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Human cytomegalovirus (HCMV) UL37 proteins traffic sequentially from the endoplasmic reticulum (ER)
to the mitochondria. In transiently transfected cells, UL37 proteins traffic into the mitochondrion-associated
membranes (MAM), the site of contact between the ER and mitochondria. In HCMV-infected cells, the
predominant UL37 exon 1 protein, pUL37x1, trafficked into the ER, the MAM, and the mitochondria.
Surprisingly, a component of the MAM calcium signaling junction complex, cytosolic Grp75, was increasingly
enriched in heavy MAM from HCMV-infected cells. These studies show the first documented case of a
herpesvirus protein, HCMV pUL37x1, trafficking into the MAM during permissive infection and HCMV-
induced alteration of the MAM protein composition.

The human cytomegalovirus (HCMV) UL37 immediate
early (IE) locus expresses multiple products, including the
predominant UL37 exon 1 protein, pUL37x1, also known as
viral mitochondrion-localized inhibitor of apoptosis (vMIA),
during lytic infection (16, 22, 24, 39, 44). The UL37 glycopro-
tein (gpUL37) shares UL37x1 sequences and is internally
cleaved, generating pUL37NH2 and gpUL37COOH (2, 22, 25,
26). pUL37x1 is essential for the growth of HCMV in humans
(17) and for the growth of primary HCMV strains (20) and
strain AD169 (14, 35, 39, 49) but not strain TownevarATCC in
permissive human fibroblasts (HFFs) (27).

pUL37x1 induces calcium (Ca2�) efflux from the endoplas-
mic reticulum (ER) (39), regulates viral early gene expression
(5, 10), disrupts F-actin (34, 39), recruits and inactivates Bax at
the mitochondrial outer membrane (MOM) (4, 31–33), and
inhibits mitochondrial serine protease at late times of infection
(28).

Intriguingly, HCMV UL37 proteins localize dually in the ER
and in the mitochondria (2, 9, 16, 17, 24–26). In contrast to
other characterized, similarly localized proteins (3, 6, 11, 23,
30, 38), dual-trafficking UL37 proteins are noncompetitive and
sequential, as an uncleaved gpUL37 mutant protein is ER
translocated, N-glycosylated, and then imported into the mito-
chondria (24, 26).

Ninety-nine percent of �1,000 mitochondrial proteins are
synthesized in the cytosol and directly imported into the mito-
chondria (13). However, the mitochondrial import of ER-syn-
thesized proteins is poorly understood. One potential pathway
is the use of the mitochondrion-associated membrane (MAM)

as a transfer waypoint. The MAM is a specialized ER subdo-
main enriched in lipid-synthetic enzymes, lipid-associated pro-
teins, such as sigma-1 receptor, and chaperones (18, 45). The
MAM, the site of contact between the ER and the mitochon-
dria, permits the translocation of membrane-bound lipids, in-
cluding ceramide, between the two organelles (40). The MAM
also provides enriched Ca2� microdomains for mitochondrial
signaling (15, 36, 37, 43, 48). One macromolecular MAM com-
plex involved in efficient ER-to-mitochondrion Ca2� transfer is
comprised of ER-bound inositol 1,4,5-triphosphate receptor 3
(IP3R3), cytosolic Grp75, and a MOM-localized voltage-de-
pendent anion channel (VDAC) (42). Another MAM-stabiliz-
ing protein complex utilizes mitofusin 2 (Mfn2) to tether ER
and mitochondrial organelles together (12).

HCMV UL37 proteins traffic into the MAM of transiently
transfected HFFs and HeLa cells, directed by their NH2-
terminal leaders (8, 47). To determine whether the MAM is
targeted by UL37 proteins during infection, we fractionated
HCMV-infected cells and examined pUL37x1 trafficking in
microsomes, mitochondria, and the MAM throughout all
temporal phases of infection. Because MAM domains phys-
ically bridge two organelles, multiple markers were em-
ployed to verify the purity and identity of the fractions (7, 8,
19, 46, 47).

