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We report on the hydrogen production properties of the unicellular, diazotrophic cyanobacterium Cyanothece sp.
strain ATCC 51142. This organism has a versatile metabolism and can grow in the presence or absence of combined
nitrogen and can grow photosynthetically or mixotrophically and heterotrophically in the presence of glycerol. The
strain produces a bidirectional hydrogenase (encoded by the hox genes), an uptake hydrogenase (hupLS), and
nitrogenase (nifHDK). We demonstrated hydrogen production by both the hydrogenase and the nitrogenase under
appropriate metabolic conditions. The highest rates of hydrogen production were produced under nitrogen-fixing
conditions when cells were grown and incubated under continuous light conditions, in either the presence or absence
of glycerol. Under such nitrogen-fixing conditions, we have achieved rates of 300 �mol H2/mg chloramphenicol
(Chl)/hr during the first 24 h of incubation. The levels of H2 measured were dependent upon the incubation
conditions, such as sparging with argon, which generated anaerobic conditions. We demonstrated that the same
conditions led to high levels of H2 production and N2 fixation, indicating that low-oxygen conditions favor nitro-
genase activity for both processes. The levels of hydrogen produced by the hydrogenase are much lower, typically 5
to 10 �mol H2/mg Chl/hr. Hydrogenase activity was dependent upon electron transport through photosystem II (PS II),
whereas nitrogenase activity was more dependent on PS I, as well as on respiration. Although cells do not double under
the incubation conditions when sparged with argon to provide a low-oxygen environment, the cells are metabolically
active, and hydrogen production can be inhibited by the addition of chloramphenicol to inhibit protein synthesis.

Cyanobacteria are among the most ancient organisms on earth
and have existed for at least 2.5 billion years (21). They are
oxygenic, photosynthetic microbes that contain two photosystems,
photosystem II (PS II) and PS I. The acquisition of the two
photosystems enabled the bacteria to split water and to release O2

into the atmosphere. Until that time, the atmosphere was reduc-
ing, and it was the enhancement of oxygen in the atmosphere
from this process that allowed for the development of higher
organisms. Prior to this oxidation, organisms lived in a primarily
reducing and anaerobic environment, and cyanobacteria have
retained regulatory and metabolic processes that enable them to
function under such conditions (33). All cyanobacteria fix CO2

from the atmosphere, and some strains, both filamentous and
unicellular, can also fix N2 to produce combined nitrogen in the
form of ammonia.

Many photosynthetic microbes, including cyanobacteria, can
produce H2. In cyanobacteria, there are two different enzymes
capable of producing molecular hydrogen, nitrogenase and a bi-
directional hydrogenase (13, 22, 25, 35, 36, 43). Nitrogenase re-
duces protons to H2 concomitantly with reduction of N2 to am-
monia. The H2 produced by the nitrogenase is typically consumed
rapidly by an uptake hydrogenase, an enzyme that has been found
in most of the N2-fixing cyanobacteria studied to date. Indeed,
mutations that impair the activity of the uptake hydrogenase can
enhance net H2 photoproduction in those strains (8, 36, 43). In

addition, many cyanobacteria contain a bidirectional hydroge-
nase, an NiFe enzyme that belongs to the class of NAD(P)-
reducing hydrogenases that are homologous to the HoxFUYH
complex found in Ralstonia eutropha (13, 35, 36, 43). The bidirec-
tional hydrogenase is not found in all cyanobacteria but can be
found in non-nitrogen fixers, such as Synechocystis sp. PCC 6803,
as well as in those that can fix N2. The bidirectional hydrogenase
has been studied in a number of cyanobacteria, including Syn-
echocystis sp. strain PCC 6803, especially after the genome se-
quence of many strains was completed (8, 12, 13, 35, 36, 43).

A great deal of effort has been invested in the study of
hydrogen production in many cyanobacteria (2, 11, 30). This
has included research on heterocystous cyanobacteria, such as
Anabaena and Nostoc strains, as well as on a variety of non-
nitrogen-fixing unicellular cyanobacteria. The amount of hy-
drogen produced varies over orders of magnitude, and while
no single model system has currently been identified (11),
efforts are being made to identify new and better systems (1).
Unfortunately, few unicellular diazotrophic cyanobacteria
have been studied for hydrogen production, and such strains
have some rather valuable assets for net hydrogen production
by a photosynthetic microbe (16, 30, 42).

We have been studying a unicellular, diazotrophic cyanobac-
terium, Cyanothece sp. strain ATCC 51142, a benthic strain
isolated off the U.S. Gulf Coast (23). This organism has very
robust metabolic properties, including the ability to grow pho-
toautotrophically, mixotrophically, and heterotrophically (on
glycerol) either with combined nitrogen in the medium or
under N2-fixing conditions (26–29). We have demonstrated
that this strain temporally regulates the major metabolic pro-
cesses such that oxygenic photosynthesis occurs in the daytime
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and nitrogen fixation occurs at night. In addition, this regula-
tion is circadian, and nitrogen fixation can also take place
under continuous-light (LL, for 12-h light/light periods) con-
ditions after entrainment under 12-h light/dark (LD) cycles.
The rate of nitrogen fixation is extremely high, thus providing
a good basis for high rates of hydrogen production under
N2-fixing conditions. This strain is also notable for the fact that
it stores fixed carbon in large starch-like granules (10), espe-
cially under N2-fixing conditions. The granules form between
the photosynthetic membranes in the light and are used as a
substrate for respiration at night. This gives rise to a large burst
of respiration that can result in the production of ATP as well
as the reduction of intracellular oxygen. This storage of carbo-
hydrates remains high during growth under continuous-light
conditions and represents a large energy reserve that can
power and protect nitrogenase activity under appropriate con-
ditions. We have also documented the significant changes in
photosynthesis that occur between the light and dark phases
when the bacteria is grown under N2-fixing conditions (17, 18,
40, 41).

