled by
βtΣiβ.

There are important potential differences between joint and two-stage analyses in a multilevel

functional regression context. Indeed, the term  in equation (3) quantifies the
visit/subject-specific deviations from the subject specific mean. This variability is typically
large and makes estimation of the subject-specific scores, ξi, difficult even when the functions
are perfectly observed, that is when . Thus, the effects of variability on bias in a two-stage
procedure can be severe, especially when the within-subject variability is large compared to
the between-subject variability. In the next section we provide the technical details associated
with a two-stage procedure and provide a simple example to build up the intuition.

3 Posterior distribution of subject-specific scores
We now turn our attention to calculating the posterior distribution of subject-specific scores
for the MFPCA model (3). While this section is more technical and contains some pretty heavy
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notation, the results are important because they form the basis of any reasonable inferential
procedure in this context, be it two-stage or joint modeling. We first introduce some notation
for a subject i. Let Wij = {Wij(tij1), …, Wij(tijMij)}

t be the Mij × 1 vector of observations at visit

j,  be the  vector of observations obtained by stacking Wij,

 be the Mij × 1 dimensional vector corresponding to the kth level

1 eigenfunction at visit j, and  be the  dimensional vector

corresponding to the kth level 1 eigenfunction at all visits. Also, let  be
the Mij × K dimensional matrix of level 1 eigenvectors obtained by binding the column vectors

 corresponding to the jth visit and  be the  dimensional

matrix of level 1 eigenfunctions obtained by binding the column vectors . Similarly, we

define the vectors  and . Finally, let  and

 be the K ×K and L×L dimensional diagonal matrices of level 1 and
level 2 eigenvalues, respectively.

If ΣWi denotes the covariance matrix of Wi then its (j, j′)th block matrix is equal to Bi,jj′ where

 if j ≠ j′ and  for 1 ≤ j, j′ ≤
Ji. Moreover, under normality assumptions [ξi|Wi] = N{m(Wi), Σi}, where

 and . The following results
provide simplified expressions for ΣWi, m(Wi) and Σi that greatly reduce computational burden
of algorithms.

Theorem 1
Consider the exposure model (3) with a fixed number of observations per visit, i.e. Mij = Mi,
at the same subject-specific times for each visit, i.e. tijm = tim for all j = 1, …, Ji. Denote by

, by , by 1Ji×Ji the Ji × Ji dimensional matrix of ones, and

by ⊗ the Kronecker product of matrices. Then  and

.

Theorem 2

Assume the balanced design considered in Theorem 1 and denote by . Then

 and

.

Proofs can be found in the accompanying web supplement. Theorem 2 provides a particularly
simple description of the conditional distribution ξi|Wi. Moreover, it shows that, conditional
on the smoothing matrices Λ(1) and Λ(2), the conditional distribution ξi|Wi is the same as the
conditional distribution ξi|W ̄i. We now provide a simple example where all calculations can
be done explicitly to illustrate the contribution of each individual source of variability to the
variability of the posterior distribution ξi|Wi, Σi. As described in section 2.2, this variability
affects the size of the estimation bias in a two-stage procedure. Thus, it is important to
understand in what applications this might be a problem.
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Consider a balanced design model with K = L = 1 and ψ(1)(t) = 1, ψ(2)(t) = 1 for all t. The
exposure model becomes a balanced mixed two-way ANOVA model

(6)

where, for simplicity, we denoted by ξi = ξi1, ζij = ζij1,  and by . In this case the
conditional variance Σi is a scalar and, using Theorem 2, we obtain

Several important characteristics of this formula have direct practical consequences. First, Σi
≤ λ1 indicating that Σi is small when the variability at first level, λ1, is small. In this situation
one could expect the two-stage procedure to work well. Second, the within-subject/between-
visit variability, λ2, is divided by the number of visits, Ji. In many applications λ2 is large
compared to λ1 and Ji is small, leading to a large variance Σi. For example, in the SHHS study
Ji = 2 and the functional analog of λ2 is roughly 4 times larger than the functional analog of
λ1. Third, even when functions are perfectly observed, that is , the variance Σi is not zero.
Fourth, in many applications  is negligible because the total number of observations
for subject i, MiJi, is large. For example, in the SHHS, MiJi ≈ 1600.

