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Searching for Autocoherence in the Cortical Network with a
Time-Frequency Analysis of the Local Field Potential
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Gamma-band peaks in the power spectrum of local field potentials (LEP) are found in multiple brain regions. It has been theorized that
gamma oscillations may serve as a ‘clock’ signal for the purposes of precise temporal encoding of information and ‘binding’ of stimulus
features across regions of the brain. Neurons in model networks may exhibit periodic spike firing or synchronized membrane potentials
that give rise to a gamma-band oscillation that could operate as a ‘clock.” The phase of the oscillation in such models is conserved over the
length of the stimulus. We define these types of oscillations to be ‘autocoherent.” We investigated the hypothesis that autocoherent
oscillations are the basis of the experimentally observed gamma-band peaks: the autocoherent oscillator (ACO) hypothesis. To test the
ACO hypothesis, we developed a new technique to analyze the autocoherence of a time-varying signal. This analysis used the continuous
Gabor transform to examine the time evolution of the phase of each frequency component in the power spectrum. Using this analysis
method, we formulated a statistical test to compare the ACO hypothesis with measurements of the LFP in macaque primary visual cortex,
V1. The experimental data were not consistent with the ACO hypothesis. Gamma-band activity recorded in V1 did not have the properties
of a ‘clock’ signal during visual stimulation. We propose instead that the source of the gamma-band spectral peak is the resonant V1

network driven by random inputs.

Introduction

Gamma-band (25 to 90 Hz) oscillations occur in many parts of
the brain. We are seeking to understand the underlying neural
mechanisms that generate gamma-band spectral peaks in the ce-
rebral cortex by studying gamma activity in the local field poten-
tial (LFP) in the primary visual cortex, V1. The LFP is commonly
interpreted as a measure of local network activity (Kruse and
Eckhorn, 1996; Logothetis et al., 2001; Buzsaki, 2006). Previous
experimental studies of V1 have reported a peak in the gamma-
band of the LFP power spectrum when the visual cortex was
visually driven (Gray and Singer, 1989; Gray et al., 1989; Frien et
al., 2000; Logothetis et al., 2001; Siegel and Konig, 2003; Henrie
and Shapley, 2005).

The presence of gamma-band activity in many LFP measure-
ments under stimulation led to the idea that gamma-band oscil-
lations serve as a ‘clock’ signal for the purpose of temporally
encoding information (Hopfield, 1995; Buzsaki and Chrobak,
1995; Jefferys et al., 1996; Buzsaki and Draguhn, 2004; Buzsaki,
2006; Bartos et al., 2007; Fries et al., 2007; Hopfield, 2004). The
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‘clock’ theory of gamma combined with the pervasiveness of
gamma oscillations have given rise to the theory that the brain
uses gamma oscillations to synchronize different regions of the
brain for the purpose of ‘binding’ information about a stimulus
(Gray and Singer, 1989; Singer and Gray, 1995).

Many studies of neuronal network models have sought to
explain the mechanisms underlying gamma-band activity
through either quasi-periodic spike firing, synchronized oscilla-
tory spiking, or rhythmic subthreshold membrane potential os-
cillations (see Results, Oscillator models of the LFP). We define
an oscillation that can be modeled as a sinusoid with a fixed phase
that does not vary with time to be ‘autocoherent.” A shared fea-
ture of many network models of gamma oscillations is that they
generate an autocoherent network oscillation as an equilibrium
state of the network. Autocoherence is an essential feature of such
models because they were designed to yield gamma oscillations
that could be used as a clock signal. We refer to the hypothesis
that autocoherent oscillations underlie experimentally observed
gamma-band spectral peaks as the autocoherent oscillator
(ACO) hypothesis.

The aim of this study was to test the ACO hypothesis. We
analyzed LFP measurements recorded from V1 cortex. Visual
stimulation evoked a noisy LFP response in V1, with a peak of
spectral power in the gamma-band. We developed a new method
of signal processing to search for either constant amplitude or
amplitude-modulated autocoherent signals embedded in the
LFP. Our technique uses the continuous Gabor transform (CGT;
Mallat, 1999; see Methods) to investigate LFP phase portraits at
each temporal frequency. Using the CGT, we formulated a statis-
tical test to compare the ACO hypothesis with LFP data from V1
cortex. In brief, we performed a rigorous search for autocoherent
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oscillations in visually-driven V1 activity and did not find them;
the data did not support the ACO hypothesis. This result rules
out a class of models that predicts that gamma activity is gener-
ated by a deterministic mechanism that produces a constant-
phase clock signal. Our interpretation is that the source of the
gamma-band peak is of a stochastic nature, a hypothesis consid-
ered in the Discussion.

Materials and Methods

Experimental procedure

Surgery and preparation. Acute experiments were performed on adult
Old World monkeys (Macaca fascicularis). All surgical and experimental
procedures were performed in accordance with the guidelines of the U.S.
Department of Agriculture and have been approved by the University
Animal Welfare Committee at New York University. Animals were tran-
quilized with acepromazine (50 pg/kg, i.m.) and anesthetized initially
with ketamine (30 mg/kg, i.m.) and then with isofluorane (1.5% to 3.5%
in air). After cannulation and tracheotomy, the animal was placed in a
stereotaxic frame and was maintained on opioid anesthetic (sufentanil
citrate, 6 to 12 ugkg ~' h ™', i.v.) for craniotomy. A craniotomy (about 5
mm in diameter) was made in one hemisphere posterior to the lunate
sulcus (15 mm anterior to the occipital ridge, 10 to 20 mm lateral from
the midline). A small opening in the dura (3 X 3 mm?) was made to
provide access for multiple electrodes. After surgery, the animal was
anesthetized and paralyzed with a continuous infusion of sufentanil ci-
trate (6to 12 pgkg ' h ™', i.v.) and vecuronium bromide (0.1 mgkg "
h ™', iv.). Vital signs, including heart rate, electroencephalogram, blood
pressure, oxygen level in blood, and urine-specific gravity were closely
monitored throughout the experiment. Expired carbon dioxide was
maintained close to 5%, and body temperature was kept at a constant
37°C. A broad-spectrum antibiotic (Bicillin, 50,000 iu/kg, i.m.) and anti-
inflammatory steroid (dexamethasone, 0.5 mg/kg, i.m.) were given on
the first day and every other day during the experiment. The eyes were
treated with 1% atropine sulfate solution to dilate the pupils and with a
topical antibiotic (gentamicin sulfate, 3%) before being covered with
gas-permeable contact lenses. Foveae were mapped onto a tangent screen
using a reversing ophthalmoscope. Proper refraction was achieved by
placing corrective lenses in front of the eyes on custom-designed lens
holders.

Electrophysiological recordings and data acquisition. The Thomas
7-electrode system was used to record simultaneously from multiple
cortical cells in V1. The seven electrodes were arranged in a straight line
with each electrode separated from its neighbor by 300 uwm. The elec-
trodes had impedance values in the range 0.7 to 4 Megohms. Electrical
signals from the seven electrodes were amplified, digitized, and filtered
(0.3 to 10 kHz) with RA16SD preamplifiers in a Tucker-Davis System 3.
The Tucker-Davis system was interfaced to a Dell PC computer. Visual
stimuli were generated with the custom OPEQ program (written by Dr.
J.A. Henrie), running in Linux on a Dell PC with an oft-the-shelf graphics
card. Data collection was synchronized with the screen refresh to a pre-
cision of better than 0.01 ms. Stimuli were displayed on an Ilyama HM
204DTA flat Color Graphic Display (size, 40.38 X 30.22 cm?; pixels,
2048 X 1536; frame rate, 100 Hz; mean luminance, 53 cd/m?). The
screen viewing distance was 115 cm.