(These studies were performed in part by Chad Williamson
in partial fulfillment of his doctoral studies in the Biochemistry
and Molecular Genetics Program at George Washington In-
stitute of Biomedical Sciences.)

HFFs and life-extended (LE)-HFFs were grown and not
infected or infected with HCMV (strain AD169) at a multi-
plicity of 3 PFU/cell as previously described (8, 26, 47). Heavy
(6,300 � g) and light (100,000 � g) MAM fractions, mitochon-
dria, and microsomes were isolated at various times of infec-
tion and quantified as described previously (7, 8, 47). Ten- or
20-�g amounts of total lysate or of subcellular fractions
were resolved by SDS-PAGE in 4 to 12% Bis-Tris NuPage
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gels (Invitrogen) and examined by Western analyses (7, 8,
26). Twenty-microgram amounts of the fractions were not
treated or treated with proteinase K (3 �g) for 20 min on
ice, resolved by SDS-PAGE, and probed by Western anal-
ysis. The blots were probed with rabbit anti-UL37x1 anti-
serum (DC35), goat anti-dolichyl phosphate mannose syn-
thase 1 (DPM1), goat anti-COX2 (both from Santa Cruz
Biotechnology), mouse anti-Grp75 (StressGen Biotechnologies),
and the corresponding horseradish peroxidase-conjugated sec-
ondary antibodies (8, 47). Reactive proteins were detected by
enhanced chemiluminescence (ECL) reagents (Pierce), and im-
ages were digitized as described previously (26, 47).

Detection of pUL37x1 in the heavy MAM fraction of HCMV-
infected LE-HFFs. To determine whether UL37 proteins traf-
fic through the MAM of infected cells, Percoll gradients were
used to fractionate MAM from mitochondria in HCMV-in-
fected LE-HFFs throughout infection (Fig. 1A). At 24-h
postinfection (hpi), there were visible changes in mitochon-
drial banding. By 72 to 96 hpi, mitochondrial clumping was
observed in HCMV-infected but not in uninfected LE-HFFs.
These results suggest that HCMV infection increasingly alters
the physical properties of mitochondria (buoyant density and
shape) that dictate their banding in Percoll gradients. These
results are consistent with the findings that HCMV infection,

FIG. 1. (A) HCMV infection alters mitochondrial banding in self-generated Percoll gradients. LE-HFFs were infected with HCMV
(AD169, 3 PFU/cell). Four roller bottles of infected cells were harvested at 16, 24, 48, 72, and 96 hpi and fractionated in each gradient as
previously described (7, 8). The positions of the MAM and mitochondrial fractions are indicated on the gradients. (B) pUL37x1 is detected
in the heavy MAM fraction of HCMV-infected LE-HFFs. The microsomal, heavy MAM (6,300 � g), mitochondrial, and cytosolic fractions
from uninfected cells (Un) and HCMV-infected cells were obtained from the fractionations shown in panel A at 24, 48, 72, and 96 hpi.
Ten-microgram amounts of total and fractionated proteins were separated by SDS-PAGE and examined by Western blot analyses using
rabbit anti-UL37x1 antiserum (DC35, 1:1,000). The fractions were reacted with antibody against an ER marker (DPM1, 1:100) or a
mitochondrion/MAM marker (Grp75, 1:1,000). The order of samples used for the Grp75 blots for HCMV-infected LE-HFFs at 72 and 96
hpi is indicated below the corresponding panels. The positions of pUL37x1 (arrowhead) and of a short UL37 species (asterisk) are indicated
on the UL37x1 blots.
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and pUL37x1/vMIA in particular, disrupts mitochondrial net-
works (21, 29, 31, 34, 41).

