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Abstract
Purpose of review—Obesity is established as an important contributor of increased diabetes
mellitus, hypertension, and cardiovascular disease, all of which can promote chronic kidney disease
(CKD). Recently, there is a growing appreciation that even in the absence of these risks, obesity itself
significantly increases CKD and accelerates its progression.

Recent findings—Experimental and clinical studies reveal that adipose tissue, especially visceral
fat, elaborates bioactive substances that contribute to the pathophysiologic renal hemodynamic and
structural changes leading to obesity-related nephropathy. Adipocytes contain all the components of
the renin-angiotensin-aldosterone system, plasminogen activator inhibitor, as well as adipocyte-
specific metabolites such as free fatty acids, leptin, and adiponectin which affect renal function and
structure. In addition, fat is infiltrated by macrophages that can alter their phenotype and foster a pro-
inflammatory milieu which advances pathophysiologic changes in the kidney associated with
obesity.

Summary—Obesity is an independent risk factor for development and progression of renal damage.
While the current therapies aimed at slowing progressive renal damage include reduction in weight
and rely on inhibition of the renin-angiotensin system, the approach will likely be supplemented by
interventions aimed at obesity-specific targets including adipocyte-driven cytokines and
inflammatory factors.
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Introduction
Obesity is now a worldwide epidemic, with overweight, obesity, and extreme obesity all
increasing. The number of patients with CKD and end stage renal disease (ESRD) has also
risen. Potentially linking these two epidemiologic observations is that many obesity-induced
derangements are themselves nephrotoxic. Thus, diabetes mellitus is a common cause of renal
dysfunction and ESRD and occurs with greater frequency in the obese [1] Likewise, adiposity
contributes to hypertension, hyperlipidemia and cardiovascular disease, all of which promote
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renal disease. [2] Recently, there is increasing support that obesity per se can initiate and
accelerate progression of kidney disease. [3] [4] [5]Among 75,000 Norwegians followed over
21 years, increased BMI dramatically correlated with initiation of renal replacement or death
with CKD (Figure 1). Interestingly, prehypertension only adversely affected outcome in those
with obesity. [5]

Clinical Characteristics
In 1974, Weisinger et al. first reported an association between obesity and nephrotic syndrome
that remitted with weight loss and returned with weight gain.[6] The renal histology was that
of idiopathic focal segmental glomerulosclerosis (FSGS). The term obesity-related
glomerulopathy (ORG) is now used to describe this secondary form of FSGS. Although
proteinuria has been the clinical hallmark of obesity-related renal disease, ORG is now
observed at lower thresholds of proteinuria. Thus, Kambham et al. documented a ten fold
increase in ORG between 1986–1990 and 1996–2000. This study importantly noted that ORG
was less likely than idiopathic FSGS to present with nephrotic-range proteinuria or edema, and
was frequently associated with little to no hypoalbuminemia. [7] Among a Chinese cohort with
ORG, half had proteinuria <1 gm/day, and a third <400 mg/day.[8] Even among extremely
obese patients with normal renal function prior to bariatric surgery, majority had glomerular
lesions, including glomerulomegaly, podocyte hypertrophy, increased mesangial matrix and
mesangial cell proliferation.[9] Despite these structural changes, only 4% had
macroalbuminuria, and 41% had only microalbuminuria. Thus, 96% of this group had no
dipstick definable proteinuria. Such observations illustrate a shift in the concept of ORG as a
nephropathy that does not hinge on the manifestation of proteinuria for diagnosis.