Visual stimulation. Once all seven electrodes were placed in V1 cortex,
an experiment was run with drifting sinusoidal gratings (at high contrast
[0.8], spatial frequency 2 cycle/deg, temporal frequency 4 Hz) that cov-
ered the visual fields of all the recording sites. The stimulus was drifted in
18 different directions between 0 and 360°, in 20° steps. The stimulus in
each condition was presented for 2 or 4 s, repeated between 25 and 50
times depending on the experiment.

R-spectrum and spectral shape index

The R-spectrum, as used here, is defined to be the visually stimulated
power spectrum divided frequency by frequency by the spontaneous
power spectrum,

Stimulated power spectrum(w)
R(w) =

(1)

Spontaneous power spectrum(w)’
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The R-spectrum is useful for expressing the stimulated power spec-
trum in normalized dimensionless units that can be compared across
experiments. At frequencies where R > 1, the stimulated spectrum
has elevated power in comparison to the spontaneous activity.

The spectral shape index (SSI) is a measure of how large a peak in the
R-spectrum is in relation to its neighboring frequencies and is defined as
(cf. Henrie and Shapley, 2005),

_ Maximum of R in the gamma band
SS= Mean of R from 1 to 100 Hz

(2)

where R is the R-spectrum of Equation 1. The SSI is also dimensionless.
When SSI > 1, a peak seen in the gamma-band R-spectrum sits above the
average LFP power and forms a power spectral ‘bump’ about the maxi-
mum R-spectrum value.

Continuous Gabor transform

The continuous Gabor transform (CGT) is a short-time or windowed
Fourier transform (also called a complex spectrogram) that retains the
time dependence of the spectrum that is lost in the Fourier transform
(Mallat, 1999). The continuous transform differs from the discrete ver-
sion in that the signal is oversampled in time and frequency so that
neighboring points are not independent. The Gabor filter {s(t) used here
is a one-dimensional plane wave with frequency w, (in Hz) windowed
with a Gaussian g(t) centered at £,

) 1 1 .
lll(t,(!)o) — g(t)emeut — -3 o 2(t—19)? emeOt. (3)

PN

The CGT of a signal f (¢) is found by convolving the Gabor function
with f (¢) and results in a complex time series R(t,)e’® ) that repre-
sents the amplitude and phase of the signal at the frequency of the
Gabor filter,

Glfl(t,w,) = ff(s)t,b(s — t,wy)ds = R(t;w,) e, (4)

In time-frequency analyses the uncertainty principle limits the resolution
that can be resolved in the temporal and spectral domains. This limita-
tion is expressed by the parameter o in Equation 3. A balance between the
time and frequency resolutions must be found that captures the charac-
teristics of interest for the time series studied. If the characteristic width
of the Gabor filter is considered to be two e-folding lengths (the distance
at which the Gaussian envelope is e 2 less than its peak value), the
uncertainty condition for the CGT is

8,8, = (5)

where 8, is the characteristic time scale and 8, is the characteristic fre-
quency scale. Here 8, corresponds to the time scale of the LFP bursts
(~100 ms) which gives a frequency resolution of 6.4 Hz using Equation 5.

Phase portraits and phase rotation

The CGT, described in Equation 4, generates complex values that repre-
sent the amplitude and phase of the signal at the center frequency of the
Gabor filter at each time step. The time dependence of the data is main-
tained by the CGT, as opposed to the Fourier transform, which is why
this type of analysis is called a time-frequency analysis. Using the ampli-
tude and phase at each frequency as functions of time, we can plot a phase
portrait (in polar coordinates) for each frequency component that tracks
the time evolution of the oscillation. In computing the CGT, the phase at
each time step is computed with respect to the time at the center of the
Gabor filter rather than with respect to the beginning of the record. To
determine whether a frequency component is autocoherent, one must
compare the phases at different time steps; the phases must be rotated to
a common reference time. This rotation is performed by finding the
phase shift of each time point relative to a reference point (here the first
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time point in the record) by computing the number of cycles that a sine
wave at frequency w oscillates during the time At that separates the time
point from the reference point. The rotated phase ¢y, of the time point is
the measured local phase minus the phase shift A¢

dr(tw) = d(tw) — Adp = $(t,w) — 2m mod(A,T)/T,  (6)

where T = 1/w is the period of the oscillation.

As an example, consider the phase portrait of an autocoherent (con-
stant phase) sine wave. It has a trajectory that forms a circle as the CGT
tracks the propagation of the local phase of the sine wave through time.
To reveal that these data points are generated by a constant-phase sine
wave, a phase shift, A¢, that represents the propagation of the sine wave
is subtracted from each local phase point, ¢(t,w). This corresponds to
rotating the local phases back to the reference point at the start of the
record. Once the phases have been rotated, all points have the same
rotated phase value, ¢y(t,w) = ¢d(t,,w), because the oscillation is auto-
coherent. The phase portrait of a constant phase sine wave is thus a single
point, as shown in Figure 4 A.

Test for visual response

For each experiment the LFP response to a blank stimulus (sponta-
neous activity) and an optimal drifting grating stimulus were re-
corded with 25 to 50 repetitions. An empirical probability density
function (PDF) for the power at each frequency for the spontaneous
activity was estimated by bootstrapping the mean of the Fourier
transform of the spontaneous recordings. The power at each fre-
quency of the stimulated data was estimated from the mean of the
Fourier transform of the data. Those frequencies with stimulated
power outside of the 95th percentile with respect to the spontaneous
activity were considered significant.

Circular variance

The degree to which an oscillation is considered autocoherent can be
characterized by the localization of the rotated phase portrait (described
in Phase portraits and phase rotation). We used the circular variance
(CV; Mardia, 1972) of the phase portraits as a statistic to quantify this
localization and hence the phase coherence of the LFP signal at each
frequency. The CV has values on [0,1]. The CV statistic, as used here,
takes smaller values for ACOs and larger values for more random signals.

0 =Cv=l (7)
CV ~ 0.8 — 1 —random (8)
CV ~ 0 — 0.3 — autocoherent 9)

For the constant amplitude ACO null hypothesis described in Phase
portraits and phase rotation, the CV used to quantify the phase portraits
has the form,

with g = 2RGow e (10)
> R(w)

To quantify the autocoherence of the amplitude-modulated ACO null
hypothesis described in Results, Null hypothesis II, the projection onto
the second Fourier mode is used in the following formula,

> R(t;w,) 060
D iR(5,)

The second mode is used in the amplitude-modulated case because the
time varying amplitude, A(¢), of the null-hypothesis model (Equation
18) is allowed to take on negative values. This results in an amplitude-
modulated ACO having a phase portrait that lies along a line that passes
through origin with values of the phase at ¢ — .

CV,=1—|B|,

CV,=1—|B|, with B= (11)

Amplitude-modulated oscillations and heterodyning

A sinusoid whose amplitude is modulated may not necessarily be
expected to have a phase portrait that is localized in a particular sector
of the polar plot. Using the Fourier expansion of the amplitude mod-
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ulation, we can express any arbitrary modulating signal as a series of
phase shifted sinewaves,

A()sin(2mwgt + ¢y) = {iaisin(Zﬂ'wit + d),)} sin(2mwwyt + ).

