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Bacteria have developed several mechanisms for iron uptake during colonization of mammalian hosts, where
the availability of free iron is limiting for growth. Neisseria meningitidis expresses under iron-limiting condi-
tions a receptor complex consisting of the lactoferrin-binding proteins A (LbpA) and LbpB to acquire iron from
lactoferrin, which is abundantly present on the mucosal surfaces of the human nasopharynx. LbpA is an
integral outer membrane-embedded iron transporter, whereas LbpB is a cell surface-exposed lipoprotein. In
this study, we demonstrate that LbpB is also released into the culture medium. We identified NalP, an
autotransporter known to be involved in the processing of other autotransporters, as the protease responsible
for LbpB release. This release of LbpB reduced the complement-mediated killing of the bacteria when
incubated with an LbpB-specific bactericidal antiserum. Since antibodies directed against LbpB are found in
convalescent-patient sera, the release of an immunogenic protein as LbpB may represent a novel means for N.

meningitidis to escape the human immune response.

The Gram-negative bacterial species Neisseria meningitidis
and Neisseria gonorrhoeae are the only Neisseriaceae that are
pathogenic to humans, who are also the only known reservoir
of these bacteria. Normally, N. meningitidis behaves as a com-
mensal and colonizes the upper respiratory tract without any
obvious clinical symptoms. However, in rare cases, it crosses
the mucosal barriers and causes sepsis and meningitis with a
high mortality and morbidity. This occurs most frequently in
children and young adults. In the human body, the concentra-
tion of free soluble iron is too low to support bacterial growth.
Iron in the human body is bound intracellularly to heme, he-
moglobin, or ferritin and in serum and on mucosal surfaces to
transferrin and lactoferrin, respectively (13). Bacteria have de-
veloped several different mechanisms of iron utilization, one of
which involves the synthesis and secretion of siderophores
(25). N. meningitidis and N. gonorrhoeae do not produce sid-
erophores (3, 38). However, when grown under iron limitation,
they express surface-exposed receptors for human iron-binding
compounds, including transferrin (10, 19), lactoferrin (6, 28,
30), hemoglobin (34), and haptoglobin (20).

The lactoferrin receptor is thought to be an important vir-
ulence factor of N. meningitidis. The main site of entry into the
human body is the nasopharynx, where lactoferrin is abundant
and could provide a major source of iron (24). Using an affinity
isolation procedure, a single lactoferrin-binding protein was
originally identified (32). The gene encoding this receptor,
designated LbpA (lactoferrin-binding protein A), was subse-
quently characterized (6, 28, 30). LbpA showed a high degree
of similarity to the TbpA (transferrin-binding protein A)-com-
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ponent of the transferrin receptor, which further consists of a
lipoprotein designated TbpB (19). Upstream of /bpA, an open
reading frame was identified, the deduced amino acid se-
quence of which showed homology to TbpB (26). Subsequent
analysis showed that, in analogy to the transferrin receptor, the
lactoferrin receptor is composed of two proteins, LbpA and
LbpB (31). LbpB is a surface-exposed lipoprotein, but the
exact function of the protein in the receptor complex remains
to be shown. The protein appears to be expressed during in-
fection, since LbpB-specific antibodies were found present in
convalescent-patient sera (27).

In the course of our studies, we observed that LbpB could be
found also in culture supernatants of N. meningitidis. We in-
vestigated the secretion mechanism of LbpB and its effect on
the immunological response to the protein.

MATERIALS AND METHODS

Bacterial strains and growth conditions. The N. meningitidis strains used are
listed in Table 1. The strains were grown on GC agar plates (Oxoid) supple-
mented with Vitox (Oxoid) at 37°C in candle jars, or in tryptic soy broth (TSB)
(Gibco-BRL) at 37°C with mild shaking. To impose iron limitation, bacteria,
grown overnight on plates, were inoculated in TSB supplemented with 20 pg of
ethylenediamine di-o-hydroxyphenylacetic acid (EDDHA; Sigma)/ml to an op-
tical density at 550 nm (ODss;) of 0.1 and grown for 5 h. For the growth curve
experiment under iron limitation, a preculture grown for 3 h in TSB plus
EDDHA was diluted in fresh medium to an ODss, of 0.2, and growth was
monitored for 7 h. Except where noted, IPTG (isopropyl-B-p-thiogalactopyrano-
side) was added to a final concentration of 1 mM to induce nalP or IbpB
expression from the lac promoter on the plasmids listed in Table 1.

