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Abstract
Using a signal-to-noise ratio estimation based on correlations between multiple simulated images,
we compare the dose efficiency of two soft x-ray imaging systems: incoherent brightfield imaging
using zone plate optics in a transmission x-ray microscope (TXM), and x-ray diffraction microscopy
(XDM) where an image is reconstructed from the far-field coherent diffraction pattern. In XDM one
must computationally phase weak diffraction signals; in TXM one suffers signal losses due to the
finite numerical aperture and efficiency of the optics. In simulations with objects representing isolated
cells such as yeast, we find that XDM has the potential for delivering equivalent resolution images
using fewer photons. This can be an important advantage for studying radiation-sensitive biological
and soft matter specimens.

1. Introduction
X-ray microscopy has unique characteristics of short wavelength and high penetration, and is
especially well suited to high resolution imaging of several micrometer thick biological
specimens [1,2]. As a result, a number of groups have developed high resolution transmission
x-ray microscopes (TXMs) using Fresnel zone plate optics for routine, high resolution imaging
of biological specimens in both 2D [3,4,5] and more recently in 3D via tomography [6,7], and
commercial lab-based [8] and synchrotron-based [9] systems have begun to appear. These
TXM systems complement Fresnel zone plate based scanning transmission x-ray microscopes
(STXMs) [10,11,12] by delivering higher throughput for a given source, which is especially
important when collecting a tilt series of images for tomography.

In any full-field transmission imaging system, one must collect light scattered by the specimen
and use it to obtain a projection image (in 2D) or a volume reconstruction (in 3D). In a TXM
operating in brightfield incoherent imaging mode, this is done by using a condenser lens to
illuminate the specimen, and an objective lens to collect the scattered light and deliver a phased,
magnified, real-space image to a detector. Fresnel zone plates are usually used for the high
resolution objective lens, with the image typically recorded on an x-ray sensitive charge-
coupled device (CCD) detector.
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An alternative, lensless scheme was proposed in 1980 by Sayre [13], and demonstrated in 1999
by Miao et al. [14]: illuminate an isolated specimen with a coherent wave, collect the far-field
diffraction pattern, and obtain a reconstructed image by computationally phasing and then
inverting the diffraction pattern (such as by using iterative finite-support phase retrieval
methods pioneered by Feinup [15]). X-ray diffraction microscopy (XDM; also called x-ray
coherent diffraction imaging or CDI) has the advantage that no optics-imposed losses on either
the efficiency, or finite numerical aperture, are imposed upon the experiment. However, in x-
ray diffraction microscopy the scattered signal must be phased to obtain an image; since the
scattered signal drops off significantly at higher spatial frequencies, one must be able to
computationally phase weak scattering signals.

In this work we address the following question through simulations: which approach yields
more information on an example biological specimen for a given radiation dose? This is an
important consideration for radiation-sensitive specimens such as frozen hydrated cells, since
in x-ray microscopy (as in electron microscopy) radiation damage is the ultimate resolution-
limiting factor.

To answer this question, we simulate x-ray imaging of two biological-cell-like computed
objects consisting of lipid membrane, low concentration protein solute, and protein bars of
various diameters and orientations inside the “cells.” For diffraction microscopy, we simulate
the illumination of the cells by a coherent x-ray beam, calculate the resulting diffraction
intensity distributions, add shot noise, and reconstruct the images using an iterative phase
retrieval algorithm. For conventional microscopy, we calculate the absorption profiles of the
cells, convolve them with the point spread function of a representative soft x-ray zone plate,
reduce the image intensities according to the efficiency of the zone plate, and add shot noise
to the resulting intensity images. We will discuss results of these comparative simulations and
the implications for x-ray microscopy of radiation-sensitive specimens.

2. Specimen illumination, dose, and exposure
Consider a specimen that is illuminated by an average of n¯ photons per pixel, with a pixel
dimension of Δ (and thus an areal exposure of n¯/Δ2). If an incident beam is attenuated
according to the Lambert-Beer law of I = I0 exp[−μz], where μ is the linear absorption
coefficient, then the fraction of energy absorbed per thickness is given by −dI/dz = μ I0 exp
[−μz], where z is the distance into which the beam has already penetrated the specimen. We
can therefore describe the “skin dose” D at z = 0 by

(1)

where ρ is the density of the specimen material and Ephoton is the photon energy. The skin dose
D calculation above assumes no escaped energy, which is usually the case for soft x-ray
microscopy because of the short range of secondary electrons produced following x-ray
absorption and the very low fluorescence yield of the low-Z elements that make up the main
part of the mass of biological specimens. The relative biological effectiveness or RBE factor
is considered to be equal to unity as usually the case with x-ray photons. Based on the above,
we assume a direct proportionality between photons per pixel n¯, areal exposure n¯/Δ2, and
absorbed dose D in what follows.

