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Abstract
Studying large deformations with a Riemannian approach has been an efficient point of view to
generate metrics between deformable objects, and to provide accurate, non ambiguous and smooth
matchings between images. In this paper, we study the geodesics of such large deformation
diffeomorphisms, and more precisely, introduce a fundamental property that they satisfy, namely
the conservation of momentum. This property allows us to generate and store complex
deformations with the help of one initial “momentum” which serves as the initial state of a
differential equation in the group of diffeomorphisms. Moreover, it is shown that this momentum
can be also used for describing a deformation of given visual structures, like points, contours or
images, and that, it has the same dimension as the described object, as a consequence of the
normal momentum constraint we introduce.

1. Introduction
Over the past several years we have been studying natural shapes using homogeneous orbits
of imagery constructed via the action of transformation groups on exemplars or templates.
The mathematical structure of group action as a model in image analysis has been pioneered
by Grenander [13], the idea being to introduce the group actions in the very nature of the
objects themselves, through the notion of deformable templates. Roughly speaking, a
deformable template simply is an “object or exemplar” Itemp on which a group G acts and
generates, through the orbit  = G · Itemp, a whole family of new objects. The interest of this
approach is to concentrate the modeling effort on the group G, and not on the family of
objects .

Since the earliest introduction by Silicon Graphics Incorporated of special purpose graphics
hardware for object rendering, group action as a model in image analysis has been the
subject of a wide range of research in computer vision. Naturally, the analytical and
computational properties of the low-dimensional matrix Lie groups form the core dogma of
modern Computer graphics. In sharp contrast, however, for the study of imagery generated
from natural or biological shapes, the finite dimensional matrix groups are replaced by their
infinite dimensional analogue, the more general diffeomorphisms [7,11,16,22,23,36].
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The anatomical orbit or deformable template is made into a metric space with a metric
distance between elements by constructing curves through the space of diffeomorphisms
connecting them; the length of the curve becomes the basis for the construction, the metric
distance corresponding to the geodesic shortest length curves. This gives rise to a natural
variational problem describing the geodesic flows between elements in the orbit, with the
solution of the associated Euler-Lagrange equations giving the optimal flow of
diffeomorphisms and thus the metric between the shapes. The obtained setting shares several
similarities with the mechanics of perfect fluids, for which the Euler-Lagrange equation has
been derived by Arnold (Eq. (1) of [2]) for the group of divergence-free volume-preserving
diffeomorphisms. As well these results become another example of the general Euler-
Poincaré principle of [19] applied to an infinite dimensional setting.

Interestingly, as emphasized by Arnold [1] in his study, one of the most beautiful aspects of
studying diffeomorphisms with a Lie group point of view is that many fundamental aspects
which can be proved in the finite dimensional case can be formally extended to retrieve
well-known equations of mechanics. One of the purposes of this paper is to develop infinite
dimensional analogues, for the study of high dimensional shapes via diffeomorphisms, of
several of the well known properties of Lie groups in rigid body mechanics. In particular we
shall focus on the interpretation of the Euler equation as an expression of the evolution of
the generalized momentum of diffeomorphoc flow of least energy in both Eulerian and
Lagrangian coordinates.

Such a point of view will link our geodesic formulation to a conservation of momentum law
in Lagrangian coordinates providing a powerful method for studying and modeling
diffeomorphic evolution of shape. It will imply that the momentum of the diffeomorphic
flow at any place along the geodesic can be generated from the momentum at the origin,
thus providing the vehicle for geodesic generation via shooting.

This same conservation of momentum of the diffeomorphic flow, allows us to derive
equations for the geodesic evolution of the elements in the orbit , t ∈ [0, 1], I ∈ .
This unifies various geodesic evolutions associated with orbits of sparse finite dimensional
landmarked shapes as well as the evolutions of dense images. Of special interest is the fact
that for the special case of image matching, geodesic evolution of elements in the orbit links
us to the notion of normal motion familiar to the rapidly growing community working in
level set methods. Interestingly, as we show, the momentum of the diffeomorphic flow is
normal to the level sets associated with geodesic motion. By solving the partial differential
equations which are associated with the conservation of momentum, we will be able to
control by specifying the initial conditions (within a specific class of momentum which
depends on the considered imaging problem) a wide range of arbitrarily large deformations;
this provides new possibilities for learning shape models of deformable templates, or for
designing new numerical matching procedures.

This second point of view in terms of the conservation of momentum law also sheds new
light on a large number of high dimensional evolution based Active Model Methods in
Computer Vision, including active snakes and contours [6,12,18,20,29,31,37,40,41,43],
active surfaces and deformable models [8,9,21,24,25,28,30,33,39,40,42]. In such approaches
vector fields are defined which give the boundary manifold of the shape some velocity of
motion, usually following the gradient of an energy to form an attractive force to pull the
boundary. The power of such methods is that they parameterize motion only associated with
a submanifold of the imagery, not the entire extrinsic background space. For example, to
deform a planar simply connected shape via an active contour method, the dimension of the
motion is determined by the dimension of the boundary of the region, which is substantially
less than the dimension of the plane. Historically such approaches have not been studied
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globally as diffeomorphic action. In fact it is well known that such methods cannot prevent
self intersection nor ensure topological consistency, for which the addition of other
constraints become necessary [14,15]. From the conservation law in Lagrangian coordinates
describing geodesic motion in the metric space of diffeomorphic action, we introduce the
normal momentum motion which constrains the momentum to the bounding manifold, and
extends the velocity of motion of the shape to the entire background space, thereby giving
the global property that the resulting integrated vector field generates a diffeomorphism on
the entire extrinsic space. This in turn carries the smooth submanifold diffeomorphically. As
the analysis shows, this global property seems to be required to generate geodesic motions.