Collection of cells and culture supernatants. Cells were harvested by centrif-
ugation (4,500 X g, 5 min) and resuspended in water to an ODss, of 10. The
culture supernatants were centrifuged again (16,000 X g, 5 min) to remove
residual cells. The protein content was precipitated by adding ice-cold trichlo-
roacetic acid to a final concentration of 5% and incubation for at least 30 min at
4°C. Samples were centrifuged (16,000 X g, 20 min), and the pellets were washed
with 90% acetone and dissolved in water. Relative to the original cultures, the
supernatant fractions were 10-fold more concentrated than the cell lysates. The
protein preparations were then mixed with an equal volume of 2-fold-concen-
trated sample buffer and boiled for 10 min.
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TABLE 1. Bacterial strains and plasmids used in this study

Strain or plasmid Relevant characteristics® Source or
reference
Strains
HB-1 Unencapsulated derivative 8
of H44/76
HB-1 IbpAB::kan Deletion of lbpA and IbpB J. Kortekaas
HB-1 nalP::kan Insertion of Kan" cassette 37
in nalP
HB-1 app::kan Insertion of Kan" cassette 37
in app
HB-1 ausl::kan Insertion of Kan" cassette 35
in ausl
HB-1 iga::kan Insertion of Kan" cassette 37
in iga
H44/76 17
H44/76 nalP::kan Insertion of Kan" cassette 37
in nalP
Plasmids
pEN300 Cam'; encodes wild-type 37
NalP
pEN305 Cam'; encodes active-site 37
mutant NalP
pENLbpB(BNCV)  Cam"; encodes LbpB from  R. Voulhoux

strain BNCV

“ Cam’, chloramphenicol resistance; Kan", kanamycin resistance.

To obtain large quantities of released LbpB in its native conformation, the
culture supernatant of an IPTG-induced 500-ml culture of the unencapsulated
strain HB-1 containing pENLbpB(BNCV) was isolated and concentrated 40-fold
with 10-kDa cutoff centrifugal filter units (Millipore). To avoid proteolytic deg-
radation, a protease inhibitor cocktail (Complete EDTA free; Roche) was added
to the concentrated supernatant. Blebs were removed from the concentrated
supernatant by ultracentrifugation for 1 h at 150,000 X g.

Antisera. The rabbit anti-LbpB antiserum R1 was described previously (27).
The mouse antiserum directed against fHbp, the rabbit antiserum recognizing
TbpA and TbpB, and the bactericidal monoclonal antibodies directed against
PorA were generously provided by GlaxoSmithKline (Rixensart, Belgium), A.
Schryvers (University of Calgary, Calgary, Alberta, Canada), and the Nether-
lands Vaccine Institute (Bilthoven, Netherlands), respectively.

Electrophoresis and immunoblotting. For analysis by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE), protein samples were loaded
on a gel with 8% (wt/vol) polyacrylamide in the running gel. To detect the folded
form of the LbpB protein, sample buffer with only 0.1% SDS and no reducing
agent and gels without SDS were used, and the sample was not heated before
electrophoresis (seminative SDS-PAGE). After electrophoresis, proteins were
blotted onto a 0.45-pum-pore-size Protran filter (Schleicher & Schuell, Dassel,
Germany) using the Protean III minigel blotting system (Bio-Rad Laboratories,
Veenendaal, Netherlands) at 100 V for 1 h. Nonspecific binding of antibodies to
the filters was prevented by overnight incubation in phosphate-buffered saline
(PBS; pH 7.0) supplemented with 0.5% Protifar (Nutricia, Zoetermeer, Neth-
erlands) and 0.1% Tween 20 (Merck). The sera were diluted 1:5,000 or 1:20,000
in the same buffer and applied for 1 h to the blots. After extensive washing, the
blots were incubated with goat anti-rabbit IgG or goat anti-mouse IgG secondary
antibodies conjugated to horseradish peroxidase (Biosource, Camarillo, CA) at
a dilution of 1:10,000 in the same buffer. Binding of antibodies was visualized by
chemiluminescence using an ECL kit (Amersham, Buckinghamshire, United
Kingdom).