The genome sequence of this strain is now available (44),
and we know that the organism contains the bidirectional hy-
drogenase, an uptake hydrogenase, and an MoFe nitrogenase.
We have studied transcription throughout the 24-h cycle, in-
cluding growth under 12-h LD conditions (32), LL conditions
(38), and 6-h LD conditions (37), and have determined that the
uptake hydrogenase is transcribed in tandem with the large
nitrogenase cluster, whereas the bidirectional hydrogenase is
normally transcribed in the light or in the dark some 6 to 12 h
out of phase with the nitrogenase. The overall ability of this
strain to grow rapidly under either nitrogen-sufficient or nitro-
gen-deficient conditions, as well as in the presence of a carbon
source such as glycerol in complete darkness (DD, for dark/
dark), makes this a metabolically very attractive strain for
further analysis of hydrogen production. In this study, we will
present data for hydrogen production under a variety of dif-
ferent growth conditions, including in the presence or absence
of combined nitrogen. We demonstrate that this Cyanothece
strain is capable of extremely high levels of net hydrogen pro-
duction, especially under nitrogen-fixing conditions, even in
the presence of an uptake hydrogenase. We will also demon-
strate that H2 produced by hydrogenase is tied to PS II,
whereas H2 produced by nitrogenase is closely aligned with PS
I and respiration.

MATERIALS AND METHODS

Strain, medium, and growth conditions. Cyanothece sp. strain ATCC 51142
was grown in ASP2 medium as previously described in 250-ml Erlenmeyer flasks
containing 100 ml of medium with or without NaNO3, with shaking at 125 rpm
at 30°C, under cool-white fluorescent illumination of 30 �E m�2 s�l (23). When
indicated, glycerol was supplemented at a final concentration of 50 mM.

Recently, efforts have been made to optimize or improve the nutrient medium
for hydrogen production in Arthrospira (Spirulina) maxima (2), Anabaena varia-
bilis strain ATCC 29413 (3), and Synechocystis sp. strain PCC 6803 (5). We
compared the different media for both macro- and micronutrients and also made
use of the elegant optimization process described by Burrows et al. (5) to develop
a series of changes in ASP2. We found no change in hydrogen production by
modifying our main macronutrients, such as sulfur and phosphate, and addition
of additional micronutrients (such as nickel) had virtually no impact. We finally
determined that changing the iron composition to 10-fold more Fe, in the form
of ferric ammonium citrate, was beneficial, as was a five-fold reduction of Ca�2

by five times. We varied the pH in many of the experiments and finally deter-

mined the best rates at pH 7.4. This medium with enhanced iron and reduced
Ca�2 at pH 7.4 is referred to as ASP2-M, for modified ASP2.

Measurement of chlorophyll concentration. Chlorophyll a (Chl) concentration
of the cells was determined spectrophotometrically by measuring absorbance at
750, 678, and 620 nm. Cultures are usually diluted until the maximum reading is
below or equal to 0.5. Chlorophyll a concentration (in �g of Chl/ml) is given by
the following equation: [Chl] � 14.97(A678 � A750) � 0.615(A620 � A750).

Hydrogen measurement. Cyanothece sp. strain ATCC 51142 cultures were first
grown under continuous light (LL) for 4 to 9 days in 250-ml flasks containing 100
ml of culture, and each culture was split equally into two 66-ml clear glass bottles.
Rubber stoppers were used to seal the openings of the bottles. Our system was
first tested for air tightness by using pure hydrogen. We injected 3.3 ml of pure
hydrogen into the bottle, mixed well, and measured the hydrogen concentration
by a gas chromatograph (GC). A week later, we measured the hydrogen con-
centration from the same bottle again and found that the concentration re-
mained the same, indicating that the system was airtight.

We used an identical protocol for all the preliminary experiments. Cultures
were grown under the different light conditions in 250-ml Erlenmeyer flasks in
air, in the presence or absence of glycerol, and then transferred at the growth
concentrations to the sealed 66-ml glass bottles. In the initial experiments, the
bottles were just sealed with a rubber stopper. In later experiments, a sparging
gas (such as argon, CO2, or N2) was used to provide a more anaerobic environ-
ment, and the incubation bottles were sparged for 1 min. The sealed bottles were
then shaken at 125 rpm at 30°C with or without light for 6, 24, 48, and 72 h.
Hydrogen production was very low prior to 6 h and then increased monotonically
through 24 h, whereas O2 levels decreased about 50% by 48 h (data not shown).
Depending on the exact incubation conditions, hydrogen accumulation contin-
ued to increase or began to plateau. For this reason, we report the rates of
hydrogen accumulation for the initial 24 h. A syringe with a needle was used to
withdraw 0.5 ml of gas from the headspace of the bottles, and this was injected
into a gas chromatograph (HP 5890 Series II; Hewlett Packard Ltd.) equipped
with a thermal conductivity detector and a molecular sieve column (HP-
Molesieve, catalog number 19095P-MS9). Nitrogen was used as a carrier gas
routinely. For important conclusions, experiments were repeated at least twice
with nitrogen as the carrier gas and confirmed once with argon as the carrier gas.