2. The Basic Set Up
2.1. Right Invariant Metric on Group of Diffeomorphisms

The basic component of our models is the group of one-to-one, smooth, transformations
(diffeomorphisms) of a bounded subset Ω ⊂ ℝd. In this paper, we consider diffeomorphisms
emerging as flows of non-autonomous differential equations. A time dependent vector field
on Ω is a function:

(v(t, x) will also be denoted vt(x)). The associated ordinary differential equation is

The flow of this ODE is a function φv which depends on time and space, such that

and φ(0, x) = x for all x ∈ Ω. We will also use the notation  for φ(t, x) and

(1)

It is well-known that, under some smoothness conditions on v, such  is at all times a
diffeomorphism of Ω.

The groups that we consider are precisely composed with such flows  for v belonging to a
specified functional class. More precisely, we assume that a Hilbert space ℊ is given, the
element of which being smooth enough vector fields on Ω, and denote the norm and inner
product on this space by || ||ℊ, 〈,〉ℊ. We now define (following [35]) the group G as the set of
functions  for time-dependent vector fields v satisfying
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i.e. for v belonging to L1([0, 1], ℊ). We will always assume that ℊ can be embedded in the
space of ( , || ||1, ∞), containing vector fields on Ω, which vanish on ∂Ω, where

From this definition, it appears that the main ingredient in the construction of G is the
Hilbert space ℊ.

Fixing v ∈ ℊ, one can define the linear form w ↦ 〈v, w〉g, which will be denoted Lv. We
therefore have the identity

(we use the standard notation (M, w) for the linear form M applied to w). By definition, Lv
belongs to the dual, ℊ* of ℊ, and L can be seen as an operator L: ℊ → ℊ* (this is the canonical
duality operator of ℊ on its dual). As we shall see, this operator turns out to be a key feature
in our analysis. For the moment, we point out the fact that Lv is a linear form on ℊ which is a
space of smooth vector fields. Therefore, Lv itself can be a singular object (a generalized
function, or a distribution). Here are a few examples of distributions M which qualify as
elements of ℊ*, under our running assumption that ℊ is embedded in the space of C1

functions:

i. L1 vector fields of Ω: if ψ: Ω ↦ ℝd is integrable, define

ii. Let now μ be any measure on Ω, and ψ be μ integrable. Define

iii. Dirac measures: as a particular case of the previous, define, for x ∈ Ω and a ∈ ℝd,

This will be denoted .

iv. Differential operators: if (fi, j, 1 ≤ i, j ≤ d) are integrable functions, define
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It is important to notice that, although L is defined in a rather abstract way in the previous
lines, numerical procedures to compute geodesics can be derived most of the time from the
knowledge of its inverse (of Green kernel) K = L−1. This K is a smoothing kernel, the choice
of which, within a specific range of available kernels, being the starting point of any
practical procedure. We do not detail numerical algorithms in this paper, but the reader can
refer to [4,5,17,23] for examples of choices of K.

2.2. Energy and Momenta

Consider a time-dependent diffeomorphism v ∈ L1([0, 1], ℊ), and let ( , t ∈ [0, 1]) be the
associated flow, defined in the previous section. Along time, each point x ∈ Ω, considered as
a particle, evolves on the trajectory , its velocity at time t being by definition

. In other terms, for y ∈ Ω, vt(y) is the instantaneous velocity of the particle which is
at y at time t. It is called the Eulerian velocity at y at time t.

So, at each time, we have an Eulerian velocity field, y ↦ vt(y), and we define the kinetic

energy of the system to be . The total energy spent during the deformation path
now is

Note that, in classical fluid mechanics, the kinetic energy is the sum of particle kinetic
energies, which, for a homogeneous fluid with mass density given by ρ yields

This is the L2 norm of v, which cannot be used in our context, since we require that ℊ is
embedded in  (we need some kind of Sobolev norms). However, in analogy with standard
mechanical systems, we may define the global momentum of the system at time t to be the
linear form Mt ∈ ℊ* such that E(vt) = (Mt, vt)/2, which, with the notation of the previous
section, yields.

So, if vt is the Eulerian velocity field at time t, the momentum at time t is given by Lvt. It
will be called the momentum in Eulerian coordinates.

2.3. Lagrangian and Eulerian Frames
The Eulerian frame, as introduced above, describes mechanical quantities as they are
observed in the current configuration at each time. The Lagrangian frame, on the contrary,
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describes quantities as seen from the initial configuration. For example, the diffeomorphism
 provides the position at time t of the particle which was at x at time 0, which is a

Lagrangian notion. For the velocity, we create a Lagrangian velocity field by pulling back
the previously defined velocity vt, setting

The operation

defines a fundamental Lie group operation, and is called the adjoint action of G on its Lie
algebra (which here is ℊ), denoted Adφv. We have obtained the relation

To interpret the adjoint action pictorially, the new vector field under the adjoint action v →
(dφ)v ◦ φ−1 has to be interpreted as the transformation of v under the deformation generated
by φ. Figure 1 shows how the field vl at location x is transported by the flow to the value v(y)
at location y = φ(x) by pushing forward (using φ) the Lagrangian frame on which vl is
drawn. Note that the orientation of the vector v(x) drawn on the deformed sheet is also
changed (through the action of (dφ)).