In-gel trypsin digestion and mass spectrometry. Selected protein bands were
excised from a Coomassie R250-stained SDS-PAGE gel and cut into 1-mm?
cubes. The gel pieces were destained by repeated incubation in 25 mM
NH,HCO3-50% acetonitrile and then dehydrated in 100% acetonitrile.
Shrunken gel pieces were dried in a Speed-Vac (Eppendorf) and then resus-
pended in 15 wl of trypsin solution (20 mg of trypsin/ml in 50 mM NH,HCO3)
(Promega) for 1 h, followed by the addition of 25 pl of 50 mM NH,HCOj; buffer
to completely immerse the gel pieces. After incubation overnight at room tem-
perature, the protein samples were eluted with two washes of 0.1% trifluoroace-
tic acid-50% acetonitrile, dried in a Speed-Vac, and resuspended in 10 pl of 50
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mM NH,HCO;. The peptides were purified by using a C18 Ziptip (Millipore)
and analyzed using an Applied Biosystems 4800 MALDI-TOF-TOF apparatus.
For the matrix-assisted laser desorption ionization (MALDI) analysis, the sam-
ples were spotted using a matrix (7 mg of a-cyano-4-hydroxycinnamic acid/ml in
10 mM ammonium phosphate-50% acetonitrile) and analyzed in positive mode.
Mass spectra were searched by using the Mascot engine against the GenBank NR
database. For each peptide mass fingerprint search, the mass tolerance was set to
0.05 Da. One missed tryptic cleavage was allowed. The mass tolerance for
database searching with tandem mass spectrometry (MS/MS) spectra was set to
0.3 Da. All of the proteins listed were identified with a confidence interval of
95% from the MS and/or MS/MS analysis.

Lactoferrin binding. To study the binding of lactoferrin to LbpB on blots,
concentrated neisserial culture supernatant was separated by using seminative
SDS-PAGE and blotted onto a nitrocellulose membrane as described above.
Nonspecific binding of proteins to the filters was prevented by overnight incu-
bation in PBS containing 0.6% Protifar and 0.1% (vol/vol) Tween 20 (blocking
buffer). The blots were subsequently incubated with peroxidase-conjugated hu-
man lactoferrin (3.4 pg/ml in blocking buffer) (30) for 1 h at room temperature.
After three washing steps of 5 min each in blocking buffer, the activity of
peroxidase was detected by chemiluminescence using an ECL kit (Amersham).

Serum bactericidal assay. Serum bactericidal assays were performed as de-
scribed previously (27) with some adaptations. Bacteria grown overnight on
plates were inoculated in TSB containing 0.05 mM IPTG and grown with mild
shaking at 37°C for ~2 h until they reached an ODss of at least 0.6. Sera were
inactivated for 30 min at 56°C. The sera were subsequently diluted 100-fold in
Hanks balanced salt solution (HBSS; Gibco)-0.3% bovine serum albumin (BSA)
and then serially diluted in a volume of 50 ul in sterile U-bottom 96-well
microtiter plates (Nunc). Bacteria were diluted in HBSS-0.3% BSA to yield
~13,000 CFU/ml. Of this dilution, 37.5 pl was added to the serum dilutions.
Subsequently, 12.5 pl of baby rabbit complement (generous gift from Glaxo-
SmithKline) or, as a control for toxicity of the sera, heat-inactivated (30 min at
56°C) complement was added to the wells. The plate was incubated for 1 h at
37°C with shaking (60 rpm). Of each well, 15 ul was spotted onto a GC plate.
Plates were tilted to allow the drop to run down the plate. After overnight
incubation at 37°C in candle jars, the colonies were counted, and the percentage
of killing was calculated.

