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Abstract
Purpose—Carbonyl reductase 1 (CBR1) reduces the anticancer anthracyclines doxorubicin and
daunorubicin into the cardiotoxic metabolites doxorubicinol and daunorubicinol. We evaluated
whether the cardioprotectant monoHER inhibits the activity of polymorphic CBR1.

Methods—We performed enzyme kinetic studies with monoHER, CBR1 (CBR1 V88 and CBR1
I88) and anthracycline substrates. We also characterized CBR1 inhibition by the related flavonoids
triHER and quercetin.

Results—MonoHER inhibited the activity of CBR1 V88 and CBR1 I88 in a concentration-
dependent manner. The IC50 values of monoHER were lower for CBR1 I88 compared to CBR1 V88
for the substrates daunorubicin and doxorubicin (daunorubicin, IC50-CBR1 I88: 164 μM vs. IC50-
CBR1 V88: 219 μM; doxorubicin, IC50-CBR1 I88: 37 μM vs. IC50-CBR1 V88: 59 μM; p < 0.001).
Similarly, the flavonoids triHER and quercetin exhibited lower IC50 values for CBR1 I88 compared
to CBR1 V88 (p < 0.001). MonoHER acted as a competitive CBR1 inhibitor when using daunorubicin
as a substrate (Ki = 45 ± 18 μM). MonoHER acted as an uncompetitive CBR1 inhibitor for the small
quinone substrate menadione (Ki = 33 ± 17 μM).

Conclusions—The cardioprotectant monoHER inhibits CBR1 activity. CBR1 V88I genotype
status and the type of anthracycline substrate dictate the inhibition of CBR1 activity.
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Human carbonyl reductase 1 (CBR1); monoHER; anthracycline-related cardiotoxicity; genotype;
cardioprotectant

INTRODUCTION
The anticancer anthracyclines doxorubicin and daunorubicin are widely used in the clinic to
treat a variety of solid and hematological cancers. The clinical utilization of anthracyclines is
hampered by the development of anthracycline-related cardiotoxicity in some patients. Several
lines of evidence indicate that the anthracycline C-13 alcohol metabolites doxorubicinol and
daunorubicinol are key to the pathogenesis of anthracycline-related cardiotoxicity.
Anthracycline alcohol metabolites exert cardiotoxicity by a combination of mechanisms
including inhibition of Ca+2/Mg2+-ATPase in the sarcoplasmic reticulum and inactivation of
the cytoplasmic aconitase/iron regulatory protein-1 complex (1,2). In humans, the synthesis of
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cardiotoxic doxorubicinol and daunorubicinol is catalyzed by carbonyl reductase 1 (CBR1).
CBR1 is expressed in several tissues (e.g. liver and heart), and the major role of CBR1 during
the development of anthracycline-related cardiotoxicity has been documented in various
studies (3-6). For example, mice with a null allele of Cbr1 (Cbr1+/-) showed low plasmatic
levels of doxorubicinol and significantly lower incidence of anthracycline-related
cardiotoxicity compared to animals with two active Cbr1 alleles (Cbr1+/+). Therefore, the
pharmacological inhibition of CBR1 activity has been proposed as a promising strategy to
minimize the clinical incidence of anthracycline-related cardiotoxicity (7). The CBR1 gene
contains a non-synonymous single nucleotide polymorphism (CBR1 V88I, rs:1143663) that
appears to be confined to individuals with African ancestry (p = 0.986, q = 0.014). The
CBR1 V88I polymorphism encodes for CBR1 protein isoforms (CBR1 V88 and CBR1 I88)
with distinctive catalytic and thermodynamic properties. For example, the CBR1 V88 isoform
showed significantly higher Vmax for daunorubicin (50%) than CBR1 I88 (Vmax CBR1 V88:
181 ± 13 vs. Vmax CBR1 I88: 121 ± 12 nmol/min.mg, p < 0.05). In agreement, CBR1 V88
synthesized higher levels (47%) of the cardiotoxic C-13 alcohol metabolite daunorubicinol
than CBR1 I88. Titration calorimetry studies together with molecular modeling demonstrated
that both CBR1 isoforms bind the NADPH cofactor with different affinities (8).