2.4. Momentum in Eulerian and Lagrangian Coordinates
The momentum Mt = Lvt, which has been defined in Eulerian coordinates, also admits a
Lagrangian version. It can be computed by expressing the kinetic energy at time t, which is
(Lvt, vt)/2, under the form , being then the Lagrangian momentum. This is
straightforward, since, by definition of an adjoint operator:

This leads to the definition  for the momentum in Lagrangian coordinates. The
Lagrangian frame takes here the role of a Galilean, or reference frame, and we will retrieve
below the fundamental principle of mechanics, which states that the Lagrangian momentum
is constant over time along any energy minimizing path. Before this, we make a brief
interuption in our discussion to describe the relation between the classical mechanics of a
rigid body, and geodesic equation in matrix Lie groups. This simple description will help to
understand the formalism in our infinite dimensional group of diffeomorphisms.

MILLER et al. Page 6

J Math Imaging Vis. Author manuscript; available in PMC 2010 July 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3. Euler Equation and Conservation of the Momentum for Lie Groups of
Matrices

In this part, we derive the Euler equation for extremal paths of the kinetic energy in the case
of Lie groups of matrices. This derivation is well-known in the context of classical solid
mechanics [1], but this simpler case, which can be derived completly without too much
technicalities, may be helpful to understand the case of diffeomorphisms.

Let G ⊂ ℳd(ℝ) be a Lie group of d × d matrices with Lie algebra ℊ. The case of interest is
when G is a group of 3D rotations, which models the position of a rigid body with fixed
center of mass. In this case, ℊ is the vector space of antisymmetric 3 × 3 matrices. Let t ↦ gt
be a trajectory in this group. Then, the angular velocity at ∈ ℊ is given by the equation

. This is to be related to our previous definition of Eulerian velocity, which was

in which the (left) product of matrices is replaced by the (right) composition of functions.

Returning to the matrix case, we define the kinetic energy at time t to be (Jat, at)/2, for some
symmetric positive definite operator J: ℊ → ℊ*. In the case of the rigid body, the angular
velocity can be identified to a 3-vector ωt, and J can be seen as a 3 × 3 matrix which only
depends on the geometry of the object, called the inertia operator and, with some abuse of
notation,

(note that here the notation (,) refers to the sum of products of coordinates, i.e. the usual
inner product on Euclidean spaces, after identification between ℊ and ℊ*). The total energy is

We retrieve again the analogy with the diffeomorphisms by letting

so that J takes the role of L in the previous section.

We now compute the Euler equation for least energy paths between two fixed endpoints g0
and g1. We recall that the Lie bracket on ℊ is [a, b] = ab − ba.

Theorem 1
The Euler-Lagrange equation for the kinetic energy is given by
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(2)

where  is defined by duality through the equalities .

Proof—Let (t ↦ g0(t)) be an extremal curve for the kinetic energy and ((t, h) ↦ g(t, h)) be
a smooth deformation around h = 0 (g(t, 0) = g0(t)): Let a(t, h) and A(t, h) be such that

(3)

Writing , we get  i.e.

(4)

The curve A(t, h) can vary freely in ℊ, with boundary conditions A(0, h) = A(1, h) = 0. From

we get

(5)

Using the duality relation, we get  so that by integration by part, we
finally obtain the Euler equation

(6)

We know from Lagrangian mechanics that the motion of a body with inertial operator J
without external forces are extremal paths of the kinetic energy. Hence, Eq. (6) is the
evolution equation of a body. We recognize in this equation the momentum to the body

 and the Euler equation is then:

(7)

The momentum in the body here is to relate to the momentum in Eulerian coordinates for
diffeomorphisms. However, if we study the motion of the body in a fixed static reference
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frame, the momentum to the space denoted here Ms should remain constant in the absence of
external forces. The momentum to the space is defined from Mb

t by a change of reference
frame:

(8)

where  is the co-adjoint representation which is defined by duality through the equalities:

. We derive from the evolution equation for Mb, given by the
Euler equation (7), the conservation of the momentum to the space Ms:

Theorem 2
Along extremal curves for the kinetic energy, Ms is constant:

(9)

Proof—Indeed, we have

Since, , we get finally using Euler Eq. (6),

(10)

Thus, from the conservation of the momentum to the space, , we deduce that

(11)

or equivalenty, for any b ∈ ℊ:

(12)

These results are in fact true for any Lie-group with a left-invariant metric. As we now
investigate, they can be formally extrapolated also for infinite dimensional groups of
diffeomorphisms.
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4. Geodesic Evolution of the Diffeomorphism and Conservation of
Momentum
4.1. Euler Equation as Evolution Equation for the Momentum in Eulerian Coordinates

The derivation of the Euler equation for extremal paths of the kinetic energy in the case of
finite-dimensional Lie groups can be carried out in full generality within the Lie theory
framework, to lead to the law of conservation of momentum. A general computation can be
found in [1]. In our infinite dimensional case, a rigorous derivation of this law is much
harder, and must most of the time be obtained directly from variational and functional
analysis arguments rather than with purely algebraic Lie group derivations. However, it is
interesting, and quite informative, to use these derivations to obtain a formal proof of the
conservation of momentum, without wondering too much about the well-posedness of the
expressions. This will be done in the next paragraphs.

The first Euler equation provides the variations of the momentum in Eulerian coordinates.
Before stating it, we need some definitions:

Definition 1—The adjoint action Ad of G on ℊ and the associated adjoint action ad of ℊ on
itself are given with their dual operators Ad*, ad* by

(13)

(14)

with φ ∈ G, w ∈ ℊ, f ∈ ℊ*.