3. Signal and noise in images
In Sec. 3.1, we consider the expected relationship between photon exposure n¯ and the signal-
to-noise ratio SNR for detecting an object of a given contrast given signal-dependent noise.
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This provides a basis for the expectation that SNR should scale with n¯. In Sec. 3.2, we consider
the problem of estimating the signal-to-noise ratio SNR for imaging of an object based on
image correlations in the presence of signal-dependent noise. This provides a method which
is used in subsequent SNR calculations based on simulated images.

3.1. Signal-to-noise ratio, and detection of objects
We wish to consider the signal-to-noise ratio for the detection of an object with a specified
contrast. We follow here the treatments of Glaeser [16] and Sayre et al. [17]. Our goal is to
distinguish measurements (such as image pixels) in the case that a unit-incident-flux
measurement would lead to a measured intensity of I. To detect an object, assume that the
signal is given by the difference between an intensity with a feature present If, and the
background intensity Ib; that is, the average signal is n¯|If − Ib| when each measurement is made
with n¯ incident photons. In the Gaussian approximation to the Poisson distribution for event
counting, the noise can be expressed as the square root variance of each measurement , and
if the noise is uncorrelated from measurement to measurement (which is the case for photon
noise) the total noise will be given by the root mean square sum. As a result, the expected
signal-to-noise ratio (SNR) is

(2)

where Θ of

(3)

is a contrast parameter [17] which differs slightly from the usual definition of contrast C as

(4)

Based on Eq. (2), a log-log plot of SNR versus incident photon number n¯ should follow a
straight line with a slope of 1/2 and an ordinate intercept of log10 Θ:

(5)

3.2. Estimation of the signal-to-noise ratio from image correlations
The easiest way to measure signal-to-noise ratio is to compare measured images of an object
against the known object itself. While this approach can be used in simulations, we wish to
employ a method that can be used in experiments where the object is not known except through
images that have been obtained. An intuitive approach is to calculate the cross correlation
coefficient of two independent images of the same object, so as to compare features that are
reproduced against those that fluctuate. We summarize here an approach described by Bershad
and Rockmore [18] and first used in electron microscopy by Frank and Al-Ali [19]. We extend
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this method to signal-dependent noise cases, and cases where the signal is not required to have
a mean of zero (such as in intensity rather than amplitude measurements).

Let us consider two separate 2D intensity measurements I1 and I2 of the same signal array S
with stochastic noise arrays N1 and N2, or

(6)

where the mean value of S over all 2D pixels is 〈S〉, and N1 and N2 come from the same source
obeying the same Gaussian distribution with zero mean value (〈N1〉 = 〈N2〉 = 0). As a result,
〈I1〉 = 〈I2〉 = 〈S〉.

The imaging of a 2D object depends both on how the signal changes across the object due to
illumination and the object’s intrinsic contrast, and on fluctuations due to noise. We
characterize both of these by defining the total signal and noise for the entire 2D image with
their variances:

(7)

(8)

where 〈N1,2〉 = 0 has been used in the final equality of Eq. (8). Again, the average is done over
all pixel indices of one 2D image, which differs from a variance calculation for a particular
pixel in a set of separately measured images. The variances of images I1 and I2 can be calculated
as

(9)

where we used the fact that the cross terms 〈SN1,2〉 are in practice negligible compared to
〈S2〉. This would be expected for low contrast objects, but in practice it also applies to cases
with high contrast objects; in simulations, we find that 〈SN1,2〉 are several orders of magnitude
lower than 〈S2〉 even with full contrast objects. As a result, we are able to drop the terms
〈SN1,2〉 that would otherwise appear in Eq. (9). Since N1 and N2 obey the same Gaussian

distribution, they have identical variances . So, we can denote σ1 = σ2 = σ. The
covariance between I1 and I2 can be derived following analogous steps:

(10)

where r is the correlation coefficient. It can be calculated as

(11)

Combining Eqs. (7) and (8) with Eq. (9), we have
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(12)

From Eqs. (7) and (10), we have

(13)

From Eqs. (12) and (13), we see that the signal-to-noise ratio can be calculated from the
correlation coefficient r as

(14)

which is the square root of the expression α = r/(1 − r) used by Frank and Al-Ali [19].