RESULTS

NalP-mediated release of LbpB from the cell surface. In the
supernatant of iron-depleted cultures of N. meningitidis HB-1,
an unencapsulated derivative of disease isolate H44/76, we
often detected a secreted protein that was recognized by LbpB-
specific antibodies (Fig. 1A). This protein migrated slightly
faster in SDS-PAGE than the LbpB found associated with the
cells. Quantification of the blots revealed that ~60% of the
total amount of LbpB produced was in the medium. We as-
sumed that a specific protease could mediate the proteolytic
release of LbpB from the cell surface. A prime candidate
would be the autotransporter NalP, since this is a cell-surface-
exposed protease that is known to proteolytically cleave other
cell-surface-exposed autotransporters, i.e., IgA protease, App,
and Ausl (35, 37). However, these NalP substrates themselves
also contain serine-protease motifs and could, therefore, be
responsible for the proteolytic release of LbpB as well. There-
fore, we assessed whether any of these autotransporters was
responsible for the release of LbpB. HB-1 and its nalP::kan,
app::kan, iga::kan, and ausl::kan derivatives were grown in the
presence of the iron chelator EDDHA to induce LbpB pro-
duction. Cells and supernatants were collected and analyzed
for the presence of LbpB by Western blotting with a polyclonal
antiserum raised against LbpB. LbpB was detected in both the
whole-cell lysates and the culture supernatants (Fig. 1B). In
the whole-cell lysates, LbpB was detected as a band with an
apparent molecular weight of ~90,000 that was not detected in
the IbpAB knockout strain (Fig. 1B). However, higher amounts
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FIG. 1. (A) Western blot of whole-cell lysate and spent medium of strain HB-1. (B) Western blot of whole-cell lysates and spent media of strain
HB-1 and various mutant derivatives indicated above the lanes. (C) Western blot of spent media of HB-1 and HB-1 nalP::kan (lanes 1), blebs
isolated from that media by high-speed ultracentrifugation (lanes 2), and the supernatant after blebs isolation (lanes 3). (D) Western blot of
whole-cell lysates and spent media of HB-1 nalP::kan overexpressing NalP or its active-site mutant derivative from the plasmids pEN300 and
pEN305, respectively. Cells were grown in the presence or absence of IPTG as indicated. In all panels, cells were grown in the presence of EDDHA
to impose iron limitation, and the blots were probed with anti-LbpB antiserum. Note that, relative to the original cultures, the supernatant samples

were 10-fold more concentrated than the whole-cell lysates.

of LbpB were detected in the whole-cell lysate of strain HB-1
nalP::kan than in those of the other strains. In the culture
supernatants of HB-1 and most of its derivatives, two forms of
LbpB were detected: a higher form of ~90,000 corresponding
to the LbpB form found in whole-cell lysates and a much more
prominent band of ~86,000 that likely represents a processed
LbpB released into the medium (Fig. 1B). However, this ~86K
form appeared absent in the culture supernatant of the
nalP::kan mutant, suggesting a role for NalP in the secretion of
LbpB. The supernatant of the nalP::kan strain did contain the
~90K form. This form could be pelleted from the supernatant
by ultracentrifugation step at 150,000 X g (Fig. 1C), indicating
that it corresponds to LbpB present in outer membrane blebs,
which are abundantly shed off from the meningococcal cell
surface. Overall, these results support our supposition that the
release of LbpB from the cell surface is mediated by NalP.

To assess directly whether the release of LbpB is mediated
by NalP, we expressed wild-type NalP or its active-site mutant
derivative NalPg,,,, from the neisserial expression plasmids
pEN300 and pEN305, respectively, in the nalP::kan mutant
strain. These plasmids contain the nalP alleles under the con-
trol of an IPTG-inducible /lac promoter (37). Western blot
analysis showed that all of the LbpB was released from the cell
surface and processed into the ~86K form when NalP was
overproduced from pEN300 (Fig. 1D). In contrast, when the
NalPg,,,, mutant protein was produced, LbpB was mainly
detected in the whole-cell lysates in the ~90K form, with minor
leakage of that form into the medium presumably via blebs
(Fig. 1D). Taken together, these results confirmed that LbpB
of HB-1 is secreted into the medium as a result of the proteo-
lytic activity of NalP.