Already at this point, one can point out the difficulty of the infinite dimensional problem: at
the difference with the matrix case, if v, w belong to ℊ, it cannot be guaranteed that it is still
so for [w, v] = (dw)v − (dv)w: in situations of interest, ℊ is, in fact, not a Lie algebra: Adφw
and advw do not necessarily belong to ℊ. As a consequence, the definition of  which has
been given cannot hold without some restriction on f, in order to be able to extend it to
vector fields which are brackets of elements of ℊ. We however proceed with such formal
computation without addressing these issues.

The geodesics are extremal curves for the kinetic energy. They satisfy an Euler equation
giving the variation of the momentum in terms of the co-adjoint action operator on the
momentum.

Statement 1—The Euler equation for the kinetic energy is given by

(15)

When Lv ∈ H (i.e. it is a function), one has
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(16)

where div(u ⊗ v) = duv + div(v)u.

These equations, which are derived below, are special cases of the Euler-Poincaré principle,
described, for example in [19]. Equation (15) is formally identical to Eq. (2) in the matrix
case, excepted for a sign difference arising from the switch from a left-invariance in the
matrix case to a right-invariance in the diffeomorphism case.

Formal Justification—This is exactly as in the matrix case. Here again, let (t ↦ φt) be
extremal and ((t, ε) ↦ φt,ε) be a smooth deformation around ε = 0, with the abuse of
notation φt,0 = φt. Denote , still denoting vt,0 = vt, ηt,0 =
ηt and ht,0 = ht. Our first step is to express ht in function of the other variables. For this, write

which yields

or (applying  on the right to both terms) gives

The1 first variation of the energy is given by

Since φt is extremal, this expression vanishes for all η (with η0 = η1 = 0), and a last
integration by parts yields

1These arguments are purely formal since ht includes the Lie bracket which cannot be guaranteed to belong to ℊ (in which case our
variation would not be justified).
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which is Eq. (15).

We now prove Eq. (16) under the assumption that Lv is a function. By definition

and the conclusion comes from Stokes’ theorem which states that (since v and w vanish on
∂Ω)

It appears that the Euler equation (15) with  has been derived in [26]
and subsequently [22] directly as the Euler-Lagrange equation for the kinetic energy by
analytical means. This has been originally proved by Arnold in [3] for the motion of
impressible fluid which corresponds to the case L = Id with the constraint div v = 0.

4.2. Conservation of Momentum in Lagrangian Coordinates
The Euler equation (15) is the evolution of the momentum in Eulerian coordinates. We
recognize in this equation the momentum Mt ≐ Lvt; the momentum in Eulerian coordinates
evolves in time so as to balance the co-adjoint of the momentum thereby satisfying the
associated Euler equation  for extremal paths. However, the momentum in

Lagrangian coordinates, identified in the introduction as , remains constant in
the absence of external forces, .

Statement 2—Along extremal curves for the kinetic energy,  is constant:

(17)

In particular, we have for all w ∈ ℊ,

(18)

Formal Derivation—Indeed, fix w ∈ ℊ and let . We have, on the first hand

, and on the second hand (derivatives being evaluated at time ε = 0)
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Note here that Adφ◦φ′= Adφ Adφ′. Now, if φ0 = id and  at ε = 0, we have for any w′,

(19)

Applying this to w′ = Adφt−1 and v = vt, we get

by Eq. (15). This completes the proof,

Although the conservation of momentum has only been derived from formal arguments, we
can check that, when it is satisfied, the generated deformation paths do provide extremal
curves of the kinetic energy. The perturbation of the end point of the path ( , t ∈ [0, 1]) at
time 1 under a perturbation  of vt is given by [22]:

(20)

with , the derivative being taken at ε = 0 (we have used the notation of Eq. (1)).

Assume that this expression vanishes (so that the end point  remains unchanged). The
first variation of the kinetic energy is given by

. Now, using (20) and the fact that dφ0t

φt1 = dφ00 φ01dφ0t φt0, we get easily that  so that, by linearity,

(21)

4.3. Coadjoint Transport of Structures Along a Geodesic

For M ∈ ℊ*, the evolution  is called coadjoint transport. The fact that the
momentum evolves by coadjoint transport along a geodesic implies the conservation of
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several properties whenever they are initially true, for Lv0. These properties will turn out to
be of main importance for image processing applications.

In this section, we assume that M0 = Lv0 is given, and that the coadjoint transport
 is well defined at all considered times.

4.3.1. Coadjoint Evolution of the Support—Let Supp(M) denote the support of a
momentum M ∈ ℊ*. It is defined by the complementary of the union of all open sets Ω′ ⊂ Ω
which are such that (M, w) = 0 whenever w ∈ ℊ vanishes outside Ω′. We have the property:

Statement 3: If , then

Indeed, assume that M0 vanishes Ω′ ⊂ Ω. Let w have its support included in φ0t (Ω′). Then
(Mt, w) = (M0, dφ0t)−1 w ◦ φ0t and w ◦ φ0t vanishes outside Ω′, which implies that (Mt, w) =
0. Thus Supp(Mt) ⊂ φ0t (Supp(M0)), and the reverse inclusion is true by inverting the roles
of M0 and Mt.

