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Actinobacteria, particularly bifidobacteria, are widely observed to be underrepresented in metagenomic
studies of microbial communities. We have compared human fecal microbiota clone libraries based on 16S
rRNA and cpn60 PCR products. Taxonomic profiles were similar except that the cpn60 libraries contained large
numbers of bifidobacterial sequences.

Bifidobacteria are Gram-positive, high G�C members of
the phylum Actinobacteria that are a focus of study for their
role in intestinal metabolism as well as their potential as pro-
biotics. Culture-based studies of mammalian intestinal and fe-
cal microbiota consistently indicate the presence of large num-
bers of bifidobacteria, with viable counts of 108 to 1010 CFU/g
in feces (3, 15, 16, 34).

The advent of sequence-based methods for studying micro-
bial communities has led to characterizations of intestinal mi-
crobiota based on sequencing of cloned PCR amplicons de-
rived from the 16S rRNA gene or, more recently, the direct
sequencing of 16S rRNA PCR products using pyrosequencing
methods. The results of these studies almost invariably provide
a description of the distal intestinal or fecal microbiota as a
population in which Firmicutes and Bacteroidetes dominate,
accounting for as much as 98% of the observed sequences (7,
23, 24). These descriptions conflict with the results of investi-
gations in which bifidobacteria are cultured from samples or
detected using taxon-specific methods, such as fluorescent in
situ hybridization (FISH) (22, 36) or taxon-specific PCR (34,
35). There are a few exceptions to the problem of “missing
bifidobacteria” in metagenomic studies, and these have em-
ployed modified PCR protocols involving higher annealing
temperatures (30) or “universal” 16S rRNA primers known to
be more sensitive for Actinobacteria (2). PCR primer bias also
has been observed as a problem in amplification of Actinobac-
teria sequences from environmental samples (13).

An alternative gene target for metagenomic studies of mi-
crobial communities is the cpn60 gene that encodes the uni-
versal 60-kDa chaperonin protein (also known as GroEL or
Hsp60) (19). This target has been exploited in microbial ecol-
ogy studies involving clone libraries of PCR products (6, 10, 11,

17, 18, 20, 28), pyrosequencing of PCR amplicons (31), and
quantitative real-time PCR (4, 9). Recently, we published a
modification of the cpn60 universal primer PCR protocol
which includes the use of a cocktail of degenerate primers
optimized to give proportional amplifications of sequences
across a broad range of G�C contents (21). This approach has
subsequently been used in the characterization of human vag-
inal microbiota (31) and feline fecal microbiota (6). Although
in the feline study a large proportion of sequences observed
corresponded to bifidobacteria, there is no corresponding 16S
rRNA-based study of the samples for comparison. Here, we
have applied a cpn60-based approach to the characterization
of human fecal microbiota and conducted a direct comparison
to 16S rRNA clone libraries generated from the same samples.

Fecal samples were collected from healthy adult volunteers
(aged 18 to 65 years) enrolled in a study of the effects of whole
chickpea or raffinose on intestinal health (14). Total genomic
DNA was extracted from fecal samples as described previously
(18) and pooled according to diet protocol (control [diet A],
raffinose [diet B], and chickpea [diet C]) such that 12 individ-
uals were represented in each diet library. cpn60 PCR was
conducted as described previously (21). For 16S rRNA ampli-
fication, universal bacterial primers F1 (5�-GAGTTTGATCC
TGGCTCAG-3�) and R2 (5�-GWATTACCGCGGCKGCTG-
3�) (8) were used to amplify the region corresponding to
nucleotides 11 to 536 of the Escherichia coli 16S rRNA gene.
PCR amplifications were performed with 50-�l reaction mix-
tures containing 10 mM KCl, 10 mM (NH4)2SO4, 20 mM Tris
HCl (pH 8.75), 0.1% Triton X-100, 0.1 mg/ml bovine serum
albumin (BSA), 2 mM MgSO4, 0.2 mM deoxynucleoside
triphosphates (dNTPs), 0.4 �M concentrations of each primer,
and 1 U of Taq DNA polymerase (UBI Life Sciences, Calgary,
AB, Canada) using an Eppendorf Mastercycler EP. The am-
plification program was 3 min at 95°C followed by 40 cycles of
95°C for 30 s, 55°C for 30 s, and 72°C for 30 s and a final
extension of 10 min at 72°C. The resulting PCR products from
each template pool were purified and ligated into cloning vec-
tor pGEM-T Easy (Promega). Ligation reactions were used to
transform E. coli JM109-competent cells, and recombinants
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(672 per library) were picked, placed in 96-well plates, and
sequenced with the T7 sequencing primer.