The semi-synthetic flavonoid monoHER (7-monohydroxyethylrutoside. Fig. 1) showed a
favorable cardioprotective profile in several models of anthracycline-related cardiotoxicity,
and is now being tested in phase II clinical trials (9-11). Recent data suggest that the overall
cardioprotective profile of monoHER results from the combination of various activities
including chelation of intracellular iron, and scavenging of free radicals (12-15). In the other
hand, a seminal report by Wermuth et al. described inhibition of CBR1 activity by various
flavonoids including quercetin and rutin (16). In addition, we have demonstrated that the CBR1
V88 and CBR1 I88 isoforms are differentially inhibited by rutin (8). However, it is still unclear
as to whether monoHER inhibits the activity of polymorphic human CBR1. Therefore, in this
study we first analyzed the potential CBR1 inhibitory activity of monoHER by conducting
enzyme inhibition experiments with recombinant CBR1 isoforms (CBR1 V88 and CBR1 I88),
and the anthracycline substrates daunorubicin and doxorubicin, respectively. We also tested
whether the structurally related flavonoids triHER and quercetin (Fig. 1) inhibited the activity
of CBR1 V88 and CBR1 I88. Finally, we characterized the mechanism of CBR1 inhibition by
performing kinetic experiments with monoHER and the prototypical CBR1 substrates
daunorubicin and menadione (vitamin K3). Together, our data demonstrate that the
anthracycline-reductase activity of polymorphic CBR1 is inhibited by the cardioprotectant
flavonoid monoHER.

MATERIALS AND METHODS
Kinetic studies

7-monohydroxyethylrutoside (monoHER) was kindly provided by Novartis Consumer Health
(Nyon, Switzerland). Cloning, expression and purification of recombinant CBR1 V88 and
CBR1 I88 were performed as described (8). Two independent CBR1 V88 and CBR1 I88 protein
preparations were used for this study. CBR1 enzymatic activities were measured with a
validated kinetic method that records the rate of oxidation of the NADPH cofactor at 340 nm
(NADPH molar absorption coefficient, 6,220 M-1 cm-1) (17,18). Under conditions of initial
velocity (V0), the method was linear (r2 > 0.90) and reproducible (CV % range: 94 – 111%)
for all CBR1 substrates. Kinetic measurements were recorded in a Synergy HT luminometer
equipped with thermal control and proprietary software for enzyme kinetic analysis (BioTek,
Winooski, VT). Briefly, reactions were incubated at 37°C and monitored for 3 min. Enzymatic
velocities (V0) were automatically calculated by linear regression of the Δabs/Δtime points, at
an acquisition rate of 4 readings/minute. Assay mixtures (0.300 ml) contained monoHER (20
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- 100 μM), NADPH (200 μM, Sigma-Aldrich, St. Louis, MO), potassium phosphate buffer
(pH 7.4, 100 mM), CBR1 enzyme, and one of the following substrates: menadione (20 - 500
μM, Sigma-Aldrich), daunorubicin (20 - 650 μM, Sigma-Aldrich), or doxorubicin (20 - 500
μM, Sigma-Aldrich). Negative control experiments with incubation mixtures containing either
no CBR1 enzyme or no NADPH cofactor resulted in non-detectable enzymatic activity. CBR1
protein concentrations were determined by recording the absorbance at 280 nm (molar
extinction coefficient: 21,500 M-1 cm1, MW 30200, http://us.expasy.org). The concentration
of flavonoids (e.g. monoHER, triHER) that inhibited CBR1 activity by 50% (IC50) was
obtained by testing various concentrations of the inhibitors (range: 0 – 250 μM) in the presence
of fixed substrate concentrations (menadione: 150 μM, daunorubicin: 300 μM, or doxorubicin:
300 μM).

Data Analysis
Enzyme kinetic parameters (Km, Vmax, and IC50) were calculated by nonlinear regression using
a one-site binding model (Michaelis-Menten kinetics) with the software GraphPad Prism
(version 4.03 Prism Software Inc.). Kinetic data were also analyzed by using Lineweaver-Burk
double reciprocal and Dixon plots. Inhibition constants (Ki) were extrapolated from the replots
of the slopes (daunorubicin) and y-intercepts (menadione) obtained from typical Lineweaver-
Burk plots (19). Ki values were confirmed by non-linear regression analysis of the substrate-
velocity curves using competitive and uncompetitive inhibition models, respectively. In all
cases goodness of fit was r2 > 0.90. Data were expressed as the mean ± S.D. Statistical
comparisons were performed with the Student's t-test and values of p<0.05 were considered
significant.