As a first example, consider the case when M0 is finitely supported, and more precisely a
sum of Dirac measures. This is legitimate since our hypotheses on L imply that Dirac
measures belong to ℊ*, therefore have the form Lv0 for some v0 ∈ ℊ. So, we assume that

(22)

where (xi)1≤i≤n is a finite family of points in Ω (landmarks) and (ai)1≤i≤n is a finite family of

vectors in ℝd. We write , where, by definition

(23)

Denoting xi (t) ≐ φt (xi), we obtain the fact that Mt is supported on {x1(t), …, xN (t)}. More
precisely, a rapid computation shows that

(24)

with

(25)

MILLER et al. Page 14

J Math Imaging Vis. Author manuscript; available in PMC 2010 July 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



so that the momentum remains a sum of Dirac measures. This is a special case of the
property considered in the next section.

4.3.2. Coadjoint Transport of Measure—Measure-based momenta are given by

(26)

where μ0 is a measure on Ω and ν0 is measurable and μ0-integrable. They generate a large
class of geodesic evolutions, and have the attractive property that the momentum Lvt can be
explicitly computed from the momentum at the origin.

Statement 4: Assume that (M0, w) = ∫Ω〈ν0, w〉dμ0 then the linear momentum functional
evolves according to

(27)

i.e. μt (A) = μ(φt0(A)) for any measurable set A.

The statement follows straightforwardly from the substitutions

(28)

Point-supported momentum evolution considered in the previous section, clearly is a
particular case of this statement. As another illustration, consider the case of measures which
are supported by submanifolds of Ω. In this case, the initial momentum is concentrated
along the boundary Σ0 of a k-dimensional C 1 sub-manifold in Ω ⊂ ℝd.

Let σ0 by the surface measure (given as the induced volume form on the sub-manifold) and
let μ0 be supported by Σ0, such that for any smooth function on Ω, ∫Ωf dμ0 = ∫Σ0f α0dσ0 for
some density α0 (not necessary positive) on the surface. Let ν0: Ω → ℝd (the values of ν0
outside Σ0 will not be important) and define

(29)

Using Statements 3 and 4, we get that the tranported measure μt is located on the transported
sub-manifold Σt ≐ φt (Σ0) (whose smoothness is preserved by the regularity of the
diffeomorphisms in G) and can be written as μt = αt σt where σt is the k-dimensional volume
measure on Σt. Moreover, if νt = d(φt0)*γ0 ◦ φt0, Statement 4 gives us the evolution of the
momentum
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(30)

In the case where the sub-manifold is Ω itself, then σt = σ0 is the Lebesgue’s measure λ on
Ω, and αt = α0 ◦ φt,0|dφt,0|.

4.3.3. Coadjoint Transport of Orthogonality—The last property transported by
geodesic evolution which is considered here is the normality with respect to a smooth
submanifold of Ω. Since normality will be extensively studied in the next section, we here
provide an illustration in a particular case.

Assume that ν0, in Eq. (26) can be expressed as

(31)

where  and ( ) are two families of functions on Ω and 1 ≤ r ≤ d. Then, we get from
Statement 4 that

(32)

where  and . Equation (32) can be interpreted as a normality property
of the geodesic motion under initial condition (31). Indeed, let

Assume that Σ0 is not empty and denotes  for any x ∈ Σ0.
Under appropriate transversality conditions, mainly

Σ0 can be equipped with a structure of (d − r)-dimensional C1 manifold and N0(x) is exactly
the space of vectors normal to Σ at location x.

We then deduce easily that

and equality (32) implies for any x ∈ Σt
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(33)

where  is the set of normal vectors to Σt at location x.

We deduce that if the momentum is normal to some k-dimensional sub-manifold Σ0, this
normality property is preserved by coadjoint transport along a geodesic.

In the case of r = 1 and , Σ0 is exactly the level set for threshold value 0 of f0 and the
normality of the initial momentum to the level sets is preserved under geodesic motion.
Since the threshold value is arbitrary, we deduce that the property is true for all level sets.

5. The Normal Momentum Motion Constraint
5.1. Heuristic Analysis

The conservation of momentum is a general property of geodesics in a group of
diffeomorphisms with a right invariant metric. More can be said in the situation when
diffeomorphisms are associated to deformations of geometric structures or images, which is
the situation of interest for our applications. In this setting we are still looking for curves
with shortest length in G, but we partially relax the fixed end-point condition by the
constraint that the initial template is correctly mapped to the target: because there is a whole
range of diffeomorphisms which deform one given structure into another, this condition is
weaker than the fixed end-point condition, which means that there are more degrees of
freedom for the optimization, and therefore more constraints on the minimum. For image
matching, these additional constraints may essentially be summarized by the statement the
momentum along the geodesic path is at all times normal to the level sets of the image. This
is what we call the normal momentum constraint, which is described in this section.

We start with a heuristic analysis, for which I0, the image, is a smooth function defined on
Ω. Let I1 be in the orbit of I0 for the group G of diffeomorphisms: there exists ψ ∈ G such
that I0 ◦ ψ−1 = It. By compactness and semi-continuity arguments, one can prove the
existence of a geodesic path φ = (φt) such that

(34)

Let  be such a solution and consider a first order expansion around t = 0, φt(x) ≃ x +

tv0(x) so that . By definition, the cost to go from I0 to It is
(still at first order) t|v0|L. However, any u ∈ ℊ such that 〈∇I0, u〉ℝd = 〈∇I0, v0〉ℝd, will lead to
the same It so that the least deformation cost from I0 to It should be t|pI0 (v0)| where pI0 (v0)
the unique solution of the minimization problem:

(35)

Since ( ) is a geodesic path minimizing the deformation cost from I0 to I1, it minimizes
also the deformation cost from I0 to It yielding
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(36)

Introduce the set ℊI0 = {h ∈ ℊ | 〈∇ I0(x), h(x)〉ℝd = 0, ∀x ∈ Ω}: the constraints in  can be

restated as u − v0 ∈ ℊI0 so that pI0 (v) is the orthogonal projection of v on , the space
orthogonal to ℊI0. Hence, equality (36), translates to

(37)

Now, the fact that 〈∇I0(x), h(x)〉 ≡ 0 means that h is a vector field which is tangent to the
level sets of I0, and since 〈v0, h〉L = (Lv0, h), we see that Lv0 vanishes when applied to any
such vector field, or, that Lv0 is a linear form which is normal to the level sets of I0.