4 Model uncertainty
Our framework is faced with two distinct types of model uncertainty related to: 1) the choice
of K and L, the dimensions of the two functional spaces in the exposure model (3); and 2)
estimating β(t), the functional effect parameter, conditional on K and L, in the outcome model
(2).

To address the first problem we focus on estimating K, as estimating L is similar. Note that, as
K increases, the models described in (3) form a nested sequence of mixed effects models.
Moreover, testing for the dimension of the functional space being equal to K versus K + 1 is
equivalent to testing  versus , which is testing for the null hypothesis
that a particular variance component is equal to zero. This connection provides a paradigm
shift for estimating the dimension of the functional space or, more generally, the number of
non-zero eigenvalues in PCA. Current methods are based on random matrix theory and require
that eigenvalues be bounded away from zero, see, for example, [3,20]. This is not the correct
approach when the null hypothesis is that the eigenvalue is zero.

In this context Staicu, Crainiceanu and Carroll [40] proposed a sequence of Restricted
Likelihood Ratio Tests (RLRTs) for zero variance components [10,12,41] to estimate K. Müller
and Stadtmüller [31] proposed to use either the Akaike’s Information Criterion (AIC) [1] or
the Bayesian Information Criterion (BIC) [39]. Moreover, they found these criteria to be more
stable and less computationally intensive than methods based on cross-validation [38] or
relative difference between the Pearson criterion and deviance [6]. Staicu, Crainiceanu and
Carroll [40] show that both AIC and BIC are particular cases of sequential RLRT with non-
standard α levels. They also explain that AIC performs well because its associated α level is
0.079, which is different from the standard α = 0.05, but might be reasonable in many
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applications. In contrast, they recommend against using the BIC in very large data sets, such
as in our application, because the corresponding α level becomes extremely small.

In practice we actually prefer an even simpler method for estimating the number of components
based on the estimated explained variance. More precisely, let P1 and P2 be two thresholds

and define , where . For the
cumulative explained variance threshold we used P1 = 0.9 and for the individual explained
variance we used P2 = 1/T, where T is the number of grid points. We used a similar method
for choosing the number of components at level 2. These choices were slightly conservative,
but worked well in our simulations and application. However, the two thresholds should be
carefully tuned in any other particular application using simulations.

To address the second problem we note that it can be reduced to a standard model selection
problem. Forward, backward, single-variable or all subset selection can be used to identify
statistically significant predictors in the outcome model (2). Typical pitfalls reported for these
methods are avoided because predictors are mutually orthogonal by construction. In practice,
we prefer to do a backward selection combined with sensitivity analysis around the chosen
model. More precisely, we obtain an optimal model and the two next best models. For all these
models we provide the functional estimates and the log-likelihood differences.

A powerful alternative to estimating β(t) was proposed in a series of papers by Reiss and Ogden
[35,36] for the single-level functional regression case. In short, they project the original (un-
smooth) matrix of functional predictors onto a B-spline basis and use the P-spline basis penalty
to induce shrinkage directly on the functional parameter. Another alternative is to adapt the
forward selection method using pseudo-variables [27,43], which could work especially well
because the estimated eigenvalues are sorted. Both methods could easily be used in our
framework. However, they would need to be adapted to a joint analysis context to overcome
the bias problem induced by the two-stage analysis described in Section 2.