Sequences were processed and warehoused using Another
Portal for Examining DNA (APED) (25) as described previ-
ously (6). For taxonomic identification, cpn60 nucleotide and
translated peptide sequences were compared to the reference
cpn60 sequence database within cpnDB (19) (http://cpndb.cbr
.nrc.ca) using FASTA (29) and BLASTp (1). 16S rRNA se-
quences were identified using the Ribosomal Database Project
(RDP) Classifier provided by the RDP (http://rdp.cme.msu
.edu). Additionally, unique sequences identified from the
cpn60 and 16S rRNA libraries were subjected to phylogenetic
analysis to support their taxonomic identification (data not
shown). A total of 1,763 cpn60 clones (618 from library A, 554
from library B, 591 from library C) and 1,314 16S rRNA clones
(459 from library A, 440 from library B, 415 from library C)
were included in the analysis. The number of cloned sequences
available for each library was influenced by sequencing success
rates, as only full-length, high-quality insertion sequences were
included in the analysis. To compensate for library size varia-
tion, all comparisons were done based on the proportional
representation of sequences in each library.

Figure 1 shows the proportional representation of the major
taxonomic groups in the clone libraries. Differences in taxo-
nomic profiles between the different diets are discussed in
detail elsewhere (14). Firmicutes (including Streptococcus,
Clostridium, Faecalibacterium, and Eubacterium) accounted for
93 to 96% of the sequences in the 16S rRNA clone libraries.
Bacteroidetes comprised only 1 to 2% of the 16S rRNA librar-
ies. This profile is similar to those previously reported for
human fecal microbiota, for which the Firmicutes and Bacte-
roidetes combined account for up to 98% of sequences (24).
Bacteroidetes were somewhat more abundant in the cpn60 li-
braries, where they accounted for 3 to 8% of the clones. The
major difference between the libraries based on the two gene
targets was in the Actinobacteria (including Coriobacterineae
and Bifidobacterium). While sequences from the Coriobacteri-
neae family constituted 0.5 to 4% of each of the libraries
regardless of the gene target, Bifidobacterium sequences were
detected in 16S rRNA libraries from diets B (0.5% of clones)

and C (0.2% of clones) only. In the cpn60 libraries, Bifidobac-
terium sequences accounted for 22%, 34%, and 21% of librar-
ies from diets A, B, and C, respectively. When bifidobacterial
sequences are removed from each of the cpn60 libraries, their
taxonomic profiles are very similar to those of the correspond-
ing 16S rRNA libraries.

Real-time PCR was used to quantify Clostridium cluster IV
and Bifidobacterium spp. in the genomic DNA extracts used to
create the PCR product libraries (26, 27). Similar quantities of
the two groups were detected in all samples: 108.8 to 109.3

copies/g of feces for Clostridium cluster IV and 108.8 to 109.8

copies/g for Bifidobacterium spp. (14). Clostridium cluster IV is
a group within the Firmicutes that includes Faecalibacterium
prausnitzii, C. orbiscindens, C. leptum, and C. methylpentosum
(5, 12, 32). This group accounted for 47%, 40%, and 33% of
the cloned 16S rRNA sequences in libraries A, B, and C,
respectively, and 47%, 47%, 32% of the corresponding nonbi-
fidobacterial cpn60 sequences. However, despite similar abun-
dances indicated by taxon-specific PCRs, only 0%, 0.5%, and
0.2% of 16S rRNA clones were from bifidobacteria, illustrating
a gross underrepresentation of these organisms in the 16S
rRNA clone libraries.

In a recent study of human intestinal microbiota in lean and
obese twins that utilized deep pyrosequencing of multiple re-
gions of the 16S rRNA gene, sequencing of full-length 16S
rRNA amplicons, and shotgun metagenome sequencing, Turn-
baugh et al. (33) found that in almost all samples, �10% of
sequences were from Actinobacteria. However, they also deter-
mined that 75% of the obesity-enriched genes were from Ac-
tinobacteria. Given this observation and the acknowledged im-
portance of bifidobacteria in health and nutrition, any
assessment of intestinal or fecal microbiota would ideally be
conducted with a method that allows detection and monitoring
of this taxon. The potential biases of PCR primers must be
carefully considered. None of the other targets that are rou-
tinely exploited for bacterial speciation, such as rpoB and gyrB,
have been applied in metagenomic studies of microbial com-
munities, so it is unknown if they would offer improved repre-
sentation of bifidobacteria. Our experiment, in which we com-
pared directly the microbial population profiles generated

FIG. 1. Proportional representation of major taxonomic groups in the PCR product clone libraries generated from three diets, based on either
16S rRNA or cpn60. Each pair of libraries was generated from the same sample pool and DNA extract, as described in the text. cpn60 libraries
are shown with and without inclusion of bifidobacterial sequences.
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from three samples, demonstrates that the cpn60 target offers
a useful alternative or complement to 16S rRNA and alleviates
the “missing bifidobacteria” problem.

Nucleotide sequence accession numbers. The 1,763 cpn60
clones and 1,314 16S rRNA clones analyzed were deposited in
GenBank under accession numbers GQ178291 to GQ179638.

This study was supported by grants from Saskatchewan Pulse Grow-
ers and Pulse Canada.
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