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     Obstructive sleep apnea (OSA) is characterized by 
repeated events of partial or complete upper air-

way obstruction during sleep that result in disruption 
of normal ventilation, hypoxemia, and sleep fragmen-
tation. Increasing evidence supports the concept that 
OSA is pathophysiologically linked to cardiovascular 
diseases, such as hypertension, ischemic heart disease, 
and cerebrovascular disease.  1-4   Interestingly, hypoxia, 
and more prominently, intermittent hypoxia (one 
of the hallmark features of OSA), has been recently 
postulated to accelerate senescence processes  5   and, 
therefore, could reduce life span. 

 Telomeres are tandem repeats of DNA sequences 
located at the ends of eukaryotic chromosomes.  6,7   
One function of these structures is to protect the 
telomeric regions from recombination and degrada-
tion, avoiding DNA damage due to the accruing bur-
den of oxidative stress and systemic infl ammation,  8-10   
which are pathophysiologic processes that are consis-
tently activated in OSA.  11,12   Recent evidence has 
shown that leukocyte telomere length (LTL) short-
ening has been linked not only with aging and senes-
cence but also with an increased risk for age-related 
diseases, namely cardiovascular disease and heart 
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would be associated with BP alterations and LTL in 
the context of pediatric OSA. 

 Materials and Methods 

 Subjects 

 The study was approved by the University of Louisville (Louis-
ville, KY) Human Research Committee, and informed consent 
was obtained from the legal caregiver of each subject. Assent also 
was obtained from the child if he or she was  �  7 years of age. 
Consecutive children with OSA diagnosed by polysomnographic 
criteria and between the ages of 5 and 10 years were invited 
to participate in the study. In addition, age-, sex-, and ethnicity-
matched children without snoring and OSA who underwent over-
night polysomnography as part of a community-based study also 
were invited to participate. Children were excluded if they had 
known diabetes or prediabetes (http://www.diabetes.org/pre-
diabetes/pre-diabetes-symptoms.jsp), had any defi ned genetic 
abnormality or underlying systemic disease, or were within 1 month 
from any acute infectious process. The diagnosis of mild and 
moderate-to-severe OSA was defi ned by the presence of an 
apnea-hypopnea index (AHI)  �  1/hour of total sleep time (hrTST) 
and  �  5/hrTST, respectively. Control children did not snore and 
had an AHI  ,  1/hrTST. 

 Anthropometry 

 Children were weighed on a calibrated scale to the nearest 0.1 kg, 
and height was measured to the nearest 0.1 cm with a stadiometer 
(Holtain; Crymych, England). BMI was calculated, and BMI  z  score 
computed using Centers for Disease Control and Prevention 2000 
growth standards (www.cdc.gov/growthcharts) and online software 
(www.cdc.gov/epiinfo). A BMI  z  score  .  1.67 indicated obesity. 

 Sphygmomanometry 

 Arterial BP was measured noninvasively in all children with an 
automated mercury sphygmomanometer (Welch Allyn; Skaneate-
les, NY) at the brachial artery using a guidelines-defi ned appropri-
ate cuff size on the nondominant arm.  27   BP measurements were 
made in triplicate in the morning immediately after awakening. 
Systolic and diastolic BPs were fi rst calculated as mean values, 
and then mean BP was calculated. 

 Overnight Polysomnography 

 Children were studied for up to 12 h in a quiet, darkened room 
with an ambient temperature of 24°C in the company of one of 
their parents. No drugs were used to induce sleep. Polysomnogra-
phy was performed as previously reported.  26,28   Sleep architecture 
was assessed by standard techniques.  29   Central, obstructive, and 
mixed apneic events were counted. Obstructive apnea was defi ned 
as the absence of airfl ow with continued chest wall and abdominal 
movement for a duration of  �  2 breaths.  30,31   Hypopneas were 
defi ned as a decrease in oronasal fl ow of  �  50% with a corre-
sponding decrease in oxygen saturation on pulse oximetry of 
 �  4%, an arousal, or both.  31,32   The AHI was defi ned as the number 
of obstructive apneas and hypopneas per hrTST. Arousals were 
identifi ed as defi ned by the American Sleep Disorders Association 
Task Force report.  32,33   