The fractions from HCMV-infected LE-HFFs were exam-
ined for the presence of pUL37x1 (Fig. 1B). pUL37x1 is pre-
dominant during HCMV infection and was detected in micro-
somes, the heavy MAM fraction, and mitochondria at all times
tested. A previously undetected small UL37 species (�10 to 12
kDa) was detected in the mitochondria at late times in infec-
tion. Based upon its antibody reactivity and apparent molecu-
lar mass, this UL37 species may be pUL37S, encoded by the
UL37S late transcript (1), or a specific cleavage product of
pUL37x1. The identity of the MAM as an ER subdomain was
verified by the presence of DPM1. These results indicate that
pUL37x1 traffics to the MAM from early to late times of
HCMV infection. Surprisingly, Grp75 was abundantly detected
in the heavy MAM fraction of infected cells compared to its
amount in mitochondrial fractions, consistent with its recent
identification in a MAM macromolecular Ca2� signaling com-
plex (42). This suggests that HCMV infection may alter the
MAM proteome.

Detection of pUL37x1 in light MAM fraction at IE and early
times of infection. As Grp75 populates both MAM junctions
(42) and the mitochondrial matrix (8, 26, 47), we first aimed to
purify MAM fractions devoid of detectable Grp75. We thus
further fractionated HCMV-infected LE-HFFs to obtain the
light MAM fraction (100,000 � g), precleared (at 6,300 � g) of
high-density heavy MAM material. Using this procedure,
pUL37x1 was observed in microsomes, the light MAM frac-
tion, and mitochondria at 8 and 24 hpi (Fig. 2), unequivocally
demonstrating its trafficking to the MAM during infection. The
presence of the ER (DPM1) marker and the absence of detect-
able Grp75 verified the purity and identity of the light MAM

fraction. These results authenticate the presence of pUL37x1 in
the MAM at IE and early times of HCMV infection.

Increased abundance of Grp75 in the heavy MAM fraction
during HCMV infection. To determine whether the abundance
of Grp75 in the MAM was altered during infection, the heavy
MAM fraction (6,300 � g) and light MAM fraction (100,000 �
g) of HCMV-infected cells were examined (Fig. 3). Within 8
hpi, the abundance of Grp75 in the heavy MAM fraction was
comparable to that in purified mitochondrial fractions, and it
increased above the level detected in mitochondria by 24 hpi
(Fig. 3A). Moreover, the abundance of Grp75 in the heavy
MAM fraction in HCMV-infected LE-HFFs at late times of
infection was increased �3.9-fold above that from uninfected
cells (Fig. 3B). This recruitment of Grp75 to the heavy MAM
fraction of HCMV-infected cells was not detected in the mi-
crosomal fraction and minimally detected in the highly purified
light MAM fraction.

As Grp75 in the MAM macromolecular complex (IP3R-
Grp75-VDAC) is cytosolic (42), we used proteinase K di-
gestion to distinguish this isoform from mitochondrial-ma-
trix-localized Grp75. Heavy MAM fractions and control
mitochondrial fractions from transfected LE-HFFs expressing
gpUL37 were tested first (Fig. 3C) and displayed specific pro-
tease degradation of Grp75 in the heavy MAM fractions, while
the mitochondrial Grp75 was protected. The amount of Grp75
in LE-HFFs was barely detectable in microsomal fractions.
These results suggest that Grp75 in the heavy MAM fraction is
cytosolic and that cytosolic Grp75 progressively increases in
the MAM during HCMV infection. Indeed, proteinase K di-
gestion of the heavy MAM fraction from HCMV-infected cells
verified that the Grp75 therein was cytosolic (Fig. 4C) and did
not result from contaminating mitochondria. In contrast, mi-

FIG. 2. pUL37x1 is detected in the highly purified light MAM fraction from HCMV-infected LE-HFFs at IE and early times of infection.
LE-HFFs were infected with HCMV (AD169, 3 PFU/cell) and were harvested at 8 (A) or 24 (B) hpi. Fractions from 4 roller bottles each
of uninfected or infected cells were obtained as described for Fig. 1 and previously described (7, 8). Twenty-microgram amounts of
fractionated proteins (microsomes, light MAM fraction [100,000 � g], mitochondria, and cytosol) from cells harvested at the indicated times
were resolved by SDS-PAGE and examined by Western analysis using anti-UL37x1 antiserum (DC35, 1:250), as well as antibody against an
ER marker (DPM1, 1:100) or a mitochondrion/MAM marker (Grp75, 1:500). The position of pUL37x1 (arrowheads) is indicated on the
UL37x1 blots.
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tochondrial Grp75 was protected and, therefore, internally lo-
calized. As a control for these experiments, proteolytic diges-
tion of pUL37x1 was monitored in parallel. As expected from
its topology facing the cytosol (26), pUL37x1 in the heavy
MAM fraction and mitochondrial fraction from HCMV-in-
fected HFFs is sensitive to protease treatment.