5 Bayesian inference
Because of the potential problems associated with two-stage procedures, we propose to use
joint modeling. Bayesian inference using MCMC simulations of the posterior distribution
provides a reasonable, robust, and well tested computational approach for this type of problems.
Possible reasons for the current lack of Bayesian methodology in functional regression analysis
could be: 1) the connection between functional regression models and joint mixed effects
models was not known; and 2) the Bayesian inferential tools were perceived as unnecessarily
complex and hard to implement. We clarified the connection to mixed effects models in Section
2.1 and we now show that 2) is not true, thanks to intense methodological and computational
research conducted over the last 10–20 years. See, for example, the monographs [4,8,16,18]
and the citations therein for a good overview.

To be specific, we focus on a Bernoulli/logit outcome model with functional regressors. Other
outcome models would be treated similarly. Consider the joint model with the outcome Yi ~
Bernoulli(pi), linear predictor  and functional exposure model (3). The
parameters of the model are ω = {(ξi: i = 1, …, I), (ζij: i = 1, …, I; j = 1, …, Ji), β, γ, Λ, },
where ξi was defined in Section 2.2 and ζij = (ζij1, …, ζijL)T. While εi(tijm) are also unknown,
we do not incorporate them in the set of parameters because they are automatically updated by

.

The priors for ξi and ζij were already defined and it is standard to assume that the fixed effects

parameters, β and γ, are apriori independent, with  and  where
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 and  are very large and P is the number of Z covariates. In our applications we used

, which we recommend when there is no reason to expect that the components of
β and γ could be outside of the interval [− 1000, 1000]. In some applications this priors might
be inconsistent with the true value of the parameter. In this situations we recommend re-scaling
Wij(tijm) and normalizing, or re-scaling, the Z covariates.

While standard choices of priors for fixed effects parameters exist and are typically non-
controversial, the same is not true for priors of variance components. Indeed, the estimates of
the variance components are known to be sensitive to the prior specification, see, for example,
[11,15]. In particular, the popular inverse-gamma priors may induce bias when their parameters
are not tuned to the scale of the problem. This is dangerous in the shrinkage context where the
variance components control the amount of smoothing. However, we find that with reasonable
care, the conjugate gamma priors can be used in practice. Alternatives to gamma priors are
discussed by, for example, [15,32], and have the advantage of requiring less care in the choice
of the hyperparameters. Nonetheless, exploration of other prior families for functional
regression would be well worthwhile, though beyond the scope of this paper.

We propose to use the following independent inverse gamma priors

, l = 1, … L, and , where IG
(A, B) is the inverse of a gamma prior with mean A/B and variance A/B2. We first write the full
conditional distributions for all the parameters and then discuss choices of non-informative

inverse gamma parameters. Here we treat  and  as parameters to be estimated, but a
simpler Empirical Bayes (EB) method proved to be a reasonable alternative in practice. More

precisely, the EB method estimates  and  by diagonalizing the functional covariance
operators as described in Section 2.1. These estimators are then fixed in the joint model. In the

following we present the inferential procedure for the case when  and  are estimated with
obvious simplifications for the EB procedure where they would be fixed.

We use Gibbs sampling [17] to simulate [Ω|D], where D denotes the observed data. A
particularly convenient partition of the parameter space and the associated full conditional
distributions are described below

where . The first two full-conditionals do not have an explicit form,
but can be sampled using MCMC. For Bernoulli outcomes the MCMC methodology is routine.
We use the Metropolis-Hastings algorithm with a normal proposal distribution centered at the
current value and small variance tuned to provide an acceptance rate around 30–40%. The last
four conditionals are explicit and can be easily sampled. However, understanding the various
components of these distributions will provide insights into rational choices of inverse gamma
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prior parameters. The first parameter of the full conditional for  is , where I is the

number of subjects and it is safe to choose . The second parameter is

, where  is an estimator of  and it is safe to choose

. This is especially relevant for those variance components or, equivalently,
eigenvalues of the covariance operator, that are small, but estimable. A similar discussion holds

for . For  we recommend to choose Aε ≤ 0.01 and . Note that method of

moments estimators for  and  are available and reasonable choices of  and
Bε are easy to propose. These rules of thumb are useful in practice, but they should be used as
any other rule of thumb, cautiously. Moreover, for every application we do not recommend to
rigidly use these prior parameters but rather tune them according to the general principles
described here.