5.2. Rigorous Result
We now pass to a rigorous derivation of this property. Since it will be interesting to also
consider images which are not smooth, we provide a new definition of the set ℊI0.
Obviously, when I0 is smooth, h ∈ ℊI0 is equivalent to the fact that, for any function f which
is C1 on Ω, one has

Applying the divergence theorem (we assume that ∂Ω is smooth enough and take advantage
on the fact that elements of ℊ vanish on ∂Ω), we get

Since this has a meaning when I0 ∈ L2(Ω), we now define

Definition 2—When I ∈ L2(Ω), we denote

We still denote by pI the orthogonal projection on . The group G is assumed to be built as
described in Section 2.1 (in particular ℊ is continuously embedded in C1(Ω, ℝd)).

Theorem 3. (Normal Momentum Constraint): Assume that I0 ∈ L2(Ω) and let  be a
geodesic path solution of (34). Then, for almost all t ∈ [0, 1]
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The proof is given in Appendix A.

5.3. Examples
Consider again the case of smooth I, so that the condition h ∈ ℊI is equivalent to h ∈ ℊ and
for all x ∈ Ω, 〈∇x I, h(x)〉ℝd = 0. Using notation (23), we get that

 so that  and finally,

(38)

Vector fields v such that

(39)

where ν is normal2 to the level sets of I belong to  and it can be shown that they form a
dense subset.

For non-smooth I, we can similarly introduce ωf (I), as the unique element of ℊ such that, for
h ∈ V, 〈ωf (I), h〉 = 〈 I, div(h f)〉L2(Ω), and conclude that

(40)

This implies that any element v ∈ ℊI is such that Lv can be expressed as a limit

where f N ∈ C1(Ω, ℝ). The particular case when I is the indicator function of a smooth
domain B ⊂ Ω (which can be interpreted as a smooth shape) is quite interesting. For x ∈ ∂B,
let ν(x) be the outward normal to ∂Ω and denote σB be the uniform measure on ∂B. Then

In this case, we obtain a dense subspace of ℊI by considering elements v ∈ ℊ such that

(41)

for some measure μ on ∂B (the boundary of the shape).

2When I has smooth level sets, we say that a vector field ν is normal to its level sets when, denoting by Ωi the set {I ≤ i}, v(x) is
normal to ∂ Ωi if x ∈ ∂Ωi for some i and x = 0 otherwise.
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Remark—We close this section with a technical, but important, remark. We have called
normal momentum constraint the property that vt ⊥ ℊIt at almost all times. We have shown
that this property is always true for geodesics minimizing (34). But there is another
important issue, which is how much it constrains vt, or, in other terms, how big ℊI is for a
given image I. That this is relevant, and sometimes non-trivial, may be seen from the
following example: assume that we are in 2 dimensions (d = 2) and that I is a C1 image, with
a non-vanishing gradient, at least on a dense subset of Ω. Then, on any point x such that ∇ x I
≠ = 0, we can de-fine in a unique way a positively oriented orthonormal frame (τ (x) ν (x))
such that ν (x) = ∇x I/|∇x I|. Then, if h ∈ ℊI and h(x) ≠ = 0, we must have h/|h| = ± τ in a small
ball around x. Now h, as an element of ℊ must be smooth (depending on the choice made for
L, and h/|h| has the same smoothness as h: this is impossible to achieve when τ itself is not
smooth enough, which in such a case forces h(x) = 0. We thus get the property that h
vanishes whenever τ (x) does not meet the smoothness requirements of ℊ, which may very
well be everywhere on Ω (or on a dense subset, which is the same since h is continous), in
which case ℊI = {0} and the constraint is void, contrary to our intuition that the momentum
should be aligned with ν. We see that, for the constraint to really be effective, we need some
smoothness requirement on I. Fortunately, as illustrated by the example above, this
smoothness is only required for the level sets of I, which must have a smooth boundary.
With such an assumption, for example, one can show that if v ⊥ ℊI and

for some measure μ on Ω and some vector field on ξ Ω, then ξ must be (μ-almost
everywhere) orthogonal to the level sets of I. From a practical point of view smoothness of
level sets may easily be obtained using algorithms such as mean curvature motion ([27]).

5.4. Conservation and Normality Property Check for Inexact Matching
Here, we give a brief account of situations in which proofs of conservation of momentum
and the normality property can be carried on in a well-defined context, and retrieve the
evolutions described in the previous section.

It is hard to make rigorous, in full generality, the variational argument we have used in the
proof of Eq. (15). Notice that the well-definiteness of the conservation of momentum Eq.
(17) is an issue by itself, since, when w ∈ ℊ, and φt is the diffeomorphism generated by a
geodesic, there is a priori no reason for (dφt)−1w ◦ φt) to belong to ℊ: one must be able to
define Lv0 on spaces which are bigger than ℊ, which means that Lv0 needs to be somewhat
smoother (as a distribution) than a generic element of ℊ*.