Previous authors have used a variety of different units to present their hydro-
gen production data. The unit most frequently used for cyanobacterial H2 pro-
duction is based on chlorophyll (as �mol H2 mg Chl�1 h�1), and this was our
default unit (11). We calculated a rate by dividing the total H2 accumulated/mg
of Chl over the first 24-h period to generate the data as �mol of H2/mg of Chl/h.
We also calculated the data as percent H2 produced/�g of dry weight of cells,
using the standardization of A730 versus dry weight, as generated by Nedbal et al.
(20). To calculate the volume (�l) of H2 produced, the peak area values for each
peak in the chromatograph were divided by a calculated conversion factor of
871.64. The molarity (�mol) of the H2 produced was calculated by dividing the
H2 volume (�l) by 24.4. H2 production was plotted on the basis of chlorophyll (as
�mol H2 mg Chl�1). The H2 production rate was calculated by dividing the
molarity of H2 production by the time period (normally 24 h).

Nitrogenase assay. Nitrogenase activity was assayed by a modified acetylene
reduction method (6, 26). Assays were performed in 66-ml clear glass bottles,
except that only 12 ml of the cultures was used, and 3 ml of acetylene was injected
into each bottle. The bottles were shaken under light at 30°C for 2 h. A 0.5-ml gas
sample was analyzed for the percentage of acetylene reduced to ethylene in a gas
chromatograph (HP 5890 Series II; Hewlett Packard, Ltd.) with a 6-ft Poropak
N column and a flame ionization detector. Triplicate samples were analyzed for
each set of conditions. The percentage of acetylene reduction in culture grown in
ASP2 medium without combined nitrogen (ASP2�) under aerobic conditions
was normalized to 1.

Photosynthetic inhibitors. The inhibitors used in this study included dichlo-
rophenyl dimethylurea (DCMU; 10 �M), methyl viologen (MV; 20 �M), potas-
sium cyanide (KCN; 10 �g/ml), and chloramphenicol. The addition of these
compounds from stock solutions resulted in no change in chlorophyll concen-
tration. Since DCMU and chloramphenicol were dissolved in ethanol, we tested
the hydrogen production with ethanol (0.1%) to exclude the possible effect of
ethanol on hydrogen production. The results were negative.

RESULTS

Growth of Cyanothece sp. strain ATCC 51142 under different
physiological conditions. Cyanothece sp. strain ATCC 51142 is
a unicellular, diazotrophic cyanobacterium with a robust me-
tabolism. It can grow with combined nitrogen or under nitro-

4294 MIN AND SHERMAN APPL. ENVIRON. MICROBIOL.



gen-fixing conditions under 12-h LD or LL conditions, as well
as with glycerol in darkness (DD). Under nitrogen-fixing con-
ditions, one of the key attributes is the ability of the strain to
store carbon in large glycogen granules that form between the
photosynthetic membranes and then utilize this potential en-
ergy as a substrate for respiration in the dark. We have made
hydrogen measurements under many of these different condi-
tions, but we will concentrate on hydrogen produced by hydro-
genase when cells are grown under nitrogen-replete conditions
and on the production of hydrogen by nitrogenase when com-
bined nitrogen is absent, mostly under LL conditions. A sum-
mary of the results for many different experiments under these
different conditions is shown in Table 1, and the results are
described in detail below.

Hydrogen production from hydrogenase. When cells were
grown in the presence of combined nitrogen, typical hydrogen
production rates were 2 to 10 �mol H2 mg Chl �1 h�1. This
rate was independent of whether the cells were grown under
the LL or LD condition. Since cyanobacteria assimilate am-
monium preferably over nitrate, we used ammonium nitrate or
ammonium chloride instead of sodium nitrate in the culture
medium to grow the cells. Cyanothece sp. strain ATCC 51142
grew faster in medium containing ammonium, but hydrogen
production was not increased (data not shown). We also in-
creased the light intensity to 100 and 200 �mol photons m�2

s�1 during both the growth and incubation periods. With in-
creased light intensity, the maximum rate of hydrogen produc-
tion increased somewhat but to levels that were still �10 �mol
H2 mg Chl�1 h�1. When nitrate-grown cells were incubated in
the presence of argon, hydrogen production fell to zero (Table
1). This is likely due to the inhibition of photosystem II, as has
been shown previously (9, 15, 24). We conclude that hydrogen
production by hydrogenase in Cyanothece is dependent upon

photosynthesis and requires an electron flow through PS II to
reduce the quinone pool.