6 Simulation studies
In this section, we compare the performance of the joint analysis procedure with the two-stage
procedure through simulation studies. We examine the Bernoulli model with probit link when
the functional exposure model is single-level and multilevel.

The outcome data was simulated from a Bernoulli/probit model with linear predictor

, for i = 1, …, n, where n = 1000 is the number of subjects. We
used the functional predictor Xi(t) = ξiψ1(t), where ξi ~ N (0, λ1) and ψ1(t) ≡ 1, evaluated at
M = 15 equidistant time points in [0, 1]. We set β0 = 1, γ = 1 and a constant functional parameter
β(t) ≡ β. The zis are taken equally spaced between [−1, 1] with z1 = −1 and zn = 1. Note that
the linear predictor can be re-written as Φ−1(pi) = β0 + βξi + ziγ. In the following subsections
we conduct simulations with different choices of β and type of functional exposure model. All
models are fit using joint Bayesian analysis via MCMC posterior simulations and a two-stage
approach using either BLUP or numerical integration [31]. We simulated N = 100 data sets
from each model.

6.1 Single-level functional exposure model
Consider the case when for each subject, i, instead of observing Xi(t), one observes the noisy
predictors Wi(t), where Wi(t) = Xi(t)+ εi(t), i = 1, …, n and  is the measurement
error. We set λ1 = 1, consider three values of the signal β = 0.5, 1.0, 1.5 and three different
magnitudes of noise σε = 0 (no noise), σε = 1 (moderate) and σε = 3 (very large). Figure 1 shows
the boxplots of the parameter estimates β ̂ and γ ̂. The top and bottom panels provide results for
the joint Bayesian analysis and the two-stage analysis with BLUP, respectively. The left and
middle panels display the parameter estimates for different magnitudes of noise and the right
panel presents the bias of the estimates of β for several true values of β. For the two-stage
procedure when the amount of noise, σε, or the absolute value of the true parameter, |β|,
increases, the bias increases. These results confirm our theoretical discussion in Section 2.2
and indicate that bias is a problem both for the parameters of the functional variables measured
with error and of the perfectly observed covariates. Moreover, bias increases when the true
functional effect increases as well as when measurement error increases.

For the case σε = 3, Table 1 displays the root mean squared error (RMSE) and coverage
probability of confidence intervals for β and γ. The two-stage approach with scores estimated
by numerical integration has a much higher RMSE than the other two methods, which have a
practically equal RMSE. However, it would be misleading to simply compare the RMSE for
the joint Bayesian analysis and the two-stage procedure based on BLUP estimation. Indeed,
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the coverage probability for the latter procedure is far from the nominal level and can even
drop to zero. This is an example of good RMSE obtained by a combination of two wrong
reasons: the point estimate is biased and the variance is underestimated.

6.2 Multilevel functional exposure model
Consider now the situation when the predictors are measured through a hierarchical functional
design, as in SHHS. To mimic the design of the SHHS, we assume J = 2 visits per subject and
that the observed noisy predictors Wij(t) are generated from the model Wij(t) = Xi(t) + Uij(t) +
εij(t), for each subject i = 1, …, n and visit j = 1, …, J, where  and Uij(t) =
ζijψ2(t) with ζij ~ N(0, λ2), ψ2(t) ≡ 1. We used various choices of λ1, λ2 and , and compared
the two-stage analysis with the scores estimated by BLUP with a joint Bayesian analysis. As
in the single-level case, the bias depends on the factor 1 + β2Σi and the only technical difference
is the calculation of Σi. Thus, we limit our analyses to the case β = 1 and examine the effects
of the other factors that may influence estimation.