Glomerulomegaly is the primary histopathologic feature which distinguishes ORG from
primary FSGS as well as obese patients with other renal diseases. [8] [10] [11] [12] [13]
Increased glomerular size may be a manifestation of processes that promote cell proliferation
and matrix synthesis (see below). Additionally, the link of glomerulomegaly and sclerosis may
reflect the limited capacity of mature podocytes to divide. Indeed, glomerulomegaly with ORG
was accompanied by a 45% reduction in podocyte density.[14] Thickening of the glomerular
basement membrane (GBM) which has previously been considered an early manifestation of
hyperglycemia and diabetic nephropathy, may be an additional pathologic finding associated
with obesity. Obesity promotes hyperinsulinemia which may transition to hyperglycemia and
type II diabetes. In obese patients with IgAN, GBM was ~25% thicker despite similar HgbA1c
to the non obese.[12] Thicker GBM was also seen in biopsies from patients with benign
nephrosclerosis related to essential hypertension and patients with ORG, with no data on
glucose, though triglycerides and cholesterol were higher in the obese.[15] Another series
found thicker GBM in obese patients, as well as direct correlation with HgbA1c in the normal
range. [16] GBM thickness also correlated directly with circulating levels of cholesterol and
triglycerides. Thus, glycemic and lipid abnormalities of obesity may contribute to GBM
thickening which may not achieve the level seen in overt diabetes.

Obesity dramatically alters renal hemodynamics. A recent study found that glomerular
filtration rate (GFR) was higher obese adults than in normal weight controls.[17,18] The renal
plasma flow (RPF) was also elevated, though not to the same degree. As a result, the filtration
fraction (FF) increased, a hemodynamic adjustment that paralleled the degree of BMI and
adipose mass. Even renal allografts adjust their function to the body habitus of the recipient.
[19] Molecular sieving experiments in obese individuals suggest that afferent arteriolar
vasodilatation, together with efferent arteriolar vasoconstriction, contribute to increased FF.
[17,20] In experimental animals, even mild adiposity enhances the antinatriuretic response.
[21] By lowering tubular NaCl relative to GFR, obesity-dependent mechanisms disrupt the
tubuloglomerular feedback (TGF) response, preventing suppression of GFR.[22] Given the
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high rate of hypertension in obesity, TGF inadequacy may allow transmission of systemic BP
to the glomerulus contributing not only to increased GFR but to deleterious structural
consequences.[23] Importantly, obesity-induced GFR increase is not fixed, with studies
documenting improvement in hyperfiltration after gastroplasty.[24] [25]

Pathophysiology
Obesity induces several pathophysiologic disturbances that contribute to renal injury.

Renin-angiotensin-aldosterone system (RAAS)
The RAAS is a major regulator of vasomotor tone and cellular proliferation that affect renal
function and structure. Adipocytes and adipose-infiltrating macrophages comprise an
important source of RAAS (Figure 2). Indeed, visceral fat expression of angiotensinogen (Aog)
approximates that of the liver, classically considered the chief source of Aog.[26] Circulating
levels of Aog increase with increasing BMI.[27] Relevant to obesity and CKD, infusion of
angiotensin II (AngII) in obese mice resulted in a dramatic increase in adipocyte-derived and
circulating, but not liver, Aog.[28] The AngII type 1 receptor (AT1), primarily responsible for
post-glomerular vasoconstriction, is elevated in the renal cortex of obese Zucker rats.[29] Renal
AT1 is also upregulated in transgenic mice overexpressing Aog exclusively in adipocytes (aP2-
Agt).[30] Overall, adipose-derived increase in circulating RAAS ligands together with
adipose-driven increase in renal AT1 provide a powerful combination for increasing efferent
arteriolar vasoconstriction, glomerular pressure, FF, as well as cellular proliferation that
culminate in renal damage. As with other proteinuric glomerulopathies, inhibition of RAAS
has been used to treat ORG. Notably, although escape from the antiproteinuric benefits of
angiotensin converting enzyme inhibition has been observed, it coincided with weight gain,
further underscoring the prominent role of adipose tissue RAS.[31] Fasting decreases Aog and
can reduce AngII production and AT1 density.[26] Such mechanisms may have contributed
to decreased proteinuria observed in an obese teenager soon after bariatric surgery with
negative caloric balance but minimal weight loss.[32]

Less easily conceptualized is the role of the AngII type 2 receptor (AT2). Obese Zucker rats
treated with an AT2 receptor antagonist showed dramatic increase in blood pressure and renal
cortical renin.[33] Similarly, when AT2 null mutation was introduced into the aP2-Agt strain
of mice overexpressing Aog in adipocytes, exacerbation of hypertension, higher renal renin,
and higher circulating AngI were observed.[34] AT2 KO/ aP2-Agt mice showed significant
amelioration of elevated adipocyte levels of several angiogenic/inflammatory cytokines than
aP2-Agt mice with intact AT2, including TNF-α, IL-6, IL-1β, and vascular endothelial growth
factor (VEGF). These data thus suggest a role for AT2 in mediating the considerable adipose
inflammatory response associated with increased Aog.[34]