Other neisserial lipoproteins are not released by NalP. Both
LbpB and NalP are lipoproteins containing a lipid moiety at
the N terminus that anchors them to the outer membrane (29,
37). Both proteins are processed by NalP near their N termini,
resulting in their release from the cell surface (37; see also
above). Therefore, we considered the possibility that NalP-
mediated cleavage is a general release mechanism for surface-
exposed lipoproteins of N. meningitidis. To investigate this
possibility, we studied the fate of two additional cell-surface-
exposed lipoproteins, the transferrin-binding protein TbpB
and the factor H-binding protein fHbp, which is a key inhibitor
of the alternative complement-activation pathway mediating
escape from killing by the innate immune system (22). Of note,
fHbp has also been detected in the supernatant of the N.
meningitidis strain MC58 (23). Western blot analysis with an
antiserum that recognizes both the TbpA and TbpB proteins
showed that the vast majority of TbpB was retained at the cell
surface, regardless of the presence or absence of NalP (Fig.
2A). Minor amounts of TbpB were detected in the culture
supernatant (Fig. 2A, note the 10-fold loading difference), but
this form had the same apparent molecular weight as the
cell-associated form and, in addition, TbpA was released to a
similar extent in the supernatant fraction (Fig. 2A). Therefore,
this form of TbpB is probably associated with outer membrane
blebs. As with TbpB, some fHbp was detected in the culture
supernatant, but the amounts released were not affected by
expression of NalP (Fig. 2B). These results showed that al-
though NalP may process other lipoproteins, it certainly is not
a general releasing factor for all of the lipoproteins exposed at
the cell surface.
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FIG. 2. (A) Western blot analysis of whole-cell lysates (upper
panel) and spent media (lower panel) of strains HB-1, HB-1 nalP::kan
complemented or not with the plasmid pEN300, and HB-1 lbpAB::kan,
using an antiserum recognizing both TbpA and TbpB. The arrowhead
and the asterisk at the right of each panel mark TbpA and TbpB,
respectively. The band in between TbpA and TbpB in the utmost right
lane in the lower panel represents LbpB, with which the antiserum
weakly cross-reacts (results not shown). (B) Western blot analysis of
whole-cell lysates and spent media of strain HB-1 and its nalP knock-
out derivative complemented or not with plasmid pEN300. The blot
was probed with mouse antiserum directed against fHbp. Note that,
relative to the original cultures, the supernatant samples were 10-fold
more concentrated than the whole-cell lysates.

The release of LbpB from the cell surface protects N. men-
ingitidis against bactericidal antibodies. In view of the require-
ment of iron for growth, it seems counterintuitive that the
bacteria release a factor that is thought to be part of the
lactoferrin receptor complex. However, LbpB is immunogenic
in humans (27), and its NalP-mediated release could poten-
tially avert antibody-mediated host responses to LbpB. We
tested this supposition by assessing the influence of NalP ex-
pression on the bactericidal activity of antibodies directed
against LbpB. The anti-LbpB serum R1 that we used was
raised against LbpB of strain BNCV. It does cross-react with
H44/76-derived LbpB on Western blots but not in bacteri-
cidal assays (27). Therefore, we expressed BNCV-derived
LbpB in the capsulated strain H44/76 to address whether
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FIG. 3. (A) Western blot analysis of the whole-cell lysates and spent
media of the strains used for the serum bactericidal assays, i.e., H44/76
pENLbpB(BNCV) and H44/76 nalP::kan pENLbpB(BNCV) induced or
not with IPTG. The IPTG concentrations used are indicated above the
panels. The blot was probed with anti-LbpB antiserum. (B) Results of the
serum bactericidal assay on H44/76 pENLbpB(BNCV) (M) and H44/76
nalP::kan pENLbpB(BNCV) (&) with several dilutions of the polyclonal
anti-LbpB antiserum R1. (C) Results of the serum bactericidal assay on
H44/76 pENLbpB(BNCV) (M) and H44/76 nalP::kan pENLbpB(BNCV)
(E) with a monoclonal antibody directed against PorA. The results shown
in panels B and C are averages of three independent experiments per-
formed in duplicate with the standard deviations indicated.