 Measurement of LTL 

 Genomic DNA was extracted from blood samples using the 
QIAmp Spin Colum protocol (Qiagen; Chatsworth, CA) according 

failure.  13-16   Interestingly, age-dependent LTL short-
ening appears to be much faster in early life than 
during adulthood, probably owing to the rapid prolif-
eration of hematopoietic stem cell populations dur-
ing growth and development.  17   

 Catestatin is a small peptide that most likely is gen-
erated by the proteolytic enzymes serine protease 
plasmin and cysteine protease cathepsin L acting on 
chromogranin A.  18,19   Recent studies have shown that 
a lower plasma level of catestatin is a signifi cant risk 
factor for development of hypertension in humans  20   
and that catestatin modulates autonomic function 
and BP.  21,22   To our knowledge, no studies on catesta-
tin and OSA have been published to date despite 
the clear involvement of the cardiovascular system 
in OSA. 

 Myeloid-related protein (MRP) 8 and MRP 14 are 
members of the S100 family of calcium-modulated 
proteins that regulate myeloid cell function and con-
trol infl ammation through activation of the receptor 
for advanced glycation end products, which in turn 
have been associated with OSA.  23,24   MRP 8/14 
recently has been shown to regulate vascular infl am-
mation and to contribute to the biologic response to 
vascular injury.  25   Furthermore, MRP 8/14 levels are 
increased in children with obesity and in children 
with OSA in a dose-dependent manner.  26   

 Based on the increased oxidative stress and infl am-
matory load associated with pediatric OSA and the 
cumulative evidence indicating that LTL represents 
the global ability to maintain the integrity of DNA, 
we hypothesized that LTL would be reduced in pedi-
atric OSA and could be used as a potential predictor 
of OSA-associated end-organ morbidity in children. 
Furthermore, we examined whether the presence of 
signifi cant systemic infl ammation in OSA, such as 
illustrated by MRP 8/14 levels,  26   would be associated 
with LTL and, likewise, whether catestatin levels 
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demographic, polysomnographic, and biochemical 
characteristics of the three groups are shown in  Table 1  . 
Mean age, sex, and ethnic distribution were similar 
across the three groups ( P   .  .05). However, both sys-
tolic and diastolic BPs were signifi cantly elevated in 
the OSA groups. LTL, log MRP 8/14, and log catesta-
tin levels also showed signifi cant group differences 
( Table 1 ). 

 LTL, Catestatin, and MRP 8/14 levels 

 Log LTL and log catestatin levels were stratifi ed 
according to the severity of OSA based on AHI ( Fig 1  ). 
As shown in  Figure 1 , log LTL increased among 
groups as the magnitude of AHI increased. Sub-
jects with moderate-to-severe OSA had the highest 
log LTL compared with controls (log-transformed 
LTL, 0.10  6  0.14 vs 0.02  6  0.13, respectively; actual 
LTL, 1.34  6  0.47 vs 1.12  6  0.37, respectively;  P   ,  .01) 
( Fig 1 A  ). Moreover, even when we adjusted for age, 
log LTL still showed signifi cant differences among 
the moderate-to-severe OSA, mild OSA, and control 
groups (age-adjusted log LTL, 0.105  6  0.025 vs 
0.067  6  0.014 vs 0.028  6  0.013, respectively;  P   5  .012). 
Further, when we applied Bonferroni corrections for 
multiple comparisons, LTL only showed signifi cant 
differences between the moderate-to-severe OSA 
and control groups ( P   5  .021). However, log catestatin 
levels were decreased in terms of the severity of 
OSA. The lowest log catestatin levels were seen in the 
moderate-to-severe OSA group vs the mild OSA and 
control groups (log-transformed catestatin levels, 
0.12  6  0.22 vs 0.23  6  0.20 vs 0.28  6  0.19, respectively; 
actual catestatin levels, 1.52  6  0.81 ng/mL vs 1.92  6  
0.96 ng/mL vs 2.14  6  1.00 ng/mL, respectively;  P   ,  .01) 
( Fig 1 B  ). Finally and as previously reported,  26   log 
MRP 8/14 levels were incrementally higher with 
increasing AHI severity among the moderate-to-severe 
OSA, mild OSA, and control groups (log-transformed 
MRP 8/14 levels, 0.20  6  0.24 vs 0.00  6  0.31 vs  2 0.12  6  
0.33, respectively; actual MRP 8/14 levels, 1.82  6  
0.97  m g/mL vs 1.28  6  0.91  m g/mL vs 1.00  6  0.84  m g/mL, 
respectively;  P   ,  .01) ( Fig 1 C  ). 