Aldosterone blockade lessens renal injury. These benefits are independent of antihypertensive
effects and instead, may relate to blocking aldosterone effects on plasminogen activator
inhibitor (PAI-1) and transforming growth factor-β (TGF-β̣, reactive oxygen intermediates,
inflammatory mediators, and podocyte function.[35] [36] [37] Adipose tissue is capable of
AngII-independent aldosterone production and at least one oxidized derivative of linoleic acid
is able to stimulate aldosterone production.[38] Further, complement-C1q TNF-related protein
1 (CTRP1), which in part mediates AngII stimulation of aldosterone, is also prominently
expressed by adipose tissue where it may mediate AngII-independent aldosterone production.
[39] Treatment with eplerenone in a mouse model of metabolic syndrome increases podocyte
nephrin, reduces proteinuria and normalizes urinary markers of oxidative stress.[35] In this
connection, the transgenic Ren2 rat shows podocyte foot process effacement which is
normalized by treatment with spironolactone accompanied by a reduction in albuminuria as
well as attenuating NADPH oxidase activity.[40] Overall, elevated aldosterone which prevails
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in obesity may be injurious to glomeruli through indirect effects to increase GFR as well as
through direct podocyte effects.

Plasminogen activator inhibitor-1 (PAI-1)
PAI-1, as the primary physiological inhibitor of plasminogen activators, inhibits fibrinolysis
and proteolysis and has a key role in obesity and insulin resistance. [41,42] [43] [44] Obesity
induces PAI-1 in adipose tissue and glomerular cells where it is an independent risk factor for
renal damage through its effects to decrease protease-dependent matrix degradation and
cellular migration.[45] In a podocyte injury-associated glomerulosclerosis model,
renoprotection conferred by PPAR-γ agonist is achieved, in part, through decreased PAI-1.
[46] Interestingly, preliminary studies suggest PAI-1 also modulates podocyte injury. Thus,
renal ablation in PAI-1 deficient mice caused less proteinuria, glomerular sclerosis, podocyte
damage/loss. These in vivo findings were paralleled by decreased angiotensin-induced
apoptosis in cultured PAI-1 deficient podocytes compared with PAI-1 intact cells. These results
are of interest because of the highly differentiated nature of podocytes, which once lost, are
not replenished and thought to promote intraglomerular injuries that lead to glomerular
sclerosis. (Unpublished data.)

Melanocortin
The central nervous melanocortin system plays a pivotal role in regulating body weight and
energy homeostasis.[47] Melanocortin 4 receptor (MC4-R) has been identified as the cause of
rare forms of monogenic obesity and heterozygous mutations in the MC4-R gene account for
about 6% of early onset or severe adult obesity.[48] Novel non-selective melanocortin receptor
agonists improve obesity, hyperinsulinemia and fatty liver disease in obese C57BL/6 mice.
[49] Recently, the effects of melanocortin-4 receptor in obesity-associated renal injury were
studied in MC4R−/− mice.[50] Although MC4R−/− mice exhibited many characteristic of the
metabolic syndrome, including increased weight, hyperinsulinemia, and hyperleptinemia, they
were not hypertensive. Although treatment with L-NAME caused a similar increase in systemic
blood pressure in both MC4R−/− and age-matched wild type mice, the MC4R−/− developed
more renal injury including greater elevation in urine albumin, renal TGF-β content and renal
macrophage infiltration. These results emphasize that hypertension is an important risk factor
for obesity related kidney injury in MC4R−/− mice.