However, there is a setting in which such a fact is true and easy to obtain: it is when the
search for the geodesic is done with an approximation of the target, with some L2 penalty
term added to control the error. We summarize this setting in the case of landmark matching,
shape matching and image matching. In these three situations, we will retrieve the coadjoint
transport of measure-based momenta. In all cases, results in [11,35] ensure the existence of
minimizers of the variational problem.

5.4.1. Inexact Landmark Matching—In this section, we assume that a measured space
( , ρ), together with two measurable functions x, y:  → Ω are given. The diffeomorphism
φ is searched to minimize
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When ρ is discrete, this relates to point-based matching, x representing the landmark original
positions and y giving the landmark target positions. If we express U in function of v, this
requires the minimization of

The main point here is to notice that the optimal solution v generates a geodesic in G
between id and .

Proposition 1: Denote  the linear form on ℊ such that . Let v be a
minimizer of Ũ. Then, letting 

(42)

Proof: The proof of this result is a direct consequence of the identity, valid for s, t ∈ [0, 1],
v, h ∈ L2([0, 1], ℊ),

(43)

the proof of which being carried on with usual ODE arguments and being omitted here. It is
then straightforward to obtain (42), using the definition of the linear forms , for x ∈ Ω
and a ∈ ℝd.

Equation (42) is a conservation of momentum equation for

When  is finite, this is equation (31) with . Equation (42) now is
exactly (24), since
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5.4.2. Inexact Shape Matching—We now consider the comparison of a binary set-
indicator function, I0 = 1Ω0 (Ω ̄0 ⊂ Ω having smooth boundaries) and a smooth function I1,
through the minimization of

over GL. We have

Proposition 2: Let v be a minimizer of  over L2([0, 1], ℊ). Then

(44)

where , ν1 is the outward normal to ∂ Ω1 and σ1 is the volume measure on ∂ Ω1.

Proof: Taking a variation v + εh, the main issue is to compute the derivative of

This integral can be rewritten

Since the last term is constant, we see that the problem boils down to the computation of the
derivative of the first term, which can be written, after a change of variable and letting f1 =
1/2 − I1,

Define u by . Simple computations, which can be, for example, found
in [10], yields the fact that

Now the conclusion is a direct consequence of Eq. (43) and of the divergence theorem.

Here again, one straighforwardly checks that the conservation of momentum is satisfied. We
have in particular
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Letting , and  this can be rewritten

which is under the general form of a measure-based momentum.

5.4.3. Inexact Image Matching—In this section, we let I0 and I1 be two smooth enough
(say C1) functions defined on Ω (images). We consider the image matching problem which
corresponds to minimizing, over G,

This problem is equivalent to minimizing

This matching problem has been studied, in particular in [4], to show that the optimal
solution should satisfy, at each time t,

(45)

in which we have introduced the notation: , and |dφ| for the Jacobian
of φ. This equation is in fact an equation of conservation of momentum, with

as can be deduced from Eq. (30), with . Moreover, we can check also
the normality property (31) which holds here with with r = 1 and f0 = I0. This allows us to
conclude that for the geodesic path in the image space generated by inexact matching, the
lifting of the path in G defines a geodesic for which the momentum stays normal to the level
sets of the current image I0 ◦ φt,0 at time t.
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6. Geodesic Evolution in the Orbit
Thus far we have concentrated on the evolution of the flow of diffeomorphisms and its
conservation of momentum. For all of our image understanding work we use the flow (φt, t
∈ [0, 1]) to act on the elements in the orbits  of a given template I = Itemp. Now we
examine the geodesic flows in the orbit {It = I ◦ φt, t ∈ [0, 1]}, I ∈ , and provide the
associated evolution equations.

6.1. Geodesic Evolution Equation of Landmark Points
Here we examine the finite dimensional landmark orbit denoted n, consisting of n-shapes
IN = (x1, …, xn), each landmark (xi)1≤i≤n is in Ω ⊂ ℝd; correspondingly (ai)1≤i≤n are a finite
family of vectors in ℝd. Denoting by xi (t) =̇ φt (xi), the trajectory in Ω of the point xi under
the flow φt gives

(46)

where ai (t) = (dxt (t) φt,0)*ai. From the identity

(47)

we deduce that . To prove (47), one needs to remark that

Now,

Hence we get the following geodesic evolution in the orbit of landmarks.

Proposition 3 (Landmark Transport)—The landmarks are transported along the
geodesic according to the following equations with velocity vector field satisfying

where K(x, y) is the Green kernel associated with L:3
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(49)

Note that the expression of vt from Eq. (48) can be introduced into the system (49), yielding
an evolution equation which only depends on the landmarks in the orbit.

We notice the reduction of the vector field to the range space of the Green’s kernels
travelling over the landmark trajectories is as in [17].

There is a straightforward extension of this result to geodesic curve evolution, in which x(0)
is a parametrized curve σ ↦ x(σ) for σ ∈ [0, L] and

where ν0(σ) is normal to x(0). In this case, we have

with

•
,

•
.

6.2. Geodesic Image Evolution
Assume here that dμ = α (x)dx has a density with respect to Lebesgue’s measure on Ω. In
this case, dμt = |dφt0|α ◦ φt0dx and

(50)

From the conservation of momentum in Lagrangian coordinates for image based motion, we
get for Lv0 = α0 ∇ I0 that Lvt = αt |dφt,0|∇It where αt = α0 ◦ φt,0, It = I0 ◦ φt,0. Let zt = αt |dφt,0|
so that Lvt = zt ∇ It.