(12)

Each of the products in Equation 12 can be expressed as a sum of two
cosines using the trigonometric identity,

1
sinu siny = E[cos(u —v) — cos(u +v)], (13)
and are reduced to a series of constant amplitude sinusoids,

A(t)sinQmwyt + ¢dy) = iaicos[Zﬂ'(w,- — )t + (b — )]
— acos2m(w; + wo)t + (¢; + )], (14)

that will, under the CGT, exhibit localized phase portraits as described in
Phase portraits and phase rotation. The expansion of an amplitude-
modulated sinusoid in Equation 14 into a sum of constant amplitude
sinusoids is referred to as ‘heterodyning.” The constant amplitude sinu-
soid sidebands in Equation 14 are called heterodynes and have symmetric
amplitudes about the carrier frequency at the sum and difference fre-
quencies of the carrier and component frequencies of the modulation.
The phases of the heterodynes are also determined by Equation 14 to be
the sum and difference of the phases of the carrier with the components
of the modulation.

Modeling amplitude-modulated autocoherent oscillations

If the filters used in the Gabor transform to analyze the data had suffi-
ciently narrow spectral resolution, the problem of detecting an ampli-
tude-modulated ACO would simplify to detecting a series of constant
amplitude ACOs that make up the sidebands. But to have filters with
temporal resolution on the order of the burst seen in the LFP data, ~100
ms (see Fig. 3D), the spectral width of the filters cannot be smaller than
about 6 Hz, because of the uncertainty principle (see Eq. 5). Because of
these limitations on the Gabor filters, an amplitude-modulated ACO
cannot be detected by the constant amplitude ACO test described in
Results, Null hypothesis I.

To model an amplitude-modulated autocoherent oscillation, a sym-
metric modulation power spectrum centered on the carrier frequency w,
was fit to the significant frequencies in the gamma-band of the stimulated
power spectra. The carrier frequency, w,, was estimated by calculating
the center of mass of the significant frequencies in the gamma-band (20
to 90 Hz). The symmetric spectrum was fit by averaging the power in the
sidebands on either side of the carrier. The modulation signal being
modeled, A(t) of Equation 12, contains frequencies at the difference
between the carrier, w,, and the sideband, ;. To avoid fitting noise, only
frequencies that have power >1/3 of the carrier were included in the
envelope. To generate a real-time series from the fitted symmetric mod-
ulation spectrum, the inverse Fourier transform was taken, with random
phases assigned to the carrier frequency, w,, and to each component of
the Fourier decomposition of A(f) (Equation 12) which correspond to
the sets of symmetric sidebands in Figure 7A according to the heterodyn-
ing relation described above.

Line noise filtering

In the data collected there was a strong line noise signal at 60 Hz associ-
ated with the alternating current of the electrical circuitry in the labora-
tory. Over the length of the recordings, the amplitude of the line noise
was constant but its phase drifted. To filter out the line noise signal from
the LFP recording, the amplitude of the 60 Hz signal line noise was
estimated from the spectrum of the raw signal. This estimate was found
by taking the Fourier transform of the entire record and interpolating the
amplitude at 60 Hz from its neighboring values as an estimate of the 60
Hz component of the LFP signal. The amplitude of the line noise was
assumed to be the difference between the interpolated amplitude and
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measured amplitude. This method effectively removed the line noise at
60 Hz in most cases, but it is still possible that higher harmonics (120 Hz
and 180 Hz) of line noise were present in the data. As this study only
examines the frequency band of 10 to 100 Hz, the harmonics did not pose
a problem.

Results

Overview of study

In this study we have tested the idea that a deterministic oscilla-
tion, which may serve as a clock for the binding of stimuli across
regions of the brain, underlies the gamma-band peak observed in
the LFP recorded in V1. If it exists, this clock would supply a
regular reference time for the precise temporal encoding of
spikes. The gamma clock hypothesis is a prominent concept in
studies of gamma activity, and for this reason it is important to
submit it to rigorous statistical testing using in vivo data from
cortex.

To assist the reader in navigating the study, we provide here a
step-by-step summary. To begin, we review the extensive litera-
ture on the experimental and theoretical work that predicts the
presence of a gamma clock oscillation in Oscillator models of the
LFP (below). A demonstration of how traditional signal process-
ing methods such as the power spectrum and spectrogram are not
capable of discriminating nonautocoherent from autocoherent
signals is presented in Need for statistical test of the ACO hy-
pothesis versus intuition with an introduction to the new tech-
nique we have developed to measure the autocoherence of a sig-
nal. The cortical data are described in Local field potential data
and Time-frequency analysis. In Null hypothesis I our first null
hypothesis of a constant-amplitude ACO in noise is discussed. A
description of the statistical test of this hypothesis is presented in
Null hypothesis I: statistical tests. The results of the statistical test,
in Null hypothesis I: test results, reject the constant amplitude
ACO hypothesis and are plotted in Figure 6. The next model we
consider, in Null hypothesis II, is an amplitude-modulated ACO in
noise. In Null hypothesis I: statistical tests, we perform a statistical
test of the amplitude-modulated ACO hypothesis. In Null hypothe-
sis II: test results, the results of the statistical test reject the amplitude-
modulated hypothesis and are plotted in Figure 8. To show that
autocoherent neural signals exist in the brain and that our anal-
ysis is capable of detecting them, in Autocoherent oscillations in
EEG data, we study an EEG recording that contains an alpha
rhythm and find that it is autocoherent over several seconds.
Finally, a discussion of the implications of the lack of autocoher-
ence in gamma-band activity of cortex is presented in the
Discussion.

Oscillator models of the LFP

An overwhelming amount of the theoretical neuroscience litera-
ture about the source of gamma-band spectral peaks has been
concerned with the analysis of model networks that generate au-
tocoherent oscillations. The reasons for this focus on autocoher-
ent models were experimental evidence and also computational
goals like the ‘clock’ theory of gamma oscillations.

Theorists hypothesized that oscillations in the LFP might be a
‘clock’ signal used to encode spikes temporally at precise times
with respect to the phase of the LFP clock (Hopfield, 1995; Lisman
and Idiart, 1995; Jefferys et al., 1996; Hopfield, 2004; Buzsaki and
Draguhn, 2004; Fries et al., 2007). In these theories, regular
rhythmic oscillations (which we call autocoherent oscillations) in
the LEP were viewed as self-organizing emergent properties of the
network. If different areas of the brain shared the same autoco-
herent LFP ‘clock’, the ‘clock’ oscillation could be used for ‘bind-
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ing’ features of a stimulus to integrate information across many
regions of the brain (Gray and Singer, 1989; Gray et al., 1989; Singer
and Gray, 1995; Gray, 1999; Varela et al., 2001; Buzsaki, 2006).

The simplest proposed mechanism for the generation of a
gamma clock signal is a population of cells each of which outputs a
regular spike rate in the gamma band. For example, ‘chattering’ cells
have been recorded in vivo from cat visual cortex that exhibit rhyth-
mic firing in the 20 to 70 Hz range (Gray and McCormick, 1996).