Hydrogen production from nitrogenase in Cyanothece sp.
strain ATCC 51142. During the initial stages of our study, we
grew Cyanothece sp. strain ATCC 51142 under nitrogen-fixing
conditions using a variety of different light regimes. We grew
cells for approximately 1 week under 12-h LD and LL condi-
tions at either 30 or 100 �mol photons m�2 s�1. The cells were
then incubated in 66-ml glass bottles under different combina-
tions of light and dark conditions. We concluded that the
highest levels of hydrogen production were obtained with cells
that were grown and incubated under the LL condition (data
not shown). It should be noted that we did not concentrate
cells prior to incubation. When cultures were grown under the
LL or LD condition for shorter periods of time, we could
obtain higher specific activities with these dilute cultures. How-
ever, our aim was to identify typical conditions that could be
easily scaled up for high-volume production, and we standard-
ized on LL growth and incubation conditions.

Another interesting feature became evident as we were
studying hydrogen production in the presence of glycerol.
When cells were adapted to growth on glycerol as described
previously (28, 29), hydrogen production decreased from the
levels in control cultures that were grown in the absence of
glycerol. We then studied this phenomenon in more detail by
taking a fresh stock of Cyanothece sp. strain ATCC 51142 from
the freezer and measuring hydrogen production at various
stages during subculturing in the presence and absence of
glycerol (Table 2). It can be seen that hydrogen production in
the absence of glycerol was very high when the cells were young
but that hydrogen production was lower in cultures containing
glycerol. However, once the glycerol-grown cultures adapted
well for growth on glycerol (by the second subculture on glyc-
erol), hydrogen production increased, whereas hydrogen pro-
duction for the non-glycerol-containing cultures declined. This
was a reproducible phenomenon, indicating that there are sig-
nificant metabolic shifts in the cells growing on glycerol.

In order to determine the most consistent way to grow our
cells for studying hydrogen production, we then began a series
of experiments that began from colonies on an agar plate. A
colony was picked from an ASP2 plate, grown in ASP2 liquid
medium for �14 days, and then subcultured into ASP2� me-
dium for up to 14 days. Cells were withdrawn from this culture
at 7 to 14 days and incubated as described in Materials and
Methods. As shown in Fig. 1, such cultures produced hydrogen
at rates of 270 � 50 �mol H2 mg Chl�1 h�1 when incubated

TABLE 1. The rate of hydrogen production in Cyanothece sp.
strain ATCC 51142 under different conditions

Condition Rate of H2 productionc

Lighta NO3
� Glyb Sparging

gas
�mol H2/mg

Chl/h
�mol H2/mg

dry wt/h

LL � � Argon 80.3 � 10.5 0.6 � 0.08
LL � � N2 31.8 � 5.0 0.25 � 0.04
LL � � CO2 10.9 � 8.1 0.1 � 0.06
LL � � Argon 24.3 � 4.3 0.2 � 0.03
LL � � N2 2.8 � 1.3 0.02 � 0.01
LL � � CO2 2.7 � 1.1 0.02 � 0.01
DD � � Argon 0 0
DD � � Argon 0 0
LL � � Air 2.63 0.02
LL � � Argon 0 0
LL � � Air 2.83 0.02
LL � � Argon 0 0
HL � � Air 5.0 � 2.0 0.04 � 0.02
DD � � Air 2.38 0.02
DD � � Air 1.0 0.01
HL � � Argon 0 0
DD � � Argon 0 0
DD � � Argon 0 0

a LL, continuous light at 30 �mol photons m�2 s�1; DD, continuous dark; HL,
continuous light at 200 �mol photons m�2 s�1.

b Supplementation with glycerol (50 mM).
c Over the first 24 h (average of n � 3).

TABLE 2. The impact of metabolic adaptation on the rate of
hydrogen production in N2-fixing Cyanothece

sp. strain ATCC 51142a

Subculture stage
(week no.)

Rate of H2 production (�mol H2/mg
Chl/h) in the indicated medium

ASP2� ASP2� � Glyb

1 80 30
2 70 50
3 50 80
4 30 100

a Cultures were grown as described in Materials and Methods.
b Gly, glycerol (50 mM).

VOL. 76, 2010 H2 EVOLUTION BY A UNICELLULAR N2-FIXING CYANOBACTERIUM 4295



under argon and at 33 � 5 �mol H2 mg Chl�1 h�1 in air. These
figures correspond to 2.1 and 0.254 �mol H2/mg of dry weight,
respectively (Table 1). We obtained such results consistently,
and this became our preferred protocol for analyzing H2 pro-
duction. Nonetheless, we concentrated on analyzing cells that
were adapted for growth in glycerol so that we could determine
the impact of mixotrophic conditions on H2 production. Re-
sults for cells growing completely photoautotrophically will be
reported separately (A. Bandyopadhyay, J. Stöckel, H. Min,
L. A. Sherman, H. B. and Pakrasi, unpublished data).

Hydrogen production in cultures of Cyanothece sp. strain
ATCC 51142 grown under nitrogen-fixing conditions was sig-
nificantly higher than when combined nitrogen was present
(Fig. 2). Under these conditions, hydrogen production contin-
ued at a high level for at least the first 2 days before reaching
a plateau by day 3. In this experiment, incubation was per-
formed after the bottle was sparged with argon, and this re-
producibly provided the highest levels of hydrogen production
for cells growing in the presence of glycerol. The rates of
hydrogen production on the first day could easily reach 80 to
200 �mol H2 mg Chl�1 h�1 during our normal growth regime.