Figure 2 presents the boxplots of the estimates of β using the joint Bayesian analysis (top panels)
and the two-stage method with BLUP estimation of scores (bottom panels). The left panels
correspond to λ1 = 1, λ2 = 1 and three values of σε, 0.5, 1 and 3. The joint Bayesian inference
produces unbiased estimates, while the two-stage procedure produces biased estimates with
the bias increasing only slightly with the measurement error variance. This confirms our
theoretical results that, typically, in the hierarchical setting the noise magnitude is not the main
source of bias. The middle and right panels display results when the measurement error variance
is fixed, σε = 1. The middle panels show results for the case when the between-subject variance
is small, λ1 = 0.1, and three values of the within-subject variance, λ2 = 0.1, 0.4 and 0.8. The
right panels show results for the case when the between-subject variance is large, λ1 = 3, and
three values of the within-subject variance, λ2 = 1, 3 and 5. We conclude that bias is small
when the between-subject variability, λ1, is small even when the within subject variability,
λ2, is much larger than λ1. If λ1 is large then bias is much larger and increases with λ2. In
contrast, the joint Bayesian analysis produces unbiased estimators with variability increasing
with λ2. The RMSE and coverage probability results were similar to the ones for the single-
level case. We have also obtained similar results for γ; results are not reported here, but they
are available upon request and can be reproduced using the attached simulation software.

In spite of the obvious advantages of the joint Bayesian analysis, the message is more nuanced
than simply recommending this method. In practice, the two-stage method with BLUP
estimation of scores is a robust alternative that often produces similar results to the joint analysis
with less computational effort. Our recommendation is to apply both methods and compare
their results. We also provided insight into why and when inferential differences may be
observed, and, especially, how to address such differences.

7 The analysis of sleep data from the SHHS
We now apply our proposed methods to the SHHS data. We considered 3, 201 subjects with
complete baseline and visit 2 data with sleep duration that exceeds 4 hours at both visits and
we analyzed data for the first 4 hours of sleep. We focus on the association between
hypertension (HTN) and sleep EEG δ-power spectrum. Complete descriptions of the SHHS
data set and of this functional regression problem can be found in [9,13]. We provide here a
short summary.

A quasi-continuous EEG signal was recorded during sleep for each subject at two visits,
roughly 5 years apart. This signal was processed using the Discrete Fourier Transform (DFT).
More precisely, if x0, …, xN − 1 are the N measurements from a raw EEG signal then the DFT
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is , k = 0, …, N − 1, where . If W denotes a range of frequencies,

then the power of the signal in that frequency range is defined as . Four frequency
bands were of particular interest: 1) δ [0.8–4.0Hz]; 2) θ [4.1–8.0Hz]; 3) α [8.1–13.0Hz]; 4) β
[13.1–20.0Hz]. These bands are standard representations of low (δ) to high (β) frequency
neuronal activity. The normalized power in the δ band is NPδ = Pδ/(Pδ+Pθ+Pα+Pβ). Because
of the nonstationary nature of the EEG signal, the DTF and normalization are applied in
adjacent 30 second intervals resulting in the function of time t → NPδ(t), where t indicates the
time corresponding to a particular 30 second interval. For illustration, Figure 3 displays the
pairs {t, NPδ(t)} for two subjects (gray solid and dashed lines) at baseline and visit 2. Time t
= 1 corresponds to the first 30 second interval after sleep onset. Figure 3 also displays the visit-
specific average percent δ power across all subjects (solid black line). Our goal is to regress
HTN on the subject-specific functional characteristics that do not depend on random or visit-
specific fluctuations.

The first step was to subtract from each observed normalized function the corresponding visit-
specific population average. Following notations in Section 3, Wij(t) denotes these “centered”
functional data for subject i at visit j during the tth 30-second interval. We used model (3) as

the exposure model where the subject-level function, , is the actual functional
predictor used for HTN.