Early mathematical models of networks of neurons found
rhythmic oscillations in certain parameter regimes that were gen-
erated by feedback between inhibitory and excitatory cells (Freeman,
1975; Bressler and Freeman, 1980; Leung, 1982). But more re-
cently most theoretical effort has been devoted to analyzing net-
works of inhibitory neurons as the source of gamma-band
oscillations (Wang and Rinzel, 1992, 1993), and these inhibitory
models generate autocoherent oscillations. A further develop-
ment of the inhibitory network model was the clustering of sub-
populations of inhibitory cells into groups that each generated
autocoherent oscillations but were out of phase with each other.
In this model the combined output of the various clusters gener-
ated an autocoherent oscillation with a frequency higher than
each of the clusters (Golomb and Rinzel, 1994, van Vreeswijk,
1996). Models of synchronous and asynchronous states in mean
field models of networks of neurons found that autocoherent
oscillations depended on inhibitory coupling (Abbott and van
Vreeswijk, 1993; van Vreeswijk et al., 1994; Gerstner, 1995; Gerstner
etal., 1996).

In addition to earlier studies of gamma-band oscillations ob-
served in visual cortex (Gray and Singer, 1989; Gray et al., 1989),
gamma oscillations have also been recorded both in vivo (Bragin
et al,, 1995) and in vitro (Whittington et al., 1995) from rat hip-
pocampus. Models of gamma oscillations in the hippocampus
also used networks of inhibitory neurons to generate autocoher-
ent oscillations that are thought to be functionally important
(Whittington et al., 1995; Traub et al., 1996; Wang and Buzsaki,
1996; White et al., 1998; Ermentrout and Kopell, 1998; Chow et
al., 1998; Kopell et al., 2000; Traub et al., 2000). Models in these
studies of inhibitory networks generated autocoherent oscilla-
tions for either deterministic or noisy inputs whose autocoherent
time-scales, the period of time over which the phase is conserved,
were explicitly dependent on the time scale and properties of the
external drive. A numerical simulation of a model network of
inhibitory neurons is presented in the Appendix to demonstrate
the autocoherent properties described in these studies.

Firing rate synchrony is another mechanism that has been
proposed for the generation of autocoherent gamma-band oscil-
lations. In models of firing rate synchrony, subthreshold mem-
brane potentials of cells in the network exhibited rhythmic
oscillations but cells fired spikes irregularly. However, individual
neurons fired spikes preferentially at the peaks of the membrane
potential oscillation. In this class of models, the spiking output of
individual cells did not exhibit periodic firing, but the network-
averaged firing rate exhibited an autocoherent gamma-band os-
cillation (Kopell and LeMasson, 1994; Brunel and Hakim, 1999;
Tiesinga and Jose, 2000; Brunel and Wang, 2003; Geisler et al.,
2005; Brunel and Hansel, 2006).

The ACO hypothesis, in the form of either spike or membrane
potential synchrony, has been widely cited and is very influential
in the experimental literature on gamma-band oscillations. The
theoretical concept of emergent autocoherent oscillations has
been cited in experimental studies of the hippocampus (Penttonen
etal., 1998; Fisahn et al., 1998; Traub et al., 2000; LeBeau et al., 2002;
Mikkonen et al., 2002; Csicvari et al., 2003; Vida et al., 2006; Mann
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ing skill of the experimenters.

and Paulsen, 2007; Montgomery and Buzsaki, 2007), visual cortex
(Gray and Singer, 1989; Zaksas and Pasternak, 2006), prefrontal cor-
tex (Compte et al., 2003; Durstewitz and Gabriel, 2007), and so-
matosensory cortex (Cardin et al., 2009), among others.

To demonstrate that autocoherent oscillations do exist in neu-
ral data and therefore that our statistical test of the ACO hypoth-
esis is capable of having both positive and negative outcomes, an
example of EEG data containing an alpha rhythm (11 Hz oscilla-
tion) is analyzed in Autocoherent oscillations in EEG data, using
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our new statistical method (described in A
Time-frequency analysis to Null hypothe-
sis IT). In the EEG data there was a clear 2000
autocoherent oscillation that lasted for 3 s % 0
(roughly 30 oscillations of the alpha  $
rhythm). The EEG results established that ~2000 I_ |
the ACO hypothesis is a biologically plau- \ \ \ \ \ \ \
sible claim worth testing rigorously and 0 0.5 ! 15 timez(sec) 25 s 35 4
that our method is capable of detecting B li W(t=1.755, w, = 40H2)
ACOs when they exist. .

It is possible to conceive of models that 20 convolution os
generate gamma-band peaks in which the %
frequency components are not autoco- 0
herent. Such stochastic models are con- N
sidered in the Discussion. Testing cortical e o e e e (oo
data for autocoherence is an important
goal for experiments and data analysis be- C x 10°
cause determining whether or not the data 4
are autocoherent can decide between —E “ M 3
classes of models of the cerebral cortex ) ,
and other brain areas. % q A 1
Need for statistical test of the ACO

3 35 4

hypothesis versus intuition

It is commonly thought, based on intu-
ition, that the autocoherence of a signal
can be diagnosed by visual inspection of
the time series, but this intuition is incor-
rect, as demonstrated in Figure 1. For ex-
ample, plotted in Figure 1 A is a simulated, amplitude-modulated
ACO of the form

Figure 3.

A(t) sin(Qmwgt + ¢p), (15)
where the phase ¢, is constant in time and w, is set to 40 Hz and
A(t) is the sum of three Gaussians with peaks roughly centered at
0.2s,1.2s,and at 2.9 s. Figure 1 Bis a plot of a simulated nonau-
tocoherent signal, of the form

3

D A1) sinmogt + ¢,), (16)
=1

where wj, is again equal to 40 Hz, each of the three individual bursts’
amplitudes, given by the Gaussian A, functions, are separated in time
(A,(t) centered at 0.2s, A,(t) centered at 1.2 s, and A,(t) centered at
2.9s) and the phases of the separate bursts, ¢, are unrelated. It is not
possible to discriminate between the autocoherent (Fig. 1A) and
nonautocoherent oscillation (Fig. 1B) by eye, even in this noiseless
case. In Figure 1, C and D, the two kinds of oscillations are added to
simulated spontaneous V1 LFP activity, generated using the power
spectra of data used in this study (Null hypothesis I: statistical tests)
to recreate the noise that is commonly present in LFP recordings. In
Figure 1, E and F, the power spectra, and in Figure 1, G and H, the
spectrograms, of the two kinds of oscillations are plotted, after the
two oscillatory signals were added to the simulated spontaneous LFP
activity. These examples of simulated LFP signals demonstrate that it
is not possible to discriminate an autocoherent signal from a time-
varying phase signal by a visual comparison of the time series, the
power spectra, or the spectrograms. For this reason we developed a
new method of data analysis to determine the autocoherence of a
signal. The new method examines the time dependence of the phase
of the signal. In Figure 1, I and J, the phase portraits (Materials and
Methods, Phase portraits and phase rotation) at 40 Hz of the two
example signals (autocoherent and drifting phase) are plotted. The

time (sec)

Continuous Gabor transform (CGT) analysis of LFP data. A, The time course of a 4 s LFP recording (same example data
as in Fig. 24). B, Schematic diagram of continuous Gabor transform. ¢, The amplitude spectrum from the continuous Gabor
transform of the time course in A.

phase portraits are parametric plots (time increasing along the
curve) with phase represented by the angle and the amplitude by
the radius. For the autocoherent oscillation (Figure 1) each burst of
activity away from the origin has the same phase (azimuthal angle),
whereas in the case of the signal that has a phase that varies with time
(Figure 1) each burst of activity has a different phase angle. The
difference between the two signals can be understood by studying
their phase portraits.