RESULTS AND DISCUSSION
In this study, we first analyzed whether the cardioprotectant flavonoid monoHER inhibits the
activity of the CBR1 V88 and CBR1 I88 isoforms. Typical enzyme inhibition experiments
with the anthracycline substrates doxorubicin and daunorubicin demonstrated that monoHER
inhibits CBR1 V88 and CBR1 I88 activities in a concentration-dependent manner (Fig. 2).
Table I shows that for both substrates, the IC50 values of monoHER were significantly lower
for CBR1 I88 compared to CBR1 V88 (Table I).

We also evaluated the CBR1 inhibitory activities of the flavonoids triHER and quercetin. In
line with the previous results, the IC50 values of triHER and quercetin for both substrates
(daunorubicin and doxorubicin) were consistently lower for the CBR1 I88 isoform compared
to CBR1 V88. Further comparisons revealed that the IC50 of monoHER and triHER were
significantly higher for the substrate daunorubicin compared to doxorubicin. These substrate-
dependent differences between the IC50 values of both ethyl-hydroxylated flavonoid inhibitors
were apparent for CBR1 I88 and CBR1 V88, respectively (Table I). Together, these results
show that the pharmacological inhibition of CBR1 activity would be dictated by the type of
anthracycline substrate and by CBR1 V88I genotype status.

Next, we performed kinetic experiments to characterize the mechanism of CBR1 inhibition by
monoHER. We used “wild type” CBR1 (CBR1 V88), and the substrates daunorubicin and
menadione. Figure 3 shows inhibition of CBR1 by monoHER. Inhibition was competitive with
respect to the substrate daunorubicin. A replot of the slopes of the Lineweaver-Burk plots
yielded a Ki value of 45 ± 18 μM (Fig. 3A, inset). In contrast, monoHER acted as an
uncompetitive inhibitor of CBR1 activity in the presence of the small quinone substrate
menadione (Fig. 3B). Graphical analysis of Dixon plots confirmed the uncompetitive inhibition
of CBR1 activity for the substrate menadione by monoHER (not shown). The mechanism of
inhibition indicates that monoHER inhibits CBR1 activity by binding to the CBR1-menadione
(enzyme-substrate) complex. Replot of the slopes from Lineweaver-Burk plots yielded an
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inhibition constant of 33 ± 17 μM for monoHER (Fig. 3B, inset). Furthermore, we investigated
whether monoHER impacts on the binding of the NADPH cofactor by using fixed substrate
concentrations (menadione: 150 μM, and daunorubicin: 400 μM), and varying concentrations
of NADPH (range: 25 – 300 μM). Kinetic analysis demonstrated that monoHER inhibits the
binding of NADPH in an uncompetitive manner for both substrates. Thus, monoHER inhibits
enzymatic catalysis after the formation of the CBR1-substrate complex. The KiNADPH of
monoHER for menadione and daunorubicin were 140 ± 37 μM, and 50 ± 15 μM, respectively.
These results indicate that in the presence of monoHER, the relative affinity for NADPH is
higher for the CBR1-menadione complex compared to the CBR1-daunorubicin complex.

In conclusion, the cardioprotectant flavonoid monoHER inhibits the activity of polymorphic
human CBR1 in a concentration-dependent manner. Our results support the notion that
inhibition of CBR1 activity should be considered during the development of novel
cardioprotectants against anthracycline-related cardiotoxicity.
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List of nonstandard abbreviations

NADPH nicotinamide adenine dinucleotide 2'-phosphate

triHER 5,7,2 trihydroxiethylrutoside (Venoruton®)
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FIGURE 1.
Chemical structures of monoHER (A), triHER (B), and quercetin (C).
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FIGURE 2.
Inhibition of CBR1 V88 (panels A and C) and CBR1 I88 (panels B and D) activities by
monoHER with the substrates doxorubicin (top) and daunorubicin (bottom). Data points show
the mean ± S.D. of two experiments performed in duplicate with two independent protein
preparations for each CBR1 isoform.
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FIGURE 3.
Kinetic analysis of CBR1 inhibition by increasing concentrations of monoHER in the presence
of the substrates daunorubicin (panel A), and menadione (panel B). Each point represents the
mean ± S.D. of two experiments performed in duplicate with two independent protein
preparations. Insets: graphical determination of Ki values. Replot of the slopes from double-
reciprocal plots (panel A; r2>0.90), and replot of the 1/velocity y-intercepts from double
reciprocal plots (panel B; r2>0.90). Similar Ki values were obtained from non-linear regression
analyses (see text).
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