NalP-mediated release of LbpB would protect the bacteria
from the bactericidal activity of antibody plus complement.
Thus, we transformed H44/76 and its nalP::kan derivative
with pENLbpB(BNCYV), which carries the IbpB gene of
BNCYV under the control of the IPTG-inducible lac pro-
moter. Growing the cells under iron-replete conditions pre-
vented expression of the chromosomally encoded /bpB. At
both 0.05 and 0.5 mM IPTG, LbpB was released into the
medium of the NalP* strain, although considerable amounts
of LbpB could still be detected in the whole-cell lysates,
which suggests that the level of expression of the chromo-
somal nalP is rate-limiting for the release of LbpB (Fig. 3A).
As expected, hardly any LbpB was released into the medium
of the nalP mutant strain (Fig. 3A). We performed a serum
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bactericidal assay on cells that had been induced for LbpB
expression with 0.05 mM IPTG with the bactericidal anti-
LbpB antiserum R1 (Fig. 3B). Killing of H44/76 by R1
required a higher concentration of the serum than was
needed to obtain a similar degree of killing of H44/76
nalP::kan (Fig. 3B). A bactericidal anti-PorA monoclonal
antibody was used as a positive control and resulted in equal
killing of both strains (Fig. 3C). Apparently, the NalP-me-
diated release of LbpB into the medium resulted in suffi-
ciently lower levels of cell surface-exposed LbpB to provide
a considerable degree of protection against LbpB-specific
bactericidal antibodies. The remaining bactericidal activity
on the H44/76 cells could be explained by the considerable
levels of LbpB that remained present at the cell surface
under the LbpB overproduction conditions even when NalP
was expressed (Fig. 3A). Overall, the results suggest that the
release of LbpB by NalP could protect N. meningitidis from
the immune system during infection and/or colonization.

Released LbpB is cleaved near the N terminus. The expres-
sion of BNCV-derived LbpB from plasmid yielded amounts of
LbpB released into the medium that were detectable on a
Coomassie blue-stained SDS-PAGE gel. We applied mass
spectrometry to analyze the differences between this released
LbpB and LbpB recombinantly produced in Escherichia coli
(27). The LbpB bands were excised from SDS-PAGE gels and
treated with trypsin, and the resulting peptides were analyzed
by using MALDI-TOF-TOF. Both samples yielded peptide
mass fingerprints that positively identified the proteins as
LbpB from BNCV, which was confirmed by the sequence anal-
ysis of multiple peptide peaks. In the recombinant LbpB sam-
ple, however, peaks were detected that were absent in LbpB
from the medium sample. These peaks contained peptides
corresponding to residues 43 to 71 and residues 45 to 71
(S¥KD*VPTPPPAKPSIEITPVNRPAVGAAMR™"). A peak
corresponding to residues 75 to 81 (RNTAFHR) was identi-
fied in both samples. Thus, the NalP-mediated cleavage targets
a sequence between residue 19, i.e., the N-terminal lipidated
cysteine after cleavage by signal peptidase II, and residue 75.

The release of LbpB occurs in the late growth phase. N.
meningitidis presumably needs lactoferrin as an iron source
during colonization of the mucosal surfaces. Iron requirement
might be more important early during colonization, while eva-
sion from antibodies likely is important at later stages. To
investigate whether LbpB release is influenced by the growth
phase, we performed a growth experiment and took samples
every hour for 7 h (Fig. 4A). Western blot analysis showed that
LbpB was released at later growth stages (Fig. 4B). Consis-
tently, Western blot analysis with an antiserum that recognizes
the translocator domain of NalP indicated that the levels of
NalP also increased during growth (Fig. 4C). Particularly, cell-
associated full-length NalP was found to accumulate during
growth (Fig. 4C). This cell-associated form of NalP, rather
than its secreted passenger domain, is probably responsible for
LbpB release.