Local field potential data

The local field potential (LFP) is an extracellular voltage mea-
surement that characterizes the local network activity of the pop-
ulation of neurons in the neighborhood of the measuring
electrode (approximately 10 to 10° neurons) and is defined as
the low frequency (=250 Hz) portion of the raw field potential.
Specifically, the LFP signal measures the current flow attributable
to synaptic activity, whereas the higher frequency components of
the raw data are related to action potentials (Kruse and Eckhorn,
1996; Logothetis et al., 2001; Buzsaki, 2006).

The LFP data analyzed here were obtained by recording with
extracellular microelectrodes in macaque V1 cortex, in monkeys
lightly anesthetized with the opioid sufentanil. LFP spectra and
spectrograms were measured during a baseline blank (no stimu-
lus) and also during visual stimulation with a high-contrast drift-
ing grating pattern (using a monitor with a 100 Hz refresh rate) at
the ‘preferred’ orientation for maximal response (further exper-
imental details described in Materials and Methods, Visual stim-
ulation). The LFP response to a blank stimulus was recorded for
1 s and the grating pattern was shown for 2 or 4 s, both with 25 to
50 repetitions depending on the trial. The data are from 90 ex-
periments in two monkeys where LFPs were recorded with mul-
tielectrode arrays of seven electrodes. Voltage data were sampled
at a rate of 25 kHz. Data from the electrode with the largest
response to the visual stimulus were selected for analysis, as these
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visually driven response normalized by
the baseline spontaneous spectrum. The
averaged R-spectrum shows a clear
“bump” in the gamma-band that begins
near 20 Hz, peaks between 35 and 50 Hz,
and decreases gradually to 100 Hz. After
filtering, the line noise from the experi-
ment setup (see Materials and Methods,
Line noise filtering) has a stronger relative
signal in the spontaneous spectrum com-
pared to the stimulated spectrum, result-
ing in a narrow notch about 60 Hz in the
averaged R-spectrum in Figure 2C. This
notch does not effect the conclusions of
the study as the line noise was well sepa-
rated from the gamma-band peak power.
Plotted in Figure 2D is the maximum or
peak value of the R-spectrum in the
gamma-band for each experiment. All vi-
sually driven LFPs had a peak gamma-
band power larger than the spontaneous
power (R > 1), meaning the LFP gamma-
band power was strongly visually driven
by the drifting gratings (cf. Henrie and
Shapley, 2005). The sharpness of the
gamma-band ‘bump’ in the visually-
driven power spectrum was quantified by
comparing the peak power in the gamma-
band in relation to the surrounding fre-
quencies with a spectral shape index (SSI)
(see Materials and Methods, R-Spectrum
and spectral shape index). The SSI is com-
puted to determine whether each exp-
eriment displayed localized elevated
gamma-band power (narrow ‘bump’;
SSI > 1) or broad-band elevated power
at all frequencies (broad ‘bump’; SSI <
1). In this study the characteristics of
gamma activity are examined. As such,
experiments that displayed a localized nar-
row ‘bump’ of gamma-band power were
most useful. Plotted in Figure 2E are the
SSIs evaluated for each experiment. For all
experiments analyzed, the SSI > 1, indi-
cating that there was a localized peaked
“bump” of power in the gamma-band.

Noise
CV =0.840

30Hz, CV =0.960

45Hz, CV =0.857

®)

60Hz, CV =0.672

O

75Hz, CV =0.885

O

90Hz, CV =0.822

Figure 4. A, Phase portraits for a constant amplitude sine wave, a constant amplitude sine wave in noise, and noise only.

B, Phase portraits of the data shown in Figure 3 for frequencies in the gamma band. Each portrait is for a 4 s period.

give the largest signal-to-noise ratio for our statistical tests. The
60 Hz line noise signal was filtered out of the LFP recordings as
described in Materials and Methods, Line noise filtering. An ex-
ample of a 4 s LFP recording under visual stimulation is plotted in
Figure 2 A and its power spectrum in Figure 2 B. The power spec-
tra were computed using a multitaper analysis (Percival and
Walden, 1993) with a concentration bandwidth of 1 Hz and
averaged over repeated identical stimuli.

In all 90 experiments, localized elevated power was observed
in the gamma-band during visual stimulation. Plotted in Figure
2C is the LFP R-spectrum (see Materials and Methods,
R-Spectrum and spectral shape index) averaged over all 90 exper-
iments studied. The R-spectrum is the power spectrum of the

Time-frequency analysis

We used a time-frequency analysis to ex-
amine the temporal evolution of LFP data
at each frequency. Similar analyses have previously been used to
study the temporal structure of brain activity recorded in EEG
(Makeig, 1993; Herrmann et al., 2004), LFP (Pesaran et al., 2002),
and have been described as a general method for studying event-
related activity in neural signals (Sinkkonen et al., 1995; Mitra
and Pesaran, 1999; Hurtado et al., 2004). The continuous Gabor
transform (CGT) is the convolution of an enveloped complex
plane wave i with the time series being examined (see Materials
and Methods, Continuous Gabor transform). The CGT is a func-
tion of ¢, the time point at the center of the convolution, and w,,
the frequency of the underlying wave of the transform (shown
schematically in Fig. 3B). Scale varying wavelets, whose width in
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the time domain dilates with increasing
scale (decreasing frequency), become too
coarse in the time domain at low fre-
quency and too broad in the frequency
domain at higher frequencies for this
study. To avoid the problems associated
with the scale representation of wavelet
transforms, we used the Gabor transform
because its fixed time scale preserves the
relationship to frequency.

Plotted in Figure 3Cis the CGT ampli-
tude spectrum of the LFP recording
shown in Figure 3A. In comparing the
amplitude spectrum with the LFP time se-
ries, the three bursts of activity in Figure
3A at times t = 1.75's, 2.8 5, and 3.75 s
correspond to high-amplitude events in
Figure 3C. It is clear that the CGT is capa-
ble of capturing the time evolution of the
LFP recording. From inspection of Figure
3C, the LFP signal has large bursts of ac-
tivity on the scale of ~100 ms with power
concentrated mainly near 35 Hz and with
a smaller peak at 70 Hz. The spectral peak
between 35 Hz and 45 Hz and the 100 ms
time scale were characteristics common to
all LFP recordings analyzed here.

Null hypothesis I: constant amplitude
autocoherent oscillator

The first null hypothesis we consider is
that the increased gamma-band power
seen in the LFP power spectrum is the re-
sult of a constant amplitude autocoherent
oscillation of the local neuronal network
that becomes active under visual stimula-
tion. Autocoherence in this case means
that at a particular frequency the LFP can
be modeled as a sine wave of constant
phase and amplitude added to noise,

Asin(2moyt + ¢) + noise,  (17)

where A and ¢ are time-independent.

In the event there were multiple autoco-
herent oscillators in the network operating
at the same frequency, the waveforms of the
different oscillations would be summed
when recorded with an electrode. The
sum of many different constant-phase
sine waves at the same frequency is a single
sine wave that our method would detect as
an autocoherent oscillation.