When we used cultures grown for 5 days instead of 7-day
cultures and a 40-ml volume instead of 45 ml in the bottles, we
could achieve a rate of 300 �mol H2/mg Chl/h (Fig. 3a). This
implied that the headspace volume and back pressure on the
nitrogenase limited the total hydrogen accumulation after a
period of 2 to 4 days. Note that incubation in the dark com-
pletely obliterated H2 production, indicating an important
light-dependent step. If the samples were incubated under air,
the light dependence was not complete although the rates did
declined by 85 to 90% (Fig. 3b). Some or all of this residual
activity in the air was likely due to hydrogenase, in addition to
the nitrogenase.

We utilized other gases for sparging during incubation to
study the properties of these cultures. In one set of experi-
ments, we sparged with N2 gas instead of argon in order to
provide nitrogenase with its typical substrate. We reasoned
that argon was valuable by providing an anaerobic environ-
ment that prevented nitrogenase from being inactivated by
oxygen. The addition of N2 to the incubation bottle would
provide nitrogenase with a normal substrate, and this would
decrease the overall amount of hydrogen produced. As shown
in Fig. 2 and Table 1, the results were consistent with this
hypothesis, and the amount of hydrogen produced dropped by
80 to 90%. We also sparged with CO2 and determined that
there was an interaction between CO2 fixation by the Calvin
cycle and glycerol metabolism (Table 1). The addition of CO2

seemed to prevent the breakdown of glycerol, and separate
metabolic experiments support this contention (Y. Tang et al.,
unpublished observations).

We studied the involvement of nitrogenase further by add-
ing NH4NO3 to the incubation bottle. Ammonium is known to
inhibit nitrogenase gene expression, and we expected that
there would be a drop in hydrogen produced. This was indeed
the case, and hydrogen production declined by 80 to 90%. Such
results raised the question of whether the cells in the incuba-
tion bottle were metabolically active and were still producing
new nitrogenase. Therefore, we added 20 �g/ml chloramphen-
icol to the incubation bottle. Once again, hydrogen production

FIG. 1. H2 production by cultures of Cyanothece sp. strain ATCC
51142 grown in ASP2 without combined nitrogen (ASP2�) after sub-
culture from a culture grown for 14 days in ASP2 medium. �, sparged
with argon; �, sparged with air.

FIG. 2. H2 production by cultures of Cyanothece sp. strain ATCC 51142 grown in ASP2 without combined nitrogen (ASP2�) with 50 mM
glycerol and incubated under different conditions, with and without sparging with argon (Arg) and 20 �g/ml chloramphenicol (Cm), as indicated.
Nitrogenase is responsible for high levels of hydrogen production in ASP2� medium under anaerobic conditions with glycerol, and de novo protein
synthesis is needed.

4296 MIN AND SHERMAN APPL. ENVIRON. MICROBIOL.



declined significantly and eventually declined to zero after 5
days of incubation (Fig. 2). These results indicate that addi-
tional synthesis of nitrogenase enzyme during incubation was
required for high levels of hydrogen production.

Hydrogen production in Cyanothece sp. strain ATCC 51142
and the cellular energy budget. In order to understand the
metabolic driving forces for the hydrogenase-generated and
nitrogenase-generated hydrogen production, we performed a
few simple experiments that would block certain components
of the photosynthetic and respiratory mechanisms. We used 10
�M DCMU to block PS II, 20 �M methylviologen (MV) to
draw off electrons from PS I, and 10 �M KCN to block respi-
ration and electron flow on the reducing side of the cyto-
chrome b6f complex. The results in Table 3 show that hydro-
genase (cells grown with nitrate) and nitrogenase activities
have different energy resource requirements. The involvement
of PS II for hydrogenase activity was verified by the addition of
10 �M DCMU (a PS II inhibitor) to cells at the beginning of
the incubation period. This resulted in an 80% reduction of H2

production within the first day and a 100% reduction thereaf-
ter. The addition of DCMU had a strong effect on hydrogenase

activity, in the presence or absence of glycerol, whereas MV
and KCN had no effect. As indicated previously, all of these
experiments were performed with air in the incubation bottle
since sparging with argon abolished hydrogenase activity via its
action on PS II. We also measured H2 production in the pres-
ence of dithionite or glucose/glucose oxidase/catalase (14) to
generate an anaerobic environment and obtained similar results
for H2 production as with argon (data not shown). Therefore, we
conclude that the production of H2 through hydrogenase requires
electron flow through PS II.

The results for H2 production from nitrogenase were com-
plementary to those from the hydrogenase. In the presence of
air, but in the absence of glycerol, DCMU reduced the activity
�20%. However, DCMU in the presence of argon had no
effect since PS II was already inhibited. Interestingly, for cul-
tures grown in the presence of glycerol under nitrogen-fixing
conditions, DCMU actually led to an increase in hydrogen
production during air incubation (Table 3). We suggest that
this is due to the inhibition of oxygen evolution that prevents
damage to nitrogenase. Treatment with MV or KCN led to a
drop of 60 to 70% in the rate of hydrogen production under all

FIG. 3. (a) H2 production by cultures of Cyanothece sp. strain ATCC 51142 grown in ASP2 medium without combined nitrogen (ASP2�) with
50 mM glycerol, incubated under either the LL (�) or DD (f) condition, and sparged with argon. (b) H2 production by cultures of Cyanothece
sp. strain ATCC 51142 grown in ASP2� medium with 50 mM glycerol, incubated under either the LL (‚) or DD (Œ) condition, and sparged with
air.
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measured conditions (Table 3). We interpret this to indicate
that both PS I and respiration were important as energy
sources for nitrogenase-generated H2 production. Consistent
with this idea, incubating N2-fixing cultures in the presence or
absence of glycerol, with light (640-nm light-emitting diodes
[LEDs]) absorbed primarily by phycobilisomes, generated a 20
to 40% decrease in H2 production compared to similar cul-
tures illuminated with white light (data not shown).