To obtain the subject- and visit-level eigenfunctions and eigenvalues we used the MFPCA
methodology introduced by [13] and summarized in Section 2.1. Table 2 provides the estimated
eigenvalues at both levels indicating that 95% of level 1 (subject) variability is explained by
the first five eigenfunctions and 80% is explained by the first eigenfunction. Table 2 indicates
that there are more directions of variation in the level 2 (visit) space. Indeed, 80% of the
variability is explained by the first 7 eigenfunctions and 90% of the variability is explained by
the first 14 components (results not shown). The proportion of variability explained by subject-
level functional clustering was ρ̂W = 0.213 with a 95% confidence interval: (0.210, 0.236), i.e,
21.3% of variability in the sleep EEG δ-power is attributable to the subject-level variability.

We started with K = 5 and performed a backward selection starting with the full outcome model

, where Yi is the HTN indicator variable and no additional
covariates were included into the model. Three principal components were eliminated in the
following order: PC4 (p-value= 0.49), PC2 (p-value= 0.46), PC3 (p-value= 0.23). The other
two principal components (PCs) were retained in the model: PC1 (p-value< 0.001) and PC5
(p-value= 0.0012). For illustration, Figure 4 displays principal components 1, 2, 3, and 5. PC1
is, basically, a vertical shift. Thus, subjects who are positively loaded on it have a higher long-
term δ-power than the population average. PC5 is roughly centered around 0 and it has a more
interesting behavior: a subject who is positively loaded on PC5 will have a lower percent δ-
power (faster brain activity) in the first 45 minutes. This difference is more pronounced in the
first 10, 15 minutes of sleep, with the subject “catching-up” to the population average between
minute 45 and 60. After 1 hour of sleep the subject will have a higher percent δ-power (slower
brain activity) than the average population. After 2 hours, the behavior along this component
returns to the population average. Both PC1 and PC5 are very strong predictors of HTN, even
though they explain very different proportions of subject-level variability: PC1 (80%) and PC5
(2%). As will be seen below, the parameter of PC5 is negative indicating that subjects who are
positively loaded on this component are less likely to have HTN.

Table 3 provides results for two models, one without confounding adjustment (labeled Model
1) and one with confounding adjustment (labeled Model 2). The confounders in Model 2 are
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sex, smoking status (with three categories: never smokers, former smokers, and current
smokers), age, body mass index (BMI) and respiratory disturbance index (RDI). Each model
was fitted using a two-stage analysis with BLUP estimates of scores from the exposure model
and a joint Bayesian analysis. We note that there is good agreement between the two methods
with the exception of the statistical significance of PC5: the two stage analysis finds it highly
significant whereas the Bayesian analysis does not. As expected, the magnitude of association
varies with the amount of confounding adjustment. For example, Model 1 estimates that a one
standard deviation increase in PC1 scores corresponds to a relative risk e−1.55*0.11 = 0.84 (Table
2 provides the variance of PC1 scores). Model 2, which adjusts for confounders, estimated that
a one standard deviation increase in PC1 scores corresponds to a relative risk e−0.85*0.11 = 0.91.

These results are now easy to explain. The bias of point estimators is likely due to the variability
of PC scores. The wider credible intervals obtained from the Bayesian analysis are likely due
to the appropriate incorporation of the sources of variability. The negative relationship between
smoking and hypertension may seem counterintuitive. However, in this study smokers are
younger, have a lower BMI and many other smokers with severe disease were not included in
the study [46].

Figure 5 displays results for β(t), the functional association effect between subject-specific
deviations, Xi(t), from the visit-specific mean, μ(t)+ ηj(t), and HTN without accounting for
confounders. The top panel shows results for the optimal model using a two-stage frequentist
analysis. This model includes PCs 1 and 5. The bottom panel shows results for the optimal
model using a joint Bayesian analysis. This model includes only PC1, because PC5 was not
found to be statistically significant using a joint approach. The differences are visually striking,
but they are due to the special shape of PC5 and to the fact that the methods disagree on its
importance. Indeed, point estimators of the PC5 component are very close, but Bayesian
analysis estimates an 80% larger standard error.