Since  we get .
Moreover, we get easily . Hence we get the following geodesic evolution
equation in image space.

3The explicit form for L−1 depending on the kernel K is defined as follows. For any x, y ∈ Ω, the bilinear form Kx,y on ℝd × ℝd
defined by

(49)
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Proposition 4 (Image Transport)—The image is transported along the geodesic
according to the following equations: with vector field vt = L−1(zt ∇It):

•
,

•
.

Notice that these equations appear as a limit case of the evolution equations which have
been studied in [34] for image comparison.

As illustrated above, the pair (I0, μ) provides a device for modeling deformations. In the
cases we have studied, I0 was representing some geometrical structure (a curve, an image),
which evolved with time accordi to the generated deformation, and μ, essentially quantifies
the speed and direction of the deformation.

We get from this a natural way to represent the deformation of a template. Using
Grenander’s original terminology, I0 would precisely be the template and μ is the generator
of the deformation. Thus, fixing I0, and letting μ vary, we get a model which represents
perturbations of the template.

An example of deformations of an image is provided in Fig. 2. The images have been
obtained by solving Eq. (50) from an initial image g of a slice of macaque brain, and taking

where X is a Gaussian process.

7. Computational Results
The following results illustrate the computation of the momentum Lv0 = α0∇I0 (as described
in Section 6.2) from geodesic paths between two images. These geodesics are computed
using F. Beg’s implementation of image matching, as described in [4]. In these experiments,
the operator L is (∇ + c Identity),2 implemented via fast Fourier transform. The shooting
algorithm solves the equation provided in Proposition 4 with initial condition (I0, z0 = α0).

Figure 3 shows the three objects studied, a smooth Gaussian bump for shift, circles for scale,
and two mitochondria examin g both forward and inverse shooting.

Shown in Fig. 4–6 are examples illustrating the image based momentum and the
diffeomorphisms generated via geodesic shooting. Figure 4 shows the results of the
translation experiment. Panels 1 and 2 show I0 and I1; panel 3 shows the diffeomorphism
generated via geodesic shooting applied to I0, and illustrates how solving the conservation of
momentum equation allows to recover I1 from I0 and Lv0.

Shown in panel 4 is the density α showing the concentration near the boundary of I0.
Superposed in panel 5 are the predicted directions of the momentum, given by α0∇I0, and
the value Lv0 obtained from Beg’s algorithm. In almost all case they appear as one line
indicating a good accuracy of the algorithm. Panel 6 indicates that the vector field V0
demonstrating that while α and the momentum Lv0 are highly localized, the velocity of
motion extends over the entire object.
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Shown in Fig. 5 are similar results for the scale experiment.

Shown in Fig. 6 are two sets of results for the geodesic shooting of the mitochondria. The
organization of the results are the same as for the translation and scale experiments. Shown
in Fig. 6 are two sets of results for the geodesic shooting of the mitochondria. The
organization of the results are the same as for the translation and scale experiments.
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Appendix A: Proof of Theorem 3

Proof

Since  is closed, we have to show that for almost all t, vt = pIt (vt). Denote ht =̇ vt − pIt(vt).
For ε ∈ [0, 1], let , and  (one can check, but we skip the argument, that t
→ ht is measurable and belongs to L2([0, 1], ℊ), so that this variation is valid).

The proof essentially consists in showing that, for all 0 ≤ t ≤ 1

(51)

Indeed, assume that this result is proved. Considering ε = 1 and t = 1, we deduce that

. However, since 〈ht, vt〉L = 〈vt − pIt(vt), vt〉L = 0, we get .
Since t → vt corresponds to paths with lowest kinetic energy from I0

to I1, we deduce that  and the proof is ended.

We now return to Eq. (51). Using the formula

and letting , we obtain

We first prove Eq. (51) under the assumption that I0 is C1. From the computation above, we
have

since by definition of the projection pIt (vt), we have for any x ∈ Ω
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This implies  which yields Eq. (51) in this case. When I0 is not smooth, the
proof goes by showing that

for smooth f on Ω and  which can be done either by a direct (heavy)
computation, or by using a density argument, based on the fact that, by the divergence
theorem, this is true for smooth I0 (we skip the details).

MILLER et al. Page 30

J Math Imaging Vis. Author manuscript; available in PMC 2010 July 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Here is represented the deformation obtained by pulling back the Eulerian frame associated
with ve and represents pictorially the adjoint action.
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Figure 2.
Three random deformations of an image.
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Figure 3.
Figure shows objects under translation (column 1), scale (column 2), and mitochondria 1
and 2.
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Figure 4.
Rows 1, 2: Results from translation experiment. Panels 1, 2, and 3 show I0, I1, I0 ◦ φ10.
Panels 4, 5 and 6 show α0, Lv0 versus α0∇I0, and V0 and L−1α∇ I0.
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Figure 5.
Rows 1, 2: Results from scale experiment. Panels 1, 2, and 3 show I0, I1, I0 ◦; φ10. Panels 4,
5 and 6 show α0, Lv0 versus α0∇I0, and V0 and L−1α∇ I0.
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Figure 6.
Results from mitochondria 2. Panels 1, 2, and 3 show I1, I0, I1 ◦ φ10. Panels 4, 5 and 6 show
α0, LV0 versus α0∇ I0, and V0.
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Figure 7.
Results from mitochondria 1. Panels 1, 2, and 3 show I0, I1, I0 ◦ φ10. Panels 4, 5 and 6 show
α0, LV0 versus α0∇ I0, and V0.
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