Metabolic/adipose factors
Obesity causes lipid disturbances that may directly contribute to renal damage. Young C57BL/
6 mice fed a HFD became heavier, developed hyperglycemia, hyperinsulinemia, elevated
triglycerides and cholesterol and lower circulating adiponectin. They became proteinuric and
had morphological abnormalities including, glomerulomegaly, expanded mesangial matrix,
GBM thickening and podocyte effacement.[51] A dramatic increase in mesangial area was also
observed in young obese Zucker rats fed a HFD, an abnormality which normalized by treatment
with rosuvastatin.[52] Lipid moieties can directly injure renal parenchymal cells. Human
mesangial cells exposed to LDL, oxidized LDL, and glycated LDL at concentrations
approximating those in circulation dramatically increased synthesis of mesangial matrix
components, fibronectin and laminin.[53] The lipid moieties also promoted mesangial
production of macrophage migration inhibitory factor, and increased expression/release of
inflammatory activators, CD40 and IL-6.[53] Treatment of hyperlipidemic mice with anti-IL-6
monoclonal antibody ameliorated lipid-induced renal toxicity, including glomerular lipid
accumulation, mesangial cell proliferation and matrix accumulation, resulting in normalization
of proteinuria.[54] Lipids also directly damage podocytes. [14] Oxidized LDL causes
redistribution and loss of nephrin as well as podocyte apoptosis by decreasing phosphorylation
of Akt, a prominent pathway for cell survival.[55,56] Additional podocyte metabolic pathways
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may be altered by lipids. Thus, podocytes cultured with the saturated fatty acid, palmitate,
increased ceramide production resulting in blockade of insulin-stimulated glucose uptake.
[57] Fatty acid-induced insulin resistance in podocytes appears to represent a novel nexus
where lipid abnormalities and altered glucose metabolism may interact directly to foster
nephropathy.

Sterol regulatory element binding protein-1 (SREBP-1) appears to play a critical role in the
renal lipid accumulation, subsequent inflammatory/fibrotic response, and resultant injury.
[58] [59] Thus, renal effects of a HFD were not seen in SREBP-1c −/− mutant mice, while
SREBP-1a transgenic mice had increased glomerular lipid accumulation, markers of
glomerulosclerosis as well as increased albuminuria. Ameliorating effects were recently
observed for farnesoid X receptor.[60] Lending credence to these data for human disease are
observations that glomerular expression of SREBP-1 is up-regulated two fold in glomeruli
from patients with obesity related glomerulopathy.[61]

Adipose tissue produces a number of bioactive substances. Leptin was originally identified as
a murine obesity gene product abundantly produced by adipose tissue and regulates the
hypothalamic-pituitary axis involved in food intake, energy expenditure and intracellular lipid
homeostasis. Circulating levels of leptin parallel fat stores and absence of leptin or mutation
in the leptin receptor gene causes massive hyperphagia in animals and humans. Despite severe
obesity, these mutations are not accompanied by renal dysfunction. Contrasting adipose-
originating cytokines which are elevated, adiponectin levels are depressed in obesity. Low
adiponectin levels have been associated with inflammation, atherosclerosis, insulin resistance,
and augmentation of blood pressure.[62] Experimental and clinical hypoadiponectinemia is
associated with endothelial cell dysfunction, impaired endothelium-dependent vasodilation,
disinhibition of leukocyte-endothelium adhesion, and activation of RAAS. Adiponectin also
supports normal function of the podocyte[63] and hypoadiponectinemia may impair the pivotal
role of podocytes in maintaining an intact glomerular sieving barrier and promote
intraglomerular injuries that lead to glomerular sclerosis. Thus, adiponectin null mutant mice
have an exaggerated response to renal injury including glomerulomegaly, glomerular collagen
deposition, podocyte foot process effacement, increased TGF-β, and albuminuria.[64]
Adiponectin treatment normalizes podocyte effacement and albuminuria. At least in part,
adiponectin’s benefit may be through reduction in oxidant stress.[63] [65] Conversely,
adiponectin deficiency leads to augmentation of NADPH oxidase and increase in urinary
reactive oxygen species. It is of interest that obese African-Americans show a strong negative
correlation between plasma adiponectin levels and albuminuria.[63] Importantly, adiponectin
level can increase even with modest weight loss. Only 1 month after bariatric surgery, obese
patients had a significant increase in adiponectin.[66]