 To estimate potential associations among the three 
biomarkers and polysomographic measures and BP 
levels, we performed Spearman correlation analyses. 
A signifi cant linear correlation between LTL and 
AHI ( r   5  0.236;  P   ,  .01) ( Table 2  ) and a predictable 
inverse correlation with age ( r   5   2 0.145;  P   ,  .05) 
( Fig 2  ) emerged. However, LTL was not signifi cantly 
associated with either MRP 8/14 level ( r   5  0.027; 
 P   .  .05) ( Table 2 ) or catestatin concentration 
( r   5   2 0.119;  P   .  .05). Notwithstanding, catestatin 
plasma levels not only were inversely correlated with 
AHI ( r   5   2 0.226;  P   ,  .01) but also were signifi cantly 
associated with mean arterial BP level (n  5  115; 

to manufacturer instructions. DNA samples were frozen at  2 80°C 
until assay. LTL was measured using the quantitative polymerase 
chain reaction method as described by Cawthon.  34   Briefl y, each 
sample was amplifi ed for telomeric DNA and a single-copy gene 
using a 1  m L aliquot containing 100 ng template DNA. Cycle 
threshold was transformed into nanograms of DNA based on a 
standard curve. The quantitative assay determines the amount of 
telomeric DNA relative to the amount of single-copy control gene 
DNA to obtain a relative ratio, which has been previously con-
fi rmed to be highly consistent with the conventional Southern 
blot method on terminal restriction fragments.  35,36   The primer 
sequences used were those described previously.  34   The poly-
merase chain reaction was done by the ABI 7500 real-time system 
(Applied Biosystems; Foster City, CA) with SYBR GREEN PCR 
mater mix (Applied Biosystems). All measures were performed 
in duplicate, with a correlation coeffi cient for the duplicates 
of  r   5  0.98 and an average coeffi cient of variation for pair sets 
of 1.6%. 

 MRP 8/14 and Catestatin Levels and Serum Lipids 

 Fasting blood samples were drawn by venipuncture in the 
morning after the sleep study. Blood samples were immediately 
centrifuged and frozen at  2 80°C until assay. Plasma MRP 8/14 
and catestatin levels were measured using commercial enzyme-
linked immunosorbent assay kits (for MRP 8/14, ALPCO Diag-
nostics; Salem, NH; for catestatin, Phoenix Pharmaceuticals, Inc; 
Burlingame, CA) following manufacturer instructions. MRP 8/14 
and catestatin assays have a sensitivity of 0.4  m g/mL and 0.15 ng/mL, 
respectively. The interassay and intraassay coeffi cients of variabil-
ity for MRP 8/14 were 6.4% and 4.8%, respectively. For catesta-
tin, the interassay and intraassay coeffi cients of variability were 
8.2% and 5.8%, respectively. Serum levels of lipids, including 
total cholesterol, high-density lipoprotein, calculated low-density 
lipoprotein, and triglycerides, were assessed with a Flex reagent 
cartridge (Dade Behring; Newark, DE). 