Joint Bayesian analysis is simple, robust and requires minimal tunning. This is possible because
MFPCA produces a parsimonious decomposition of the functional variability using
orthonormal bases. The use of orthonormal bases leads to reduction in the number of parameters
and of posterior correlation among parameters, which lead to excellent mixing properties. For
example, the web supplement displays chains for the regression coeffcients indicating
independence-like behavior.

8 Discussion
The methodology introduced in this paper was motivated by many current studies where
exposure or covariates are functional data collected at multiple time points. The SHHS is just
one example of such studies. The GMFLM methodology provides a self contained set of
statistical tools that is robust, fast and reasonable for such studies. These properties are due to:
1) the connection between GMFLMs and mixed effects models; 2) the parsimonious
decomposition of functional variability in principal directions of variation; 3) the modular way
mixed effects models can incorporate desirable generalizations; and 4) the good properties of
Bayesian posterior simulations due to the orthogonality of the directions of variation.

The methods described in this paper have a few limitations. First, they require a large initial
investment in developing and understanding the multilevel functional structure. Second, they
require many choices including number and type of basis functions, distribution of random
effects, method of inference, etc. The choices we made are reasonable, but other choices may
be more appropriate in other applications. Third, our framework opened many new theoretical
problems; addressing all these problems exceeds the scope of the current paper and will be
addressed in subsequent papers. Fourth, the computational problems may seem daunting,
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especially when we propose a joint Bayesian analysis of a data set with thousands of subjects,
multiple visits and thousands of random effects. However, we do not think that they are
insurmountable; see the software we posted at
www.biostat.jhsph.edu/~ccrainic/webpage/software/GFR.zip.
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Figure 1.
Joint Bayesian analysis (upper panel) versus two-stage analysis with BLUP (bottom panel):
box plots of β ̂ and γ ̂ for different values of β and σε.
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Figure 2.
Joint Bayesian analysis (upper panel) versus two-stage analysis with BLUP (bottom panel):
box plots of β ̂ for β = 1 and various values of σε and λ’s.
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Figure 3.
Gray solid and dashed lines display percent δ-power in 30 seconds intervals for the same 2
subjects at baseline (top panel) and visit 2 (bottom panel). Missing data correspond to wake
periods. Solid black line displays visit-specific average δ power over all subjects.
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Figure 4.
Characteristics of normalized sleep EEC δ-power. Principal components 1, 2, 3 and 5 of the
subject-level functional space.
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Figure 5.
Results for β(t), the functional association effect between subject-specific deviations, Xi(t),
from the visit-specific mean, μ(t) + ηj(t), and HTN in the model without confounders. Two-
stage (top panel); joint Bayesian (bottom panel.)
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Table 3

Mean and standard error estimates (within brackets) for parameters of models of association between
hypertension and sleep EEG δ-power. Smoking status has three categories: never smokers (reference), former
smokers (smk:former) and current smokers (smk.current). For the variable sex, female is the reference group and
an asterisks indicates significance at level 0.05.

Two-stage analysis Joint analysis

Model 1 Model 2 Model 1 Model 2

score 1 −1.55 (0.28)* −0.85 (0.30)* −1.75 (0.33)* −1.08 (0.40)*

score 5 −7.03 (2.18)* −4.67 (2.34)* −7.68 (3.90) −1.97 (3.80)

sex 0.10 (0.08) 0.09 (0.08)

smk:former −0.18 (0.08)* −0.19 (0.08)*

smk:current −0.10 (0.13) −0.10 (0.13)

age 0.06 (0.00)* 0.06 (0.00)*

BMI 0.06 (0.01)* 0.06 (0.01)*

RDI 0.01 (0.00)* 0.01 (0.00)*
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