To confirm that Eq. (14) provides a good measure of the SNR from multiple noisy images of
identical objects, we used simulations to explore its scaling with photon number. As an “object”
we used the well-known “Lena” image with transparency I normalized between 0 and 1. For
each calculational run we multiplied the image by a value of n¯, and then added to each pixel
p a pseudo-random noise value based on a positive-integer-truncated Gaussian approximation
of the true Poisson distribution for each pixel’s value of n̄Ip. By repeating this process, we
obtained two images of an identical object but with different signal-dependent noise added,
allowing us to measure the image SNR using the cross-correlation result of Eqs. (11) and (14).
Figure 1(a) shows the resulting images with noise corresponding to the indicated number n¯
of incident photons per pixel. Figure 1(b) shows that a log-log plot of the calculated SNR values
as a function of n¯ has a slope of 1/2 as expected from Eq. (5), reflecting the  dependence
of SNR on incident exposure expected from Eq. (2). Finally, we also show in Fig. 1(b) the
signal-to-noise ratio calculated by comparison of the original, noise-free image with a noise-
included version at each photon exposure n¯ using Eqs. (7) and (8). The result shows that these
SNR values are identical to those calculated from the cross-correlation method. However, in
subsequent calculations we use the two-noisy-image correlation method of Eqs. (11) and (14)
because it is applicable to a broader range of cases including experiments where the noise-free
object is not known.

4. Simulations with defined “cells”
Having established the image correlation method of Eqs. (11) and (14) for estimating SNR
from image pairs, we now turn to simulations of the two experimental approaches to be
compared (Fig. 4): lens-based imaging (incoherent brightfield imaging in a TXM), and lensless
imaging (x-ray diffraction microscopy or XDM). We discuss the “cells” to be “imaged” in Sec.
4.1, the TXM imaging process in Sec. 4.2, and the XDM imaging process in Sec. 4.3.

4.1. Defined “cells” A and B
We generated two different types of biological-cell-like defined objects for our simulations,
which we will call cell A and cell B (see Fig. 2). In both cases we assumed an x-ray energy of
520 eV (within the “water window” [17,20] between the carbon and oxygen K absorption
edges), and values of the refractive indices calculated according to the tabulation of Henke et
al. [21] using an assumed stoichiometric composition of H48.6C32.9N8.9O8.9S0.3 and density
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of ρ = 1.35 g/cm3 for protein, and H62.5C31.5O6.3 with ρ = 1.0 for lipid [22]. The two objects
were defined as follows:

Cell A: The first defined object is modeled as a 2D continuous region with irregular
boundary and random protein thicknesses over a range of 0 to 500 nm inside (Fig. 2(a)).
The entire image is a 256 × 256 pixel array with a pixel size of 15 nm.

Cell B: The second defined object is embedded in the center of a 400 × 400 × 400 pixel
ice cube, also with a pixel size of 15 nm. The cell-like object has a diameter of 200 pixels,
or 3 microns, with a 3 pixel or 45 nm thick lipid membrane as boundary. Inside the object,
several 225 nm diameter protein rods were placed (1.8 µm long for the vertical bars, and
1.35 µm long for the horizontal bars), along with some protein ellipsoids (the larger ones
are 0.9 × 0.45 µm, and the smaller ones are 0.68 × 0.45 µm in size). A “bud” with a diameter
of 1.2 µm was added to the top right shoulder of this fake cell, both in order to break the
rotational symmetry for eliminating potential problems with enantiomorphs in XDM, and
to approximate the appearance of a budding yeast cell. This object was then assumed to
be illuminated by a plane wave, and a multislice propagation process [23,24] was used to
generate an exit wave (400 × 400 pixels across) leaving the cube.

In the case of cell A, we have a defined object with broad spatial frequency content due to the
random thickness variations inside. In the case of cell B, we have an object with readily
recognized structures. The two defined objects are shown in real space in Fig. 2, and in Fourier
space in Fig. 3. To compare zone plate imaging with diffraction microscopy, we simulated
both imaging techniques on these two different defined objects.