 Statistical Analysis 

 Data are expressed as mean  6  SD or mean  6  standard error as 
indicated. Signifi cant differences within groups were analyzed 
using analysis of variance for continuous variables and  x  2  tests for 
categorical variables. Bonferroni corrections were applied for 
multiple comparisons. If the data were not normally distributed, 
they were logarithmically transformed. Spearman correlation 
analyses were conducted to examine potential associations among 
LTL, catestatin, MRP 8/14, and other variables. Univariate and 
stepwise multivariate linear regression analyses were then con-
ducted while treating LTL as a dependent variable in relation to 
AHI and other covariates. In addition, we used a logistic regres-
sion model to estimate odds ratios and corresponding 95% CIs for 
risk of OSA after subdividing the cohort into groups based on ter-
tile cut points for the distribution of LTL and catestatin levels. 
Statistical analyses were performed using SPSS, version 16.0, sta-
tistical software (SPPS Inc.; Chicago, IL). All  P  values reported 
are two-tailed, with statistical signifi cance set at  ,  .05. 

 Results 

 Study Population 

 Two hundred thirteen subjects were included 
in this study. Based on the presence or absence of 
habitual snoring and AHI, 85 had mild OSA, 26 had 
moderate-to-severe OSA, and 102 were controls. The 
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level ( .  2.13 ng/mL) as a reference. After adjusting 
for confounding factors such as age, sex, race, and 
BMI  z  score, subjects in the lowest tertile of catesta-
tin levels had a 5.24-fold (95% CI, 1.19-23.4;  P   ,  .05) 
increased risk for moderate-to-severe OSA compared 
with those whose catestatin levels were within the 
higher range. Besides, subjects in highest tertile of 
LTL had 4.85-fold (95% CI, 1.26-15.3;  P   ,  .05) 
increased risk for moderate-to-severe OSA compared 
with those whose LTLs were within the lower range. 

 Discussion 

 In contrast to our original expectations, we found 
that children with OSA have increased LTL and 
exhibit a dose-dependent increase in LTL. As anti-
cipated from previous studies, however, LTL was 
signifi cantly negatively correlated with age.  6   Further-
more, children with OSA had lower plasma catestatin 
levels than those of controls, and catestatin levels not 
only were inversely correlated with BP but also 
showed dose-dependent decreases according to AHI. 
As expected from our previous study,  26   MRP 8/14 
levels were increased in subjects with OSA, but LTL 
did not correlate with either catestatin or MRP 8/14 
levels. However, even after adjusting for potential 

 r   5   2 0.184;  P   ,  .05) and MRP 8/14 level ( r   5   2 0.163; 
 P   ,  .05) ( Table 2 ). 

 To further examine independent predictors of 
log LTL in subjects, we performed regression analy-
ses ( Table 3  ). In the initial univariate analysis, LTL 
exhibited a trend toward a positive correlation with 
mean arterial BP (n  5  115;  b   6  SE, 0.003  6  0.002; 
 P   5  .070). In the multiple regression analysis, LTL 
was only positively associated with AHI ( b   6  SE, 
0.28  6  0.03;  P   ,  .01) after controlling for age, sex, 
BMI  z  score, and race. Even when adjusted for con-
founding factors, MRP 8/14, and catestatin levels, 
LTL still was related with AHI ( b   6  SE, 0.44  6  0.02; 
 P   ,  .05). 