One can examine the autocoherence at
a particular frequency by studying plots of
the rotated phase portrait (see Materials
and Methods, Phase portraits and phase
rotation). When a signal has large ampli-
tude bursts at a particular frequency, for

example as seen in the LFP data in Figure 2 A, the phase portrait
will show a large amplitude excursion away from the origin at that
frequency as shown in Figure 1, I and J. This kind of phase por-
trait is illustrated in Figure 4 for idealized systems in 4 A and for
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real LFP data in 4B. The phase of the constant amplitude sine
wave appears as a single point in the phase portrait (Fig. 4 A, left).
If noise is added to the sine wave, the rotated phases do not all
fall on a single point (Fig. 4 A, middle) but remain localized in
a common sector of the polar plane rather than exploring all
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to the rejection of the constant amplitude ACO hypothesis.

quadrants as is done by the phases of a noise signal (Fig. 4A,
right).

Phase portraits for the LFP data shown in Figure 3 are plotted
in Figure 4 B at frequencies in the gamma-band from 20 to 90 Hz.
If the LFP contained constant amplitude autocoherent oscilla-
tions, as in the null hypothesis, the activity in the phase portrait
should have clustered in a common sector of the phase portrait.
The phase portraits of the peaks in the spectral power at 35 Hz
and 70 Hz (Fig. 3 A, C) show high amplitude (large radius) events
that correspond to the bursts discussed in Time-frequency anal-
ysis. In the 35 Hz and 70 Hz phase portraits the three bursts seen
in the LFP time series (Fig. 3A4) and the CGT spectrum (Fig. 3C)
are visible in the three ‘loops’ away from the origin. These bursts
occupied different sectors of the phase portrait, and therefore the
signal was not autocoherent.

We used circular variance (CV; see Materials and Methods,
Circular variance) as a statistic to quantify the coherence of an
oscillation or, equivalently, localization of the trajectories of the
phase portraits. The CV varies from zero to one and measures
how tightly clustered the points are in phase angle. A CV close to
zero corresponds to all points having similar phases and, for our
purposes, a more autocoherent oscillation. A CV near one indi-
cates that the different points in time have different phases and
implies a nonautocoherent signal with a time-varying phase. The
CV is normalized by the average amplitude of the oscillation and
is dimensionless. One can use the dimensionless CV index to
compare the coherence of oscillations of different frequencies
and power. The CV of the phase portraits in Figure 4 are listed

above the plots at each frequency. The CVs of the 35 Hzand 70 Hz
oscillations in the LFP data from V1 were large, 0.69 and 0.63,
respectively, a result which suggests there were not autocoherent
oscillations at these two frequencies.

Null hypothesis I: statistical tests
We have shown visually and using the CV statistic that the
oscillations seen in the data in Figures 3 and 4 were not auto-
coherent. But to examine systematically all 90 experiments
and to determine quantitatively whether autocoherent oscil-
lations were present as proposed by the null hypothesis, a
statistical test had to be performed. The first step was to iden-
tify which frequencies of the LFP had significantly elevated
power under visual stimulation, a step which was done as
described in Materials and Methods, Test for visual response.
We devised a Monte Carlo-type statistical test to determine
whether autocoherent oscillations were present in the visually-
driven LFP signal. For all 90 experiments we performed the fol-
lowing simulations whose procedure is described schematically
in Figure 5. A test was evaluated at all frequencies between 10 and
100 Hz that had significantly elevated power under stimulation.
At a particular frequency, the null-hypothesis model assumes
that the increase in power at that frequency under visual stimu-
lation had a constant amplitude and fixed phase and was summed
with background noise. The background noise was simulated by
taking the average amplitude spectrum of the spontaneous LFP
data, from 1 to 250 Hz, assigning random phases to each fre-
quency and taking the inverse Fourier transform. A constant am-
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plitude ACO of the form (Equation 17) was added to the
simulated background noise. The amplitude of the oscillator, A,
was found by taking the square root of the difference between the
stimulated and background power spectra at the frequency being
tested; the phase, ¢, was chosen randomly. The CGT (Mallat,
1999; see Materials and Methods, Continuous Gabor transform)
of the simulated signal was taken, and the CV of the phase por-
trait was computed. This simulation procedure was repeated
1000 times to generate a probability density function (PDF) of
the values of the CV for the null-hypothesis model.

Null hypothesis I: test results

The null hypothesis of a constant amplitude ACO was rejected at
all frequencies tested, between 10 and 100 Hz. In particular, there
was no evidence for an ACO in the gamma band where the visu-
ally driven spectral power peaked. Plotted in Figure 6 are the
differences between the CVs of the data at each frequency and the
simulated 99th percentiles of the CV of the constant amplitude
ACO, the null-hypothesis model. The differences between data
and the null-hypothesis model are plotted in Figure 6 at all fre-
quencies with significantly elevated power under visual stimula-
tion for all 90 experiments. The differences were greater than zero
for all experiments at all frequencies, with the exception of 60 Hz
where a strong line noise signal was still present after filtering, and
100 Hz which was the refresh rate of the computer monitor used
to present the visual stimulus in the experiments. That the CVs of
the data were larger than the 99th percentile of the null-
hypothesis model reveals that the V1 gamma-band data were
significantly less autocoherent than a constant amplitude ACO.

In the range of frequencies of the gamma-band near 40 Hz,
where the elevated power in the data was centered, the difference
between the CV of the data and of the constant amplitude ACO
(denoted ‘sample average’ in Fig. 6) had its largest values, indi-
cating that the oscillations in this frequency band of interest were
particularly nonautocoherent. This occurred because the gamma
band was the region of the LFP spectrum where the LFP had the
largest elevation of power in response to the visual stimulus. To
fit the LFP data in the gamma band, the ACO in the null model
had to have a larger signal-to-noise ratio than at other frequen-
cies, hence the phase of the ACO sine wave dominated the phase
trajectory and led to a lower CV value. This caused the larger
difference between the data CV and null CV in the gamma band.
The CV values of the LFP data from V1 were relatively constant
across the frequencies analyzed which meant the CV difference
was higher when the signal-to-noise in the null-hypothesis model
rose.

From Figure 6 we conclude that the null hypothesis of a con-
stant amplitude ACO was not supported by the V1 data analyzed
here and that constant amplitude ACOs did not occur in ma-
caque V1, even when there were strong gamma-band spectral
peaks.

Null hypothesis II: amplitude-modulated

autocoherent oscillator

The constant amplitude ACO hypothesis, rejected in Null hy-
pothesis 1, is the simplest type of oscillatory response expected
from a deterministic system. Another type of oscillation consis-
tent with the ACO hypothesis is an amplitude-modulated ACO

of the form
A(t) sin(2mwyt + ¢,) + noise, (18)

where the modulation, A, is now a function of time, but ¢, is still
time-independent and the carrier frequency, w,, is assumed to be
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Null hypothesis 1I: statistical tests

To provide intuition about amplitude-
modulated ACOs, we simulated an example
as described in Materials and Methods,
Modeling amplitude-modulated autoco-
herent oscillations. The simulation is
shown in Figure 7A—C, where the fitted
symmetric modulation spectrum is shown in
black in Figure 7A, the random phase
spectrum is plotted in Figure 7B, and the
resulting real-time series after taking the
inverse Fourier transform is shown in
Figure 7C.