In addition, we experimented with some modifications of the

normal medium. This medium is somewhat high in calcium and
low in iron relative to many other media used for cyanobacte-
ria, so we developed a modified medium with one-fifth the
level of calcium and 10-fold the level of iron in the medium.
We also buffered the medium at different pHs to determine if
this also had an impact on the production of hydrogen. As
shown in Fig. 4, the modified medium at pH 8.4 demonstrated
increased hydrogen rates of some 50 to 70%. However, low-
ering the pH to 7.4 significantly increased the rate of hydrogen
production and kept it at high levels for at least the first 2 days.
The rate during the first day was 250 �mol H2/mg Chl/h, and
it was still at 200 �mol/mg Chl/h if the rate was measured over
a 2-day period (Fig. 4).

Nitrogenase activity. We further tested the contention that
nitrogenase is responsible for hydrogen production under ni-
trogen-fixing conditions by directly measuring nitrogenase ac-
tivity. As shown in Table 4, nitrogenase activity increased sig-
nificantly in the presence of glycerol and especially after
sparging with argon. Sparging with N2 also led to increases in
nitrogenase activity, but this enzyme activity was some 5-fold
less than that after argon sparging. In all cases, the relative
increases in nitrogenase activity and hydrogen production are
similar, as can be seen in Table 4. The quantitative differences
are likely due to the fact that nitrogenase activity is measured
with 12-ml cultures in the incubation bottles instead of the 40
to 50 ml for the hydrogen production measurements. This will
permit a greater accumulation of gas and lead to the higher
ratio seen from the nitrogenase activity. We conclude that the
high level of hydrogen produced under nitrogen-fixing condi-
tions was due to production via nitrogenase.

DISCUSSION

This report represents a comprehensive study of hydrogen
production in a unicellular, diazotrophic cyanobacterium. Al-
though we have not yet begun an optimization process, the
rates we report are among the highest reported for nitrogen-
fixing cyanobacteria (11, 30). The rate of 300 �mol/mg Chl/h is
equivalent to 16.5 ml/liter/h and would be at the high end of

TABLE 3. Effects of photosynthetic inhibitors on H2 production in
Cyanothece sp. strain ATTC 51142

LL condition
Relative H2
productiona

NO3
� Glycerol

supplementation Sparging gas(es) Treatment

� � Air Control-1 1.0
� � Air DCMU 0.2
� � Air MV 1.0
� � Air KCN 1.0
� � Air Control-2 1.0
� � Air DCMU 0.2
� � Air MV 1.0
� � Air KCN 1.0
� � Argon/air Control-3 1.0
� � Argon DCMU 1.0
� � Air DCMU 0.8
� � Argon MV 0.4
� � Air MV 0.4
� � Argon KCN 0.3
� � Air KCN 0.3
� � Argon/air Control-4 1.0
� � Argon DCMU 1.0
� � Air DCMU 1.2
� � Argon MV 0.4
� � Air MV 0.4
� � Air KCN 0.3
� � Argon MV�KCN 0.3
� � Argon KCN 0.3

a H2 production rates from the untreated controls were as follows: (in �mol
H2/mg Chl/h) Control-1, 2.1; Control-2, 2.0; Control-3 (argon), 31; Control-3
(air), 3.5; Control-4 (argon), 123; Control-4 (air), 18. The experiments were
normalized to 1.0 for each of the six experimental conditions.

FIG. 4. H2 production by cultures of Cyanothece sp. strain ATCC 51142 grown in either regular ASP2 medium without combined nitrogen
(ASP2�; pH 7.9) (E) or in ASP2� medium modified (with one-fifth the amount of Ca2� and 10-fold Fe3�) at pH 7.4 (�) or pH 8.4 (F). All
samples were sparged with argon.
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the range reported in a recent review by Tsygankov (39). Hy-
drogen production was obtained from both hydrogenase and
nitrogenase under different growth conditions, and we will be
interested in understanding the properties of both enzymes. A
few of the topics that we must explore include the amount of
hydrogenase and nitrogenase transcript and protein produced
in the cell, the protection of enzymes from oxygen, and respi-
ratory and photosynthetic electron flow. Fortunately, some of
these properties have already been studied as part of the long-
term analysis of Cyanothece sp. strain ATCC 51142 utilizing
the same physiological conditions that appear important for H2

production (31, 32, 38, 44).
The hoxEFUYH genes and the 35-gene nif gene cluster are