Adiposity-driven proinflammatory cytokines
Fat distribution, specifically visceral adiposity, is a key determinant of renal dysfunction, even
in normal weight individuals.[67] The role of the visceral fat relates not only to secretion of
bioactive substances, but also to promote a low grade chronic inflammatory state. Visceral fat
is infiltrated by macrophages which constitute an important source of pro-inflammatory
mediators. Macrophages also have a reciprocal relationship with adipocytes. For example, fatty
acids released by adipocytes stimulate TNF-α release by macrophages which, in turn, can
stimulate production of IL-6 by fat cells further amplifying the inflammatory response in
adipose tissue as well as the kidney.[68] TNF-α is a key mediator of progressive renal fibrosis.
Gene expression profiles in glomeruli obtained from renal biopsy samples of patients with
ORG showed increased TNF-α and its receptors, suggesting TNF-α’s role in development of
ORG.[61] Interleukin-6 is secreted by adipose tissue and circulating levels increase with
obesity, with as much as 30% derived from adipose tissue.[69] Glomeruli from patients with
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ORG show increased expression of IL-6 signal transducer, pointing to the possibility of IL-6
pathogenicity in glomeruli.[61] Many of the bioactive substances produced by macrophages
also inhibit preadipocyte differentiation, further expanding a population of large,
dysfunctional, insulin-resistant adipocytes that fuel the vicious cycle between obesity and renal
injury.

Adiposity-driven macrophage infiltration and phenotypic switch
Obesity-related macrophage infiltration of adipose tissue is believed to be key in inflammation
and insulin resistance.[70] [71] Importantly, depending on the local microenvironment and
stage of tissue injury, macrophages display heterogeneity in functions.[72] [73] [74] Thus, M1
or “classically activated” macrophages are induced by classical immune pathways and function
to enhance proinflammatory cytokine production (IL-1β, TNF-α, IL-6). By contrast, M2 or
“alternatively activated” macrophages function in the resolution of inflammation and tissue
repair through synthesis of anti-inflammatory cytokines IL-10 and IL-1 decoy receptor and
possess high endocytic clearance capacities.[75] [74] [73] Obesity induces macrophage
phenotypic switch in adipose tissue,[76] shifting from M2 phenotype predominating in lean
rodents to a robust increase in proinflammatory M1 macrophage population in obese animals.
[77] [78]

Experimental approaches to inhibit proinflammatory macrophages have been successful in
reducing kidney injury.[79] [80] [81] The possibility that phenotypic alteration of macrophages
modulate obesity-associated CKD has recently been evaluated. Using AT1a receptor knockout
mice (AT1aKO) and a high-fat diet-induced obesity model, we recently found that HFD feeding
augmented renal injury, including mesangial expansion and tubular vacuolization in AT1aKO
(submitted for publication). There was significantly greater macrophage infiltration in visceral
adipose tissue and kidney of obese AT1aKO. Kidney M1 macrophage activation was markedly
induced while kidney M2 activation was reduced by half in obese AT1aKO. Further, M1, but
not M2, activation in peritoneal macrophages was enhanced in obese AT1aKO. These data
reveal a new role of macrophage AT1 receptor in mediating macrophage polarization and
suggest that AT1a deficiency reduces the population of potentially beneficial M2 macrophages
and promotes obesity-related renal damage.

In conclusion, new evidence indicates that in addition to promoting diabetes, hypertension,
and cardiovascular disease; obesity per se, causes pathophysiologic disturbances that adversely
affect kidney function and structure. These abnormalities are remediable through weight
reduction and inhibition of RAS, an approach that will likely be supplanted with interventions
that directly target adipocyte-associated cytokines and inflammatory factors.
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Figure 1.
Left axis and bar graph: Distribution of BMI in the study population of 74,986 adults in the
HUNT I Study in Norway. Right axis: Hazard ratio for treated ESRD or CKD-related death
by BMI, multi-adjusted for age, gender, smoking status, physical activity, and socioeconomic
status. (Adapted from[5]).
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Figure 2.
Mechanisms of obesity related renal disease. Adipose secretes a large number of mediators
with impact on renal function and structure, culminating in renal damage.
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