 Odd Ratios for OSA According to Tertiles of 
LTL and Catestatin Levels in Children 

 In order to estimate odds ratios for OSA in relation 
to any given catestatin level, we performed logistic 
regression analysis (n  5  147).  Table 4   presents uni-
variate and multivariate odds ratios on the likelihood 
of OSA according to decreasing tertiles of catestatin 
levels. In the univariate model, odds ratios of mild-
to-moderate OSA (AHI  �  5) were 5.47 (95% CI, 
1.28-23.3;  P   ,  .05) for the lowest tertile of catestatin 
( ,  1.39 ng/mL), using the highest catestatin tertile 

 Table 1— Demographic, Respiratory, and Metabolic Characteristics of Children With Obstructive Sleep Apnea 
and Matched Healthy Controls  

Characteristic Moderate-to-Severe OSA (n  5  26) Mild OSA (n  5  85) Control (n  5  102)

Age, y 7.19  6  1.83 7.79  6  1.57 7.71  6  1.29
Male, % 53.8 63.5 54.9
White, % 53.8 64.7 64.7
BMI  z  score 2.08  6  1.06  a  1.39  6  1.37 b 1.25  6  1.16  c  
Systolic BP, mm Hg 113.9  6  10.8  a  105.4  6  10.0 b 104.1  6  9.7  c  
Diastolic BP, mm Hg 67.2  6  6.3  a  62.8  6  6.0 59.9  6  7.0 d 
Mean arterial pressure, mm Hg 82.8  6  7.1  a  77.0  6  6.6 b 74.6  6  6.1 d 
AHI, events/h 17.8  6  10.5  a  2.25  6  0.99 e 0.38  6  0.27 d 
Sa o  2  nadir, % 79.7  6  10.3  a  89.5  6  5.5 e 92.3  6  5.3 d 
Total cholesterol, mg/dL  f  191.3  6  43.8  a  170.1  6  29.1 156.5  6  24.8 d 
HDL cholesterol, mg/dL  f  47.9  6  11.0 53.8  6  10.6 49.8  6  10.3
LDL cholesterol, mg/dL  f  118.1  6  38.5  a  100.68  6  24.0 90.4  6  22.5 d 
Tryglycerides, mg/dL  f  126.3  6  83.5  g  77.8  6  37.7 e 81.42  6  43.2 d 
Log MRP 8/14 0.20  6  0.24  a  0.00  6  0.31 e  2 0.12  6  0.33 d 
Actual MRP 8/14 1.82  6  0.97  m g/mL 1.28  6  0.91  m g/mL 1.00  6  0.84  m g/mL
Log catestatin 0.12  6  0.22  a  0.23  6  0.20 0.28  6  0.19 d 
Actual catestatin 1.52  6  0.81 ng/mL 1.94  6  0.96 ng/mL 2.14  6  1.00 ng/mL
Log LTL (T/S ratio) 0.10  6  0.14  a  0.06  6  0.11 0.02  6  0.13  c  
Actual LTL (T/S ratio) 1.34  6  0.47 1.20  6  0.33 1.12  6  0.37

Data are presented as mean  6  SD, unless otherwise indicated. BP data and catestatin levels include 115 and 147 subjects, respectively. AHI  5  apnea-
hypopnea index; HDL  5  high-density lipoprotein; LDL  5  low-density lipoprotein; LTL  5  leukocyte telomere length; MRP  5  myeloid-related protein; 
OSA  5  obstructive sleep apnea; Sa o  2   5  arterial oxygen saturation; T/S  5  amount of telomeric DNA to amount of single-copy control gene DNA.
 a  P   ,  .01, control vs moderate-to-severe OSA groups.
 b  P   ,  .05, control vs mild OSA groups.
 c  P   ,  .05.
 d  P   ,  .01, differences among three groups (analysis of variance).
 e  P   ,  .01, control vs mild OSA groups.
 f  These data were acquired in 109 children.
 g  P   ,  .05, control vs moderate-to-severe OSA groups.



www.chestpubs.org CHEST / 138 / 1 / JULY, 2010   95 

confounding factors, AHI was positively and inde-
pendently associated with LTL. 