regulated substantially differently in Cyanothece sp. strain
ATCC 51142 (32, 37, 38). The hox genes are preferentially
turned on in the dark and have been categorized as a diurnally
regulated operon (regulated by light or dark), whereas the nif
genes encoding the nitrogenase are also transcribed in the dark
but in a circadian fashion (modulated every 24 h) (37). Thus,
under normal LD conditions, the cells would prefer to synthe-
size these oxygen-sensitive enzymes in the dark when photo-
synthetic O2 evolution is absent. Nonetheless, we get signifi-
cant nitrogenase biosynthesis and resulting N2 fixation when
cultures are grown under continuous light conditions (7, 38).
More importantly, the two gene clusters are transcribed at
significantly different levels. The hox genes are transcribed in
the dark at a low rate under both nitrogen-sufficient and ni-
trogen-fixing conditions, whereas the nif genes are transcribed
at a level some 200-fold higher than hox when cells are grown
under nitrogen-fixing conditions (37). Interestingly, the hupLS
genes, encoding the uptake hydrogenase, are transcribed sim-
ilarly to the nif genes and also have high transcript levels (37)
when grown under the LD condition. However, there is very
low expression of hupLS when cells are grown under LL (38),
and this is probably a major reason for the high H2 production
during LL incubation.

We had shown previously using electron microscopy (EM)
immunocytochemistry that virtually every cell in the culture
had its cytoplasm filled with nitrogenase (31). In addition,
proteomic results have indicated that the nitrogenase protein is
found only during about 6 h of the dark period but that it

represents a high percentage of all protein at this stage. There-
fore, one reason for the tremendous hydrogen production po-
tential of nitrogenase is that there is a vast amount of enzyme
present in the cell. We concur with Tsygankov (39) that the
cells utilize the hox genes in order to maintain the amount of
reduced pyridine nucleotides at a certain level, as required by
the cyanobacterium. Depending on the different conditions,
the hydrogenase may either release or take up hydrogen (39).
Thus, much less enzyme is needed than in the case of nitroge-
nase, where it is the sole enzyme for the production of reduced
nitrogen in the cell when there is no combined nitrogen in the
medium. Any further work to utilize Hox in Cyanothece sp.
strain ATCC 51142 will require significant upregulation of the
amount of protein available. This may be done by cloning the hox
gene cluster behind a nitrogenase promoter, growing the cells
under N2-fixing conditions, and determining the amount of
hydrogen that can be produced.

It is obvious that a critical issue for the cell is the protection
of the H2-producing enzymes from oxygen inactivation. There-
fore, incubation of cells under a low-O2 environment provides
the highest rates of hydrogen production for nitrogenase.
Anaerobiosis was reported to inhibit PS II in certain systems
(9, 15, 24), and our results were consistent with this pattern
since there was no hydrogenase-generated hydrogen in the
presence of argon or other agents that generate anaerobiosis.
We hypothesize that this is due to the inability of PS II to
provide electrons to NADP� under these conditions. How-
ever, the presence of argon provided the highest rates of hy-
drogen production by nitrogenase under most circumstances.
We found the steady rates of hydrogen produced under these
circumstances to be important, and we determined that the
level of nitrogenase needed to be replenished by the cell during
the incubation period. Thus, although the cells are not actually
doubling, they are metabolically active, and the addition of
chloramphenicol to the incubation bottle quickly inhibited hy-
drogen production. One future experiment will involve a care-
ful analysis of this production in order to determine a turnover
rate for nitrogenase under these particular incubation condi-
tions. It is important to note that we have studied both Syn-
echocystis sp. strain PCC 6803 and Cyanothece sp. strain ATCC
51142 under low-oxygen conditions (using 99.9% N2 and 0.1%
CO2) and determined some interesting properties (33). Syn-
echocystis in BG-11 medium grows slowly during the first 24 h
under these conditions, whereas Cyanothece growing in nitrate-
sufficient medium hardly grows and evolves very little oxygen.
These studies included transcriptional analyses and demon-
strated that different psbA genes were inserted into PS II under
these low-oxygen conditions. We will soon perform an equally
detailed analysis of transcription of Cyanothece sp. strain
ATCC 51142 grown under nitrate-deficient, low-oxygen condi-
tions.

One of the more interesting and important attributes of
Cyanothece is its ability to store carbohydrate in glycogen gran-
ules (27, 31). When grown under LD nitrogen-fixing condi-
tions, the cells store the carbohydrate in large glycogen gran-
ules that form between photosynthetic membranes during the
light and utilize the carbohydrate as a substrate for respiration
in the dark. We had expected that the storage of carbohydrate
would be an important component of optimal hydrogen pro-
duction, and we utilized various LL, LD, and DD protocols for

TABLE 4. Nitrogenase activity in Cyanothece sp. strain ATCC
51142 after incubation with different gasesa

Glycerol
supplementation

Nitrogenase
condition

Nitrogenase activity

Absolute (�mol C2H2
reduced/mg Chl/h)

Relative (per
mg Chl)b

� Air 0.18 1
� Air 2.5 14
� Argon 2.9 16
� Argon 93 509
� N2 0.42 2.3
� N2 17 93

a Cultures were grown in ASP2� medium under LL for 5 days, and 12 ml was
added to 66-ml bottles. Some bottles were sparged with argon or N2. The
nitrogenase assays were performed after the bottles were shaken under LL (30
�mol photons m�2 s�1) for 22 h. After injection of 3 ml of acetylene, the bottles
were also kept under light for 2 h.