4.2. Zone plate imaging process
X-ray microscopes using synchrotron radiation and Fresnel zone plates for full-field imaging
have been in existence for some time [3], and are finding considerable success for 25–40 nm
resolution imaging applications, tomographic imaging of frozen hydrated cells [6,7,25], with
commercial laboratory source versions now becoming available [8]. We model here a
representative microscope with a Fresnel zone plate with 30 nm outermost zone width and 10%
diffraction efficiency [26], used in incoherent brightfield mode with a 100% efficient detector.
In this case the recorded image intensity is a convolution of the intensity transmitted through
the object with the intensity point spread function of the imaging system, or

(15)

Using the convolution theorem of Fourier transforms ℱ{}, the image can be represented as

(16)

where we used the fact that the modulation transfer function or MTF is the Fourier transform
of the intensity point spread function. The MTF can be calculated[27] as

(17)

where f represents spatial frequency, and f0 is the spatial frequency cutoff. For a zone plate
with outermost zone width of drN (set to be 30 nm in simulation), the cutoff of the incoherent
MTF is at a spatial frequency of f0 = 1/drN. The integral of Eq. (17) has a numerical value of
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0.2 compared to the integral of an MTF of 1 for all frequencies up to the cutoff at f0. The
resulting image intensity was then multiplied by 0.1 to account for a typical zone plate focusing
efficiency of 10% (while theoretical efficiencies can approach 20%, 10% is representative of
the best experimental measurements). Finally, the resulting image was multiplied by an
exposure of n¯ photons per pixel, and simulated photon noise was added using the positive-
integer-truncated Gaussian approach to yield a final image. An image pixel size of 15 nm was
used in these simulations.

4.3. Reconstruction from diffraction pattern
In x-ray diffraction microscopy, the image is reconstructed from the far-field diffraction
intensity of a coherently illuminated object which is assumed to be within a finite support (area
of non-zero optical interaction). To simulate the imaging process, the complex exit waves
leaving the defined objects were multiplied by  to account for an exposure of n¯ photons
per pixel, after which they were Fourier transformed to yield the far-field diffraction
amplitudes. These diffraction amplitudes were then squared to yield the diffraction intensities,
and simulated photon noise was added to produce the simulated data recordings. The diffraction
patterns were assumed to be recorded in the far field, with proper Shannon sampling between
the real-space object array and the Fourier plane detector array (that is, 2562 detector pixels
for Cell A, and 4002 detector pixels for Cell B). As with the TXM case, a real space image
pixel size of 15 nm was used in these simulations. To reconstruct the image, we took the square
root of the noisy diffraction intensity to revert to Fourier amplitude, and then reconstructed the
image using the difference map algorithm developed by Elser [28] with β = 1.15.

5. Simulation results
5.1. Image simulation and SNR calculation

We carried out simulation runs for each of the two defined objects (cell A and cell B), using
both TXM and XDM, and using incident photon per pixel values of n¯ = {1,2,5} ×
10{1,2,3,4,5} and 1 × 106 (that is, exposures of 1 × 101, 2 × 101, …, 1 × 106). Figure 5 shows
some examples of simulated zone plate and reconstructed diffraction images. For each incident
photon number n¯, we calculated 10 TXM images and 10 XDM images, each with separately
simulated signal-dependent photon noise in the intensity recording. From each set of 10 images,
one can form 45 different two-image pairs for calculating the SNR using the method of Eqs.
(11) and (14) over the region where the object is located (that is, inside the object’s support
for both the XDM and TXM cases). The final SNR value was calculated from the average of
these 45 measurements.

Figure 6 shows plots of log10(SNR) versus log10(n¯) for the set of image simulations of both
defined objects. As can be seen, in each case the slope of the fitted line is near 1/2, as expected
from Eq. (5); in other words, the signal-to-noise ratio is proportional to  as expected from
Eq. (2). An important difference is that x-ray diffraction microscopy gives a higher SNR for a
given photon exposure n¯ in these simulations. For zone plates of 10% efficiency and an
incoherent brightfield MTF integral about 0.2 as described in Sec. 4.2, one might expect a
factor of 1/(0.1 × 0.2) = 50 in signal loss, or a factor of  in the signal-to-noise ratio
decrease for TXM. The fitted lines of Fig. 6 are indeed higher for x-ray diffraction microscopy
versus transmission x-ray microscopy, with an improvement of XDM/TXM of 7.2 ± 1.6 for
cell A, and 6.3 ± 2.1 for cell B. This means that the iterative reconstruction algorithm used in
x-ray diffraction microscopy is able to phase even weak diffracted signals with significant
signal-dependent photon noise present. We also note an early observation by Fienup [15] who
found that finite support phase retrieval algorithms appeared to be quite robust in the presence
of signal-independent noise added to the Fourier magnitudes.
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As noted in Fig. 6, the log10(SNR) versus log10(n¯) dependence of cell B shows some
oscillations about the linear trend. This oscillation corresponds to successive Airy rings in the
diffraction pattern of the overall spherical shape of cell B, as shown in Fig. 3. In the dark bands
between Airy rings corresponding to the far-field diffraction pattern of a disk, the signal is
lower than the ring-free trend would suggest that the addition of more photons is less helpful
until the next Airy ring begins to be filled in. A different effect can be seen in the log10(SNR)
versus log10(n¯) curve for cell A: as shown in Fig. 3, the normalized power spectrum for cell
A “levels off” at a constant value of about 10−2 at spatial frequencies f above about 10 µm−1.
This suggests that when the incident photon number n¯ is larger than 100, all the diffraction
intensity pixel values approach 1 so that all spatial frequencies above 10 µm−1 have measurable,
single-photon or larger intensities, and start to contribute to increase reconstruction quality.
This may explain the slight flattening of the log10(SNR) versus log10(n¯) curve at the lowest
photon exposures for cell A in x-ray diffraction microscopy (XDM).