 Telomeres are tandem repeats of DNA sequences 
that cap and protect chromosomal integrity. Telom-
ere dynamics exhibit an additional feature that is 
highly relevant to all epidemiologic studies that link 
LTL with aging-related diseases,  37,38   namely, as 
telomere length becomes critically shortened, the 
cellular replicative machinery stops functioning, lead-
ing to replicative senescence.  7,39   Oxidative stress, 
infl ammation, and increased leukocyte turnover are 
major factors associated with accelerated telomere 
shortening and biologic aging and have been impli-
cated in atherosclerosis and other cardiovascular 
diseases.  8-10,16,40,41   Based on the currently proposed 
putative mechanisms underlying the morbid conse-
quences of OSA, namely oxidative stress and increased 
activation of infl ammatory processes,  3,4   the hypothe-
sis that children with OSA would exhibit reduced 
LTL was a logical sequel to the aforementioned con-
siderations. However, rather than the anticipated 
inverse correlation between LTL and OSA severity, a 
positive association emerged. Although the mecha-
nisms responsible for this surprising fi nding will have 
to be elucidated, several possibilities may account 
for it. First Vasan and colleagues  42   recently have 
demonstrated that LTL is positively associated with 
left ventricular mass and wall thickness, especially in 
subjects with hypertension. Thus, LTL would be 
expected to be longer in consideration of the cumula-
tive evidence showing that OSA induces increased 
activity and reactivity of the sympathetic nervous 
system  43,44   and that systemic BP elevations not only 
are OSA severity dependent  45,46   but also are asso-
ciated with altered left ventricular geometry and 
contractibility.  47,48   In this context, catestatin, a 
novel endogenous peptide that regulates cardiac 
function and BP through inhibitory activity on 
catecholamine-releasing chromaffi n cells  21,49   showed 
OSA severity-dependent decreases and corresponding 
BP increases such that the increased cardiovascular 
load elicited by OSA may contribute to increased 
LTL in children. 

 Second, OSA may induce early mobilization of 
mesenchymal stem cells and possibly recruitment of 
endothelial progenitor cells into peripheral blood in 
animal models.  50-52   The protective action of mesen-
chymal stem cells stimulated by infl ammatory mediators 
or hypoxia is exerted through paracrine mechanisms  53,54   
and by secretion of angiogenic growth factors, anti-
apoptotic factors, or antiinfl ammatory cytokines.  55   
Thus, LTL could refl ect the replicative capacity of 
hematopoietic stem cells and serve as a marker of the 
angiogenic potential recruited as an endogenous pal-
liative response aiming to minimize OSA-related end-
organ damage. 

  Figure  1. Boxplots of LTL in 102 controls and 111 subjects with 
OSA ( A ). Boxplots of catestatin levels in 56 controls and 91 sub-
jects with OSA ( B ). Boxplots of MRP 8/14 levels in 102 controls 
and 111 subjects with OSA. LTL  5  leukocyte telomere length; 
MRP  5  myeloid-related protein; T/S ratio  5  amount of telomeric 
DNA to amount of single-copy control gene DNA.   
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Indeed, an independent association between higher 
IGF-1 and longer LTL has emerged that persists 
even after adjustment for confounding factors, sug-
gesting a role for IGF-1 in mechanisms relating to 
telomere maintenance.  58,59   Furthermore, circulating 
IGF-1 is regulated by hypoxia  60   and exerts powerful 
antiinfl ammatory and antioxidant effects along with 
cooperative interactions with increasing numbers of 
endothelial progenitor cells to mitigate atherosclero-
sis progression.  61   Moreover, IGF-1 has been shown 
to exert an important role in preserving cognitive 
function in children with OSA.  62   Accordingly, higher 
IGF-1 levels may underlie the link between longer 
LTL and OSA. 