b Argon and N2 readings are normalized to the value obtained in air with no
glycerol.
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both growth and incubation conditions. If cells grown under
LD conditions were incubated at the end of the light period,
this allowed maximal glycogen storage and led to high rates of
H2 production. However, we determined that a dark phase
during incubation lowered hydrogen production significantly,
presumably due to induction of HupLS. The use of anaerobic
or low-oxygen conditions always improved hydrogen produc-
tion, indicating that protection of the enzyme from oxygen
poisoning is a key property. Under such conditions, we found
that both growth and incubation under continuous light con-
sistently gave the highest levels of hydrogen production. Under
these circumstances, PS I can be used for ATP production as
well as for protection against oxygen. Our transcriptional anal-
ysis of Cyanothece sp. strain ATCC 51142 under low-oxygen
conditions indicated that two flavoproteins and PS I reaction
center genes were upregulated when oxygen was limiting (33).
It is possible that one function for PS I is to support the Mehler
reaction for the reduction of O2 (19).

We were also interested in the impact of glycerol on mix-
otrophic and heterotrophic growth of Cyanothece sp. strain
ATCC 51142. This strain is a true heterotroph and can grow
for long periods on 50 mM glycerol (28, 29). Once again, we
utilized a variety of different light protocols (LL, LD, and DD)
and found that hydrogen production was always highest under
the LL condition. This is likely due to the fact that cells store
less glycogen in granules when grown with glycerol, and con-
tinuous light allows for greater energy production and less
HupLS under these conditions. As we were working with cells
that were adapted for growth on glycerol, we noted that the
non-glycerol control levels of hydrogen production had de-
clined (Table 2). Since we wanted to include glycerol-grown
cells in our measurements, we decided to standardize on glyc-
erol-grown cultures. It is clear that growth in the presence of
glycerol generates significant metabolic changes within the cell,
and this will be a topic of future transcriptomic and proteomic
experiments.

There are many challenges in this field, none less daunting
than identifying appropriate units with which to report the
data. Various authors have used different units, and all of these
approaches have one or more problems associated with them.
Standardizing versus dry weight, wet weight, or protein has
many pitfalls, especially since each laboratory generally uses a
different protocol for these measurements. Therefore, we fol-
lowed the lead of the majority of authors summarized in Dutta
et al. (11) and utilized �mol H2 evolved/mg Chl/h as our
standard unit. Although chlorophyll may not be the most im-
portant parameter for analyzing hydrogen evolution experi-
ments, it is a simple and highly reproducible (� 10%) proce-
dure that can allow comparisons across many different
laboratories and types of experiments. In addition, it will be
important to limit the size of the photosynthetic antennae in
order to improve photosynthetic efficiency of H2 production so
that this will always be an important way of reporting data in
photosynthetic microbes. A recent report by Bernát et al. (4)
presented genetic experiments that resulted in a smaller an-
tenna system for PS II in Synechocystis sp. strain PCC 6803 and
that had higher rates of hydrogen production.

On this basis, hydrogen production in Cyanothece sp. strain
ATCC 51142 ranks extremely well. The highest results gener-
ally reported have been in A. variabilis strain PK84, a hetero-

cystous cyanobacterial strain that lacks a functional uptake
hydrogenase. This strain yielded 167.6 �mol H2/mg Chl/h un-
der somewhat complex growth and assay conditions (10, 34),
which is about half the rate that we report under our best
conditions. Our results in Tables 1 and 4 indicate that the rates
of hydrogen production and nitrogen fixation are proportional
and consistent with the finding that the rate of H2 evolution is
approximately equal to the rate of N2 fixation as measured by
acetylene reduction (39). Thus, production and protection of
nitrogenase, along with a plentiful supply of reductant, are the
critical parameters for H2 production in Cyanothece sp. strain
ATCC 51142. We feel that these early experiments in Cyan-
othece sp. strain ATCC 51142 have been very promising and
that additional work with this well-studied strain is important
to delve into the underlying processes of diazotrophic photo-
synthetic hydrogen production. There are still many questions
that need to be answered before one even considers the ap-
plied aspects of any hydrogen evolved, and we will concentrate
on understanding the basic biological processes first. We feel
that a great deal of important progress can be made by mo-
lecular and genetic manipulations in this strain, and that will be
among our tasks for the future.
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3. Berberoğlu, H., J. Jay, and L. Pilon. 2008. Effect of nutrient media on
photobiological hydrogen production by Anabaena variabilis ATCC 29413.
Int. J. Hydrogen Energy 33:1172–1184.

4. Bernát, G., N. Waschewski, and M. Rogner. 2009. Towards efficient hydro-
gen production: the impact of antenna size and external factors on electron
transport dynamics in Synechocystis PCC 6803. Photosynth. Res. 99:205–216.

5. Burrows, E. H., F. W. R. Chaplen, and R. L. Ely. 2008. Optimization of
media nutrient composition for increased photofermentative hydrogen pro-
duction by Synechocystis sp. PCC 6803. Int. J. Hydrogen Energy 33:6092–
6099.
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17. Meunier, P. C., M. S. Colón-López, and L. A. Sherman. 1998. Photosystem
II cyclic heterogeneity and photoactivation in the diazotrophic, unicellular
cyanobacterium Cyanothece species ATCC 51142. Plant Physiol. 116:1551–
1562.
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