5.2. Resolution estimation
As shown in Fig. 3, the azimuthally-averaged diffracted signal P(f) in our defined objects
declines in a power law relationship of log10 P(f) = mlog10 f + b or

(18)

with m = −3.3 (azimuthal averaging smooths out the sharp variations due to individual speckles
to reveal an overall scattering trend). Theoretical estimates for signal decline in x-ray
diffraction microscopy have ranged from m = −4 [29], to m = −3, −4, and −6 for various
specimen models [30]. In small angle x-ray scattering, Porod’s law suggests that the diffraction
signal should decline with spatial frequency as fm with m = −4, while measured power spectra
tend to have positive deviations from this dependence (i.e., values of m of −3 to −4).

As the diffracted signal for a particular length scale declines, the available number of photons
for reconstructing structure at that length scale decreases; the signal-to-noise ratio then worsens
as a result (as illustrated in Fig. 1). Since images become unrecognizable when a minimum
signal-to-noise ratio is not satisfied [31], this suggests a direct relationship between achievable
resolution Δmin and some minimum signal level Smin. Since the signal scales with incident
photons per pixel n¯ yet declines with spatial frequency f in the Fourier domain, we will assume
that the minimum reconstructable signal level is reached at a cutoff spatial frequency fc, or

(19)

Associating the minimum object size Δmin with the half-period of a grating at the maximum
resolvable spatial frequency fc, we obtain

(20)

Inserting the diffracted signal trend of Eq. (18) evaluated at frequency fc into Eq. (19) and then
employing Eq. (20) leads to

(21)
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where we have used mr to denote the power law dependence in reconstructed images even
though we expect it to be the same as the specimen diffracted power scaling m of Eq. (18). The
result of Eq. (21) can then be rearranged to give

(22)

where we have chosen to place Δmin on the abscissa and n¯ on the ordinate for comparison
with the dose-versus-resolution plots estimated by Howells et al. [29] and Shen et al. [30].

The above arguments suggest that the required dose (proportional to exposure n¯) for achieving
a desired resolution Δmin should have the same log-log slope mr as the scaling m in object’s
diffracted signal (because of the use of Eq. (19) in deriving Eq. (22)).We therefore explored
the scaling parameter mr in our simulations of imaging defined cell B using x-ray diffraction
microscopy. The spatial frequency dependent ratio 〈Irecon(f)〉 / 〈Idata(f)〉 provides a good
measure of the resolution in diffraction microscopy reconstructions [24,32] (similar to a phase
retrieval transfer function [33]), and in our simulations we used a value of 0.7 for this ratio as
a way to identify the cutoff spatial frequency fc and thus the resolution Δmin = 1/(2 fc). The
resulting data of signal level n¯ required to achieve a given resolution Δmin are shown in Fig.
7; a linear fit of the data gives a value of mr = −3.2 ± 0.2. Since defined cell B has a signal that
scales like P(f) ∝ fm with m = −3.30 ± 0.03 as shown in Fig. 3, these simulation results are
consistent with the expected result: the scattering strength of the specimen determines the dose
versus resolution trend for imaging the specimen. The same conclusion is also obtained from
cell A.

While Fig. 7 shows a good overall agreement between the dose-versus-resolution slope mr and
the scattering-versus-spatial-frequency slope m, there are “local” departures from this “global”
trend. That is, the power law fit of Fig. 7 is done over a very large, 105:1 dynamic range in
incident photons per pixel n¯; this is the “global” trend. If one were instead to carry out the fit
over a smaller exposure dynamic range, a different, “local” power law dependance might be
observed. Given that the Airy ring characteristics of our defined object B produce departures
from a simple power law relationship as seen in Fig. 3 (due to concentration of extra diffraction
signal into certain spatial frequency ranges), we expect that both computer simulations and
experimental observations can have somewhat different dose-versus-resolution slopes mr over
particular exposure ranges.