A statistical test similar to that de-
scribed in Null hypothesis I: statistical
tests for the constant amplitude ACO hy-
pothesis was used for the amplitude-

10 20 30 40 50 60
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Figure8.

modulated ACO null model (black).
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modulated ACO hypothesis. Unlike the
constant amplitude test, the amplitude-
modulated case was only tested at the
carrier frequency, w,, rather than all sig-
nificant frequencies. To simulate the
amplitude-modulated ACO-null model,
the modulation signal was fit nonpara-
metrically to the power spectra of the data
as described in Materials and Methods,
Modeling amplitude-modulated autoco-
i herent oscillations, and multiplied by a
fixed phase sinewave as in Equation 18.
This simulated null-hypothesis oscillation
was then added to simulated spontaneous
\ activity generated in the same manner as

! for the constant amplitude-null hypoth-
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time (sec)

B Phase Portrait at 11Hz C

Power Spectrum of EEG recording

esis (Null hypothesis I: statistical tests).
For example, the power spectra of the
spontaneous, stimulated, and simulated
amplitude-modulated ACO null-hypo-
thesis model are shown in Figure 7D,
where the simulated null-hypothesis
model only includes the power spectrum
peak in the gamma band and not the com-
plete stimulated spectrum. In Figure 7, E
and F, are plotted the time series, and in
Figure 7, G and H, the spectrograms of the

0 10 20

Figure 9. A, Time course of a 3 s EEG recording exhibiting an autocoherent oscillation at 11 Hz (black), and fitted autocoherent
alpha oscillation (green). B, Phase portrait at 11 Hz of the EEG recording plotted in A (blue), and mean phase of the 11 Hz trajectory

(black arrow). C, Power spectrum of EEG recording plotted in A.

in the range of the gamma-band peak seen in the data (30 to 50
Hz). Using a Fourier decomposition of A(#) and trigonometric
identities we showed in Materials and Methods, Amplitude-
modulated oscillations and heterodyning that an amplitude-
modulated ACO can be expressed as a sum of constant amplitude
ACOs (for w, # 0) through the heterodyning relation. Heterodyn-
ing is an effect where an amplitude-modulated sinusoid can be ex-
pressed as a carrier friequency, w,, with symmetric sidebands at
frequencies equal to the sum and difference of the carrier
frequency and modulation frequencies and phases of the side-
bands equal to the sum and difference of the phase of the carrier
and modulation phases.

frequency (Hz)

* “© % data and the simulated null model, re-
spectively. The difference between the
autocoherence of the data and the simula-
tion became clear when the phase por-
traits at the carrier frequency (here 43 Hz)
(plotted in Fig. 7I,]) were compared. The
phase portrait of the data had a wandering
shape corresponding to a time-varying
phase signal whereas the phase portrait of the simulated signal fell
along a line that signifies the presence of an amplitude-
modulated ACO (see Materials and Methods, Amplitude-
modulated oscillations and heterodyning). As in the constant
amplitude case, the CV (Materials and Methods, Circular vari-
ance) was used to quantify this difference. A simulated PDF of the
CV values for the null hypothesis was generated in the similar
manner as for the constant amplitude case (Fig. 5) but with the
simulation of the constant amplitude ACO replaced with the
amplitude-modulated simulation. The hypothesis was tested at
the carrier frequency, w, of Equation 18, for each experiment
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by comparing the CVs of the data to the
99th percentile of the PDF of the simu- -56
lated null-hypothesis CV.

Null hypothesis 1I: test results 60
The results of the amplitude-modulated
ACO null hypothesis are shown in Figure
8. In Figure 8 the CVs of the data are plot-
ted with their standard errors along with
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Population average time course - 42Hz oscillation

the 99th percentile of the CV for the null- _66
hypothesis model for each experiment.
The CVs of the data, including the mea- ‘680

surement errors, were all in excess of the
99th percentile of the null hypothesis for
all 90 experiments tested. These results
reject the amplitude-modulated ACO
hypothesis as an explanation for the ob-
served elevated gamma-band power spec-
tra in macaque V1.

Autocoherent oscillations in EEG data
Our focus in this article has been on
gamma-band activity, but we include here
an example of the analysis of alpha
rhythms in human EEG to make the point
that it is possible for some brain activity to
be much more autocoherent than the
gamma-band activity we analyzed above,
and that our analysis will find the autoco-
herence if it exists. An example of an au-
tocoherent oscillation in EEG data is
plotted in Figure 9. The autocoherent os-
cillation lasted for 3 s over the course of
~30 cycles. The EEG recording, band-
passed filtered from 5 to 50 Hz, is plotted
in Figure 9A. The power spectrum of the
recording is plotted in Figure 9C with a
peakin the alpha band at 11 Hz. The phase
portrait at 11 Hz of the EEG recording in Figure 9A is plotted in
Figure 9B. The phase trajectory of the alpha oscillation in the
phase portrait was largely confined to the region of 150 to 240
degrees with a CV value of 0.25 (see Materials and Methods, Circu-
lar variance) indicating an autocoherent signal. The mean phase
is shown by the black arrow in Figure 9B. An autocoherent 11 Hz
sine wave whose phase is given by the mean of the phase portrait
and whose amplitude is given by the amplitude coefficients of the
Gabor transform of the EEG at 11 Hz is overlayed on the EEG
data in Figure 9A. The EEG data and the autocoherent sine wave
have corresponding phases for most of the 3 s record with occa-
sional periods where the 11 Hz amplitude temporarily fades (dur-
ing the period of 1.4 to 1.75 s) and then reappears with the same
phase. This EEG example shows that persistent amplitude-modu-
lated autocoherent oscillations exist in neural data, and our
method can identify them when they are present in data. Al-
though this alpha rhythm has been shown to be autocoherent,
cortical gamma-band activity is very different because of the ab-
sence of autocoherence in gamma.

Figure 10.

Discussion

The results of our new time-frequency analysis of V1 local field
potentials (LFPs) reject the hypothesis that gamma-band spectral
peaks in the LFP of visually driven macaque V1 LFP data (Fig. 3A)
can be modeled as a constant-amplitude ACO (Equation 17) oras an
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Output of the numerical simulation of a model network of 10 inhibitory neurons connected all-to-all. A, Population
average voltage time course convolved with aninhibitory synaptic conductance kernel. B, Phase portrait and circular variance at 42
Hz of the time course plotted in A.

amplitude-modulated ACO (Equation 18). In the data examined
here a gamma-band peak in power is induced using a drifting
grating stimulus, as has been shown to occur in previous work on
gamma activity in V1 (Bauer et al., 1995; Frien et al., 2000; Ray
and Maunsell, 2009). We conclude that elevated gamma-band en-
ergy in V1 is not the result of emergent deterministic, harmonic, or
relaxation, oscillations investigated in the modeling studies refer-
enced in Results, Oscillator models of the LFP. Thus, the present
results rule out a class of theoretical models for gamma activity in the
V1 network.

The results in this article call into question the idea that the
gamma oscillation in V1 is operating as a ‘clock’ signal for the
precise temporal encoding of visual information. If there is a
‘clock’ mechanism present in V1 gamma activity, the period of
time over which it supplies reliable timing (time over which the
phase of the oscillation is conserved) is not set by the time-scale of
the stimulus but may have some intrinsic time-scale attributable
to internal dynamics of the cortical network itself. This intrinsic
time scale must be much shorter than the duration of the visual
stimulus we used, on the order of 2 to 4 s. Similarly, if gamma
activity is involved in the ‘binding’ of stimulus features across
different regions of the brain by gamma, the period of time over
which the brain can synchronize different areas must be very brief
and is also not determined by the time scale of the stimulus being
processed.
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Theoretical models of gamma oscillations predict autocoher-
ent oscillations whose time-scales are set by the properties of the
external drive to the network (see Results, Oscillator models of
the LEP). Applied to the measurements in this study, these mod-
els would predict that for a constant visual stimulus (drifting
grating stimulus) the time-scale of autocoherent oscillations seen
in the LFP should persist for the length of the time the stimulus is
presented (2 to 4 s). Previous measurements of gamma activity
from hippocampus in rat, described in Results, Oscillator models
of the LFP, were recorded in vitro in slices rather than in vivo as in
the experiments analyzed here. It is possible that the oscillations
seen in slice, driven with a tonic external drive, do generate auto-
coherent oscillations, but the work here shows that for in vivo V1
networks this is not the case.