HCMV infection alters MAM components. To independently
verify the alteration of MAM composition during HCMV in-
fection, fractions were purified from uninfected and HCMV-
infected primary HFFs at 72 hpi (Fig. 4A). The clumping of
mitochondrial bands was again observed in lysates from
HCMV-infected but not uninfected cells. Isolated fractions
were examined for several markers, including anti-pUL37x1,
anti-DPM1 (ER), anti-Grp75 (MAM and mitochondrial ma-
trix), and anti-COX2 (inner mitochondrial membrane) mark-
ers (Fig. 4B). Similar to the results described above, pUL37x1
was detected in the microsomes, heavy and light MAM frac-
tions, and mitochondria of infected cells at 72 hpi but not in
uninfected HFFs. The presence of DPM1 verified the identi-
ties of the MAM fractions. Grp75 was abundantly detected in
the heavy MAM fraction and mitochondria following HCMV
infection.

This paper establishes the authentic trafficking of pUL37x1

in the full context of permissive HCMV infection. As is well
documented, trafficking of some viral proteins can be signifi-
cantly altered in the presence of other viral products. Thus,
while our published transfection results showed the ability of
HCMV UL37 proteins to traffic into the MAM, this paper
establishes that they do so during permissive infection. Im-
portantly for these studies, we observed MAM trafficking of
pUL37x1 during the complete lytic cycle, suggesting the
importance of its continued presence in this targeted sub-
cellular compartment. These studies support the hypothesis
that MAM localization is important for UL37 protein func-
tion in a way that transfection assays cannot. Moreover, at
late times of infection, we observed a small UL37 species,
possibly pUL37S, in the MAM and mitochondria. This spe-
cies has not been observed in transfected cells. Finally, we
documented that HCMV infection alters the abundance of
cytosolic Grp75, a component of the MAM calcium signal-
ing complex (42). HCMV infection may relocalize or in-
crease the abundance of the macromolecular complex at the
ER-mitochondrial junction to stabilize these connections
during infection or to regulate ER-mitochondrion commu-
nication. Because pUL37x1 causes calcium efflux during in-
fection (39), we anticipate that multiple components of the

FIG. 3. Cytosolic Grp75 is increased in the heavy MAM fraction of HCMV-infected LE-HFFs at 8, 24, and 96 hpi. LE-HFFs were infected
with HCMV, harvested at 8 or 24 hpi (A) or 96 hpi (B), and fractionated as described for Fig. 1. Proteins (20 �g) in the microsomal, heavy
MAM (6,300 � g), and mitochondrial fractions were separated by SDS-PAGE and probed by Western blots using anti-Grp75 antibody
(1:1,000). (C) Sensitivity of Grp75 in heavy MAM to proteinase K digestion. Twenty-microgram amounts of the microsomal, heavy MAM,
or mitochondrial fraction from LE-HFFs transiently expressing gpUL37 were untreated (�) or treated (�) with proteinase K (3 �g/20 min
on ice). Following digestion and inactivation with 1 �M phenylmethylsulfonyl fluoride, the proteins were resolved by SDS-PAGE, blotted,
and reacted with anti-Grp75 antibody as described for panels A and B. Grp75 is indicated by arrowheads.
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macromolecular complex are affected by HCMV infection.
However, mitochondrial Grp75, a stress-responsive-gene
product, appears to be differentially affected by HCMV in-
fection and associated stress induction.

These studies were funded by NIH grant R01 AI057906 and NIH
grant R21 AI081957, Children’s Research Institute Discovery Funds,
and the CNMC Board of Visitors.
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