6. Conclusions
The goal of this work was to better understand the tradeoffs between two different x-ray
microscopy methods for high resolution imaging of dose-sensitive specimens. Although in
these simulations we had perfect knowledge of the objects that were “imaged,” we chose to
adopt a cross-correlation method for quantitative comparisons that is better suited to
experimental work with unknown objects. Following the work of Bershad and Rockmore
[18], we modified the signal-to-noise measure of Frank and Al-Ali [19] with the result that our
measure gives the expected scaling with incident photon number n¯. We then used this method
to compare incoherent brightfield imaging in a transmission x-ray microscope with a zone plate
objective lens of specified efficiency versus x-ray diffraction microscopy using an iterative
phase retrieval algorithm for image reconstruction. In these simulations, x-ray diffraction
microscopy gave a higher signal-to-noise ratio for equivalent dose, with a gain consistent with
the losses imposed by the modulation transfer function and overall efficiency of the zone plate
objective.
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Of course these simulations are idealized; real imaging experiments involve a number of factors
not accounted for here. One of them is that transmission x-ray microscopy has the significant
advantage of providing images immediately, unlike x-ray diffraction microscopy where one
must use sophisticated image reconstruction algorithms, and specimens that satisfy a finite-
support constraint (though we note that ptychography can remove that latter limitation [34]).
A limitation of transmission x-ray microscopy as well as its scanning “cousin” is that the
resolution-determining outermost zones on zone plates usually have a lower diffraction
efficiency than the coarser, inner zones. In x-ray diffraction microscopy, complications include
undesired scattering from nearby high-contrast objects such as specimen support grid bars, and
the detrimental effects of partial coherence which can contribute noise to reconstructed images
[35]. Nevertheless, the simulations shown here illustrate how x-ray diffraction microscopy has
the potential to deliver images with higher resolution when studying dose-sensitive specimens.

Acknowledgments
We wish to thank the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, at the
Department of Energy for support of x-ray diffraction microscopy methods and instrumentation development under
contract DE-FG02-07ER46128. We also wish to thank the National Institute for General Medical Services at the
National Institutes for Health for support of the application of this method to biological imaging under contract
5R21EB6134. Finally, we thank Janos Kirz, Stefano Marchesini, and David Sayre for many helpful discussions in
connection with this paper.

References and links
1. Sayre D, Kirz J, Feder R, Kim DM, Spiller E. Potential operating region for ultrasoft x-ray microscopy

of biological specimens. Science 1977;196:1339–1340. [PubMed: 867033]
2. Kirz J, Jacobsen C, Howells M. Soft x-ray microscopes and their biological applications. Quart. Rev.

Biophys 1995;28:33–130.
3. Niemann B, Rudolph D, Schmahl G. X-ray microscopy with synchrotron radiation. Appl. Opt

1976;15:1883–1884. [PubMed: 20165284]
4. Schmahl G, Rudolph D, Niemann B, Christ O. Zone-plate X-ray microscopy. Quart. Rev. Biophys

1980;13:297–315.
5. Schneider G. Cryo x-ray microscopy with high spatial resolution in amplitude and phase contrast.

Ultramicroscopy 1998;75:85–104. [PubMed: 9836467]
6. Weiβ D, Schneider G, Niemann B, Guttmann P, Rudolph D, Schmahl G. Computed tomography of

cryogenic biological specimens based on x-ray microscopic images. Ultramicroscopy 2000;84:185–
197. [PubMed: 10945329]

7. Larabell C, Le Gros M. X-ray tomography generates 3-D reconstructions of the yeast, Saccharomyces
cerevisiae, at 60-nm resolution. Molecular Biology of the Cell 2004;15:957–962. [PubMed:
14699066]

8. Tkachuk A, Duewer F, Cui H, Feser M, Wang S, Yun W. X-ray computed tomography in Zernike
phase contrast mode at 8 keV with 50-nm resolution using Cu rotating anode x-ray source. Zeitschrift
Kristallographie 2007;222:650–655.

9. Yin G-C, Tang M-T, Song Y-F, Chen F-R, Liang K, Duewer F, Yun W, Ko C-H, Shieh H-P. Energy-
tunable transmission x-ray microscope for differential contrast imaging with near 60 nm resolution
tomography. Appl. Phys. Lett 2006;88 241, 115.