 Finally, telomerase expression is tightly regulated 
at the transcriptional and posttranscriptional level 
such that hypoxia would be anticipated to increase 
telomerase activity and thus result in longer LTL.  63-65   
Although we did not measure telomerase activity or 

 Third, in contrast to many other human somatic 
cells, human lymphocytes can express the enzyme 
telomerase. The expression of telomerase is highly 
regulated during development and activation. Whereas 
resting mature human T cells do not express telom-
erase activity, proliferating T cells stimulated in vitro 
express high levels of telomere activity.  6   Patients with 
OSA exhibit T cells in a highly activated state  56   such 
that genetic variants and activation of telomerase 
could play an important role in the maintenance of 
telomere length in children with OSA.  6,57   

 Fourth, there is a possible link between insulin-like 
growth factor-1 (IGF-1) and its antiinfl ammatory or 
antioxidative role in the context of telomere dynamics. 

 Table 2— Correlation Coeffi cients Among LTL, Catestatin, and MRP 8/14 Levels and Other Variables in 213 Children  

Spearman Correlation Coeffi cients

Telomere Length 
(T/S Ratio) (n  5  213) Catestatin a  (n  5  147) MRP 8/14 (n  5  213)

Variable  r  P  r  P  r  P 

Age  2 0.145  b  .034 0.054 .519  2 0.051 .463
BMI  z  score 0.122 .075  2 0.078 .349 0.391 c  ,  .001
Systolic BP  a  0.122 .235  2 0.166 .079 0.418 c  ,  .001
Diastolic BP  a  0.183  b  .049  2 0.171 .070 0.237  b  .011
Mean arterial pressure  a  0.167 .074  2 0.184  b  .049 0.332 c  ,  .001
AHI 0.236 c  ,  .01  2 0.226 c  ,  .01 0.263 c  ,  .001
Sa o  2  nadir  2 0.017 .815 0.093 .278  2 0.251 c  ,  .001
Total cholesterol  d  0.001 .996  2 0.126 .198 0.168 .082
HDL cholesterol  d  0.008 .936 0.099 .313  2 0.140 .145
LDL cholesterol  d   2 0.004 .965  2 0.115 .237 0.173 .072
Triglycerides  d   2 0.027 .783  2 0.120 .217 0.230  b  .016
MRP 8/1 4 0.027 .700  2 0.163  b  .048 … …
Catestatin  2 0.119 .152 … … … …

Data were adjusted for age and BMI  z  score. See Table 1 for expansion of abbreviations.
 a These data were included for 115 children.
 b  P   ,  .05.
 c  P   ,  .01.
 d These data were included for 112 children.

  Figure  2. Scatterplots of LTL against chronologic age in children 
with obstructive sleep apnea and controls. See Figure 1 legend for 
expansion of abbreviations.   

 Table 3— Univariate and Multivariate Analyses 
Between AHI and LTL and Covariates  

Independent 
Variable

Telomere Length (T/S Ratio)  a  

Univariate Stepwise Multivariate

 b SE  P  b SE  P 

Age  2 0.010 0.006 .114 … … …
Sex 0.000 0.019 .983 … … …
Race 0.010 0.011 .325 … … …
BMI  z  score 0.012 0.008 .126 … … …
AHI  a  0.042 0.016 .009 0.28 0.03 .002

SE  5  standard error. See Table 1 for expansion of other abbreviations.
 a Data were log transformed.
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Indeed, the risk of hypertension has been repeatedly 
demonstrated in recent studies in children.  44,46,47,68   
Similarly, our previous fi ndings regarding MRP 8/14 
in pediatric OSA  26   were confi rmed in this study, albeit 
in the absence of any signifi cant association between 
LTL and this infl ammatory protein. 

 In conclusion, we report a seemingly paradoxical 
positive association between LTL and OSA in chil-
dren. Despite the relatively modest sample size, 
narrow age range, and other potential limitations dis-
cussed, this intriguing fi nding merits future confi rma-
tory and mechanistic studies. Furthermore, this study 
shows OSA severity-dependent decreases in catestatin 
that also are associated with increased risk for elevated 
BP, and we confi rm the increased plasma concentra-
tion of the vascular infl ammatory protein MRP 8/14. 
We postulate that routine assessment of catestatin and 
MRP 8/14 in children with OSA may provide a surro-
gate estimate of vascular risk in these patients. 
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