The alpha rhythm, analyzed in Results, Autocoherent oscilla-
tions in EEG data, exhibited an autocoherent oscillation at 11 Hz.
Itis possible that lower frequency oscillations such as the alpha (8
to 12 Hz) and theta (6 to 10 Hz) rhythms may be autocoherent.
The work of Wang and Rinzel (1992, 1993) was originally moti-
vated as models of spindle rhythms with a frequency of 7 to 14 Hz.
Their model is not an accurate model of gamma activity in V1 but
may be a useful model of alpha and theta rhythms.

For a model to generate bursts at arbitrary times of arbitrary
length, as seen in the data, a fundamentally different type of non-
deterministic model must be used. In the theoretical models dis-
cussed in Results, Oscillator models of the LFP, noise in the
system is viewed as something that may obscure synchronous
firing that allows the system to oscillate autocoherently. Rather
than treating noise as a corrupting factor, we believe noise is
essential to the generation of the gamma-band peak and should
be treated as a leading order term in any mathematical model of
gamma oscillations. To accommodate the random aspects of the
timing and duration of bursts seen in the data, any biologically
accurate mathematical model should include a random variable
term representing noise. Doing this will necessarily cause the
system to be modeled stochastically rather than the deterministic
approaches of the previous theoretical studies of gamma-band
‘oscillations.’

Although this study has shown that the ACO model does not
fit the data from V1, there is structure in the data in the form of
bursts of activity concentrated in particular frequencies of the
gamma band. A model that can produce the peaked, elevated
gamma-band power spectra recorded in V1 and that includes a
central role for noise is a resonant stochastic filter. Henrie et al.
(2005) and Kang et al. (2009) found that a stochastic resonant
network model of V1 with recurrent connections to extrastriate
cortex has a resonant response in the gamma-band. In this model
the network is viewed as a resonant stochastic oscillator with a
stable state for noiseless inputs corresponding to the quiescent
periods (low amplitude) of the LFP data (see Fig. 3B). When noise
is added to the system during visual stimulation, from feed-
forward and recurrent inputs, the network is randomly excited
into short high-energy bursts of excitation at a resonant fre-
quency centered in the gamma band (see also similar ideas ex-
pressed in Rennie et al., 2000). In a resonant stochastic oscillator
model, the phase associated with each burst is independent, and
the signal is not autocoherent for the length of the period of
stimulation. The varying phases associated with the independent
bursts of activity generate a broad peak in the power spectrum of
the LFP, a peak centered on the resonant frequency of the net-
work, as seen in the data presented here (Fig. 2 B). The gamma-
band resonance in the model of Kang et al. (2009) is a
consequence of the structure of the model network they consid-
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ered: a recurrent excitatory-inhibitory network in which synaptic
inhibition and excitation both have short time constants, with the
inhibitory time constant slightly slower than that of excitation.
Networks with this functional connectivity have been proposed
before to explain cortical sharpening of selectivity (for example,
Kang et al., 2009). The presence of gamma-band resonance in
such networks may be a by-product of their dynamics, but it may
also enhance their sensory function. Our future research on the
elevated gamma-band response to visual stimuli will focus on
testing whether the data are consistent with such a stochastic
resonant oscillator model.

An alternative to the stochastic model we favor, which also
generates an irregular, nonautocoherent activity, is a model of
network activity with finely tuned parameters such that the net-
work oscillates chaotically. Models of neuronal networks that
exhibit chaotic oscillations have been explored by Hansel and
Sompolinsky (1996) and Battaglia et al. (2007) as possible mech-
anisms for generating nonautocoherent network activity.

We found that gamma activity is not autocoherent on the
time-scale of the visual stimulus (2 to 4 s). However, on shorter
time-scales, individual bursts of activity may be autocoherent.
Spatially coherent bursts of gamma-band activity have been
found in the rat hippocampus with a time-scale of ~100 ms
(Montgomery and Buzsaki, 2007; Montgomery et al., 2008). Fur-
ther work on autocoherence in LFP data should include a study to
determine the intrinsic internal autocoherent time scale of
individual bursts of gamma activity seen in the data. The time-
frequency analysis developed here could be used for such an
analysis. Also, as described in the introduction, gamma-band
spectral peaks have been observed in many other regions of the
brain. With the development of the new time series analysis
presented in this paper, data from other brain regions could be
examined to determine the autocoherence of LFP activity
throughout the brain.

Appendix

Autocoherence analysis of inhibitory network model

A model of 10 inhibitory integrate and fire neurons with a con-
stant excitatory drive was simulated numerically to demonstrate
the deterministic clock mechanism referred to in Results, Oscil-
lator models of the LFP. The details of the conductance-based
model used for the simulation, and the parameters used, are de-
scribed in Tao et al. (2004). The model was time stepped using a
fourth order Runge-Kutta method (Press et al., 1992), and the
neurons were connected all-to-all with equal strength. The net-
work was integrated for 5 min; it quickly (<50 ms) locked into a
regular oscillation that persisted for the duration of the simula-
tion. To model the influence this inhibitory network would have
on the membrane potential of an excitatory neuron, the popula-
tion average time course was convolved with an inhibitory syn-
aptic conductance kernel (see Tao et al., 2004). A 500 ms excerpt
of the population average voltage time course, smoothed with the
synapse’s kernel, is plotted in Figure 10 A.

This inhibitory model generates a regular clock oscillation and
is a simplified version of the same network mechanism proposed
by previous theorists to be the source of the gamma-band peak
seen in cortical LFP data as reviewed in Results, Oscillator models
of the LFP. A fundamental aspect of this model is that the con-
nections between the inhibitory cells in the network cause each of
the cells to fire more slowly than they would in isolation. In this
network the inclusion of inhibitory connections slows the net-
work oscillation from 70 Hz down to 42 Hz, which is within the
gamma-band frequency range (20 to 90 Hz). The autocoherence
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of the model’s output was calculated using the same technique as
described in Results, Null hypothesis I. The phase portrait at 42
Hz of the time course plotted in Figure 10A is plotted in Figure
10 B. The CV of the model’s output is 7 X 10 ~'°, which indicates
the model is outputting a perfect clock signal. If this inhibitory
network clock mechanism were the source of the gamma activity
seen in V1, strong autocoherent signals should have been present
in the LFP data analyzed here, by the following argument. It is
reasonable to suppose that the excitatory cells are getting added
random noise and that this then would be added to the inhibitory
clock signal in the LFP. The inhibitory clock signal with its 0 CV
value would be equivalent to the continuous sinusoid we consid-
ered in Null Hypothesis 1 in Results, Null hypothesis I. The anal-
ysis in the article that rejected Null Hypothesis 1 therefore also
rejected the hypothesis that inhibitory clock signals were the
source of the gamma-band peaks in the LFP.
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