10. Rarback, H.; Kenney, JM.; Kirz, J.; Howells, MR.; Chang, P.; Coane, PJ.; Feder, R.; Houzego, PJ.;
Kern, DP.; Sayre, D. Recent results from the Stony Brook scanning microscope. In: Schmahl, G.;
Rudolph, D., editors. X-ray Microscopy, vol. 43 of Springer Series in Optical Sciences. Berlin:
Springer-Verlag; 1984. p. 203-215.

11. Maser J, Osanna A, Wang Y, Jacobsen C, Kirz J, Spector S, Winn B, Tennant D. Soft x-ray microscopy
with a cryo STXM: I. Instrumentation, imaging, and spectroscopy. J. Microsc 2000;197:68–79.
[PubMed: 10620150]

12. Kilcoyne A, Tyliszczak T, Steele W, Fakra S, Hitchcock P, Franck K, Anderson E, Harteneck B,
Rightor E, Mitchell G, Hitchcock A, Yang L, Warwick T, Ade H. Interferometer-controlled scanning

Huang et al. Page 10

Opt Express. Author manuscript; available in PMC 2010 July 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



transmission X-ray microscopes at the Advanced Light Source. J. Synchrotron. Radiat 2003;10:125–
136. [PubMed: 12606790]

13. Sayre, D. Prospects for long-wavelength X-ray microscopy and diffraction. In: Schlenker, M., editor.
Imaging Processes and Coherence in Physics. Berlin: Springer-Verlag; 1980. p. 229-235.

14. Miao J, Charalambous P, Kirz J, Sayre D. An extension of the methods of x-ray crystallography to
allow imaging of micron-size non-crystalline specimens. Nature 1999;400:342–344.

15. Fienup J. Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett 1978;3:27–
29. [PubMed: 19684685]

16. Glaeser, RM. Radiation Damage and Biological Electron Microscopy. In: Siegel, BM.; Beaman, DR.,
editors. Physical aspects of electron microscopy and microbeam analysis. New York: Wiley; 1975.
p. 205-227.

17. Sayre D, Kirz J, Feder R, Kim DM, Spiller E. Transmission Microscopy of Unmodified Biological
Materials: Comparative Radiation Dosages with Electrons and Ultrasoft X-ray Photons.
Ultramicroscopy 1977;2:337–341. [PubMed: 919076]

18. Bershad N, Rockmore A. On estimating signal-to-noise ratio using the sample correlation coefficient.
IEEE Trans. Inf. Theory 1974;20:112–113.

19. Frank J, Al-Ali L. Signal-to-noise ratio of electron micrographs obtained by cross correlation. Nature
1975;256:376–379. [PubMed: 1095934]

20. Wolter H. Spiegelsysteme streifenden Einfalls als abbildende Optiken für Röntgenstrahlen. Ann. Phys
1952;10:94–114. 286.

21. Henke BL, Gullikson EM, Davis JC. X-ray Interactions: Photoabsorption, Scattering, Transmission,
and Reflection at E=50–30,000 eV, Z=1–92. Atomic Data and Nuclear Data Tables 1993;54:181–
342.

22. London RA, Rosen MD, Trebes JE. Wavelength choice for soft x-ray laser holography of biological
samples. Appl. Opt 1989;28:3397–3404. [PubMed: 20555712]

23. Cowley JM, Moodie AF. Fourier Images. I. The Point Source. Proceedings of the Physical Society
B 1957;70:486–496.

24. Thibault P, Elser V, Jacobsen C, Shapiro D, Sayre D. Reconstruction of a yeast cell from x-ray
diffraction data. Acta Crystallographica A 2006;62:248–261.

25. Schneider G, Anderson E, Vogt S, Knöchel C, Weiss D, Legros M, Larabell C. Computed tomography
of cryogenic cells. Surf. Rev. Lett 2002;9:177–183.

26. Kirz J. Phase zone plates for X rays and the extreme UV. J. Opt. Soc. Am 1974;64:301–309.
27. Goodman, JW. Introduction to Fourier Optics. San Francisco: McGraw-Hill; 1968.
28. Elser V. Phase retrieval by iterated projections. J. Opt. Soc. Am. A 2003;20:40–55.
29. Howells M, Beetz T, Chapman H, Cui C, Holton J, Jacobsen C, Kirz J, Lima E, Marchesini S, Miao

H, Sayre D, Shapiro D, Spence J, Starodub D. An assessment of the resolution limitation due to
radiation-damage in x-ray diffraction microscopy. J. Electron. Spectrosc. Relat. Phenom 2009;170:4–
12.