Released LbpB is still able to bind lactoferrin. We next
sought to determine whether the truncated LbpB that is re-
leased into the medium could still bind lactoferrin. Previously,
we demonstrated that the intact LbpB is heat modifiable, i.c.,
the folded form migrates faster during nondenaturing SDS-
PAGE than the denatured form, and that lactoferrin can bind
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FIG. 4. (A) Growth curve of strain HB-1. Cells were grown for 7 h
in the presence of EDDHA to impose iron limitation. Samples were
taken every hour for Western blot analysis. (B) Western blot analysis
of whole-cell lysates (upper panel) and spent media (lower panel)
using an antiserum recognizing LbpB. (C) Western blot analysis of
whole-cell lysates using an antiserum recognizing the translocator do-
main of NalP. An asterisk indicates the NalP translocator domain, and
a dot indicates full-length NalP.

to the nondenatured form on a blot (29). To investigate
whether the released truncated form of LbpB can bind lacto-
ferrin, concentrated culture supernatant of strain HB-1 carry-
ing pENLbpB(BNCV) was separated by SDS-PAGE either
under denaturing conditions or under nondenaturing condi-
tions. The proteins were blotted to nitrocellulose membranes,
which were either incubated with LbpB-specific antiserum or
with peroxidase-conjugated lactoferrin. The immunoblot re-
vealed that the released LbpB is heat modifiable (Fig. 5) as
reported previously for the intact LbpB (29), indicating this
truncated form has retained its native folded conformation.
Furthermore, lactoferrin preferentially bound to the nondena-
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FIG. 5. (A) Western blot analysis of concentrated supernatant of
the strain HB-1 overexpressing LbpB(BNCV) from plasmid. Protein
samples were incubated either at 100°C (lane d) or at room tempera-
ture (lane n) prior to seminative SDS-PAGE. The blot was probed with
anti-LbpB antiserum. (B) Lactoferrin binding assay on the same sam-
ples as in panel A. The blot was incubated with peroxidase-coupled
human lactoferrin.

tured form (Fig. 5). Thus, the released LbpB has retained its
ability to bind lactoferrin.

DISCUSSION

Lactoferrin is found in phagocytic cells and in body fluids
such as milk, mucus, and tears. To satisfy its need for iron, N.
meningitidis expresses a lactoferrin receptor complex consisting
of LbpA and LpbB. The receptor is specific for human lacto-
ferrin and is, therefore, thought to be one of the reasons for
the host specificity of these bacteria (18). The role of the LbpB
protein in the complex is puzzling. The LbpB protein shares
sequence similarity with the transferrin-binding protein B
(TbpB). Both are lipoproteins and appear to facilitate a more
efficient uptake of iron from their respective ligands (2, 7).
LbpB is not essential for the acquisition of iron from lactofer-
rin in N. meningitidis since an /bpB mutant, in contrast to an
IbpA mutant, can still grow on lactoferrin as an iron source (7,
29). Nevertheless, lactoferrin-binding activity of LbpB has
been demonstrated in vitro (29) and is possibly mediated via its
two long stretches of acidic amino acids, which could bind the
positively charged ligand thereby bringing the lactoferrin in
close contact with LbpA. In various meningococcal isolates,
the gene cluster encoding the lactoferrin receptor is generally
present, but this is not the case in the closely related gonococci
(1). Half of the clinical isolates of N. gonorrhoeae lack the
complete cluster, whereas the others possess lbpA, but only
30% of them possess lbpB (1). However, the overall presence
of IbpB in N. meningitidis isolates suggests an important role
for the protein in colonization or infection, which may be
different from acting as an accessory factor for acquiring iron
from lactoferrin.