30. Shen Q, Bazarov I, Thibault P. Diffractive imaging of nonperiodic materials with future coherent x-
ray sources. J. Synchrotron. Radiat 2004;11:432–438. [PubMed: 15310961]

31. Rose A. Unified approach to performance of photographic film, television pickup tubes, and human
eye. J. Soc. Motion Pict. Eng 1946;47:273–294.

32. Shapiro D, Thibault P, Beetz T, Elser V, Howells M, Jacobsen C, Kirz J, Lima E, Miao H, Neiman
AM, Sayre D. Biological imaging by soft x-ray diffraction microscopy. Proc. Natl. Acad. Sci. USA
2005;102:15343–15346. [PubMed: 16219701]

33. Chapman H, Barty A, Marchesini S, Noy A, Hau-Riege SP, Cui C, Howells M, Rosen R, He H,
Spence J, Weierstall U, Beetz T, Jacobsen C, Shapiro D. High resolution ab initio three-dimensional
x-ray diffraction microscopy. J. Opt. Soc. Am. A 2006;23:1179–1200.

34. Thibault P, Dierolf M, Menzel A, Bunk O, David C, Pfeiffer F. High-resolution scanning x-ray
diffraction microscopy. Science 2008;321:379–382. [PubMed: 18635796]

35. Williams G, Quiney H, Peele A, Nugent K. Coherent diffractive imaging and partial coherence. Phys.
Rev. B 2007;75(104):102.

Huang et al. Page 11

Opt Express. Author manuscript; available in PMC 2010 July 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
(a) Images with noise simulated according to different mean photon numbers per pixel n¯.
Without noise, each pixel p has a value Ip of between 0 and 1. With illumination of n¯ photons
per pixel, each pixel has a starting value of n̄Ip photons which was used on a pixel-by-pixel
basis to generate an image using signal-dependent noise calculated using the positive-integer-
truncated Gaussian approximation. (b) signal-to-noise ratio (SNR) calculated from the images
versus incident photon number per pixel n¯. The signal-to-noise ratio was calculated both by
comparison of the noisy image with the noise-free original image described in Eqs. (7) and (8),
and by using the two-noisy-image correlation method described in Eqs. (11) and (14). Since a
fit of the data on a log-log plot of SNR versus n¯ shows a slope of 0.5 as expected from Eq.
(5), both image SNR methods give the expected scaling of SNR versus exposure n¯.
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Fig. 2.
Defined objects used for image simulations. Shown here are the magnitudes of the simulated
exit waves resulting from plane wave illumination of the objects. Cell A has random protein
thicknesses within an irregular boundary, while Cell B has a lipid membrane and several protein
bars and ellipses inside.
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Fig. 3.
Diffraction patterns of the exit waves from the two defined objects, cell A and cell B, and their
azimuthally averaged, unit-integral-normalized power spectral densities. In both cases the exit
wave amplitudes were Fourier transformed and then squared to yield the diffraction intensity.
Both defined objects have the signal decline with spatial frequency in a power law relationship
with a slope of about 3.3 over most frequencies. For cell A, this trend then levels off at a spatial
frequency of about 10 µm−1 where the pixel-by-pixel uncorrelated protein thickness dominate
the diffraction pattern; this yields a flat power spectrum corresponding to a delta (δ) function
in real space. For cell B, the overall round shape of the object gives rise to Airy rings in the
diffraction pattern which show up at spatial frequencies above 10 µm−1.
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Fig. 4.
Schematic of the two x-ray imaging systems considered in simulations. In the TXM or
transmission x-ray microscope at left, incoherent brightfield imaging is assumed where the
numerical aperture of the condenser is 1.5 times the numerical aperture of the objective lens;
a magnified image is recorded on a detector such as a CCD. The TXM objective is a zone plate
with 30 nm outermost zone width and 10% diffraction efficiency. In XDM or x-ray diffraction
microscopy at right, the specimen is assumed to be illuminated by a fully coherent beam and
the far-field x-ray diffraction pattern is recorded on a detector such as a CCD. A reconstructed
image is obtained by computational phasing of the coherent diffraction pattern.
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Fig. 5.
Images resulting from the simulations. Shown here are both TXM (top row) and XDM (bottom
row) images calculated for the two defined objects, cells A and B, with exposures of n¯ = 1 ×
103 and n¯ = 1 × 105 photons per pixel. The lack of “salt and pepper” shot noise in background
region outside of the