In the present study we show that LbpB is released from the
cell surface of N. meningitidis H44/76 through proteolytic
cleavage by the autotransporter NalP and that this release
protects the bacteria against the complement-mediated killing
by anti-LbpB antibodies. Sera from convalescent patients con-
tain antibodies that recognize LbpB, suggesting that LbpB is a
target for the immune system during infection (27). Since
LbpB is not essential for iron utilization from lactoferrin, we
propose that the NalP-mediated release of LbpB could regu-
late the availability of LbpB on the cell surface in order to
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prevent killing of N. meningitidis during infection. It is inter-
esting that the nalP gene is disrupted in all currently available
gonococcal genome sequences (e.g., the open reading frames
with locus tags NGK_0695 up to NGK_0699 in the genome
sequence of N. gonorrhoeae strain NCCP11945). Hence, the
absence of an /bpB gene in many gonococci (see above) may be
related to the incapability of these bacteria to release the
protein from their cell surface.

If LbpB is not essential for the utilization of lactoferrin as an
iron source and if it is a target for the host immune response,
why is the protein than expressed at all? What could be alter-
native functions for the protein? A clue might be that lacto-
ferrin is known to have additional antimicrobial activities in-
dependent of its ability to chelate iron (4, 9, 24). For example,
apolactoferrin interacts directly with the outer membrane of
Gram-negative bacteria resulting in the release of lipopolysac-
charides (11, 12). This bactericidal activity of lactoferrin is
associated with a small positively charged peptide of approxi-
mately 47 amino acids, lactoferricin, that can be proteolytically
released from the N terminus of the protein (5, 15). In Strep-
tococcus pneumoniae, which is present in the same niche as N.
meningitidis, it has been demonstrated that the surface-ex-
posed protein PspA confers resistance to the bactericidal ef-
fects of lactoferrin by binding it, presumably on its active bac-
tericidal site, thereby protecting the bacteria from the lethal
action of lactoferrin and lactoferricin (33). Interestingly, it can
also do so in soluble form. It is conceivable that LbpB could
have a similar function in N. meningitidis (21), and our results
indicate that the released LbpB retains its lactoferrin-binding
properties.

Furthermore, lactoferrin was also shown to proteolytically
cleave two factors, the autotransporters Hap and IgAl pro-
tease, of Haemophilus influenzae important for the coloniza-
tion of the nasopharynx (16). N. meningitidis expresses homo-
logues of IgAl protease and Hap (36), which also could be
targets for the proteolytic activity of lactoferrin. The binding of
lactoferrin to LbpB might prevent lactoferrin-mediated cleav-
age of these neisserial autotransporters.

Thus, even though Neisseria needs lactoferrin as an iron
source during colonization of the mucosal surfaces, it should
also be protected against its antimicrobial properties. Possibly,
N. meningitidis needs to balance between protection against
the bactericidal effect of lactoferrin and protection from anti-
body-mediated recognition of LbpB. NalP, the synthesis of
which is phase-variable, can modulate the presence of LbpB at
the bacterial cell surface. In the absence of NalP, all LbpB
produced is at the cell surface where it binds lactoferrin,
thereby presumably limiting its bactericidal effect. In the pres-
ence of NalP, most LbpB is removed from the cell surface
rendering the bacteria less susceptible to bactericidal activity of
antibodies directed against LbpB, but possibly more vulnerable
against the bactericidal activity of lactoferrin. Alternatively, it
is also possible that LbpB can still exert its postulated func-
tions, both in protecting against lactoferrin and in iron acqui-
sition, when it is present in the medium. In the latter case,
LbpB could act like the hemophore HasA of Serratia marc-
escens, which captures free heme or extracts it from hemoglo-
bin in the external medium and presents it to a specific outer
membrane receptor (14). Similarly, released LbpB might bind
lactoferrin in the medium and deliver it to the receptor LbpA
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in the outer membrane, for which it has affinity (31). Clearly, to
fully understand the role of the NalP-mediated release of
LbpB, we first need a better understanding of the role of LbpB
in iron acquisition and other possible functions described
above, which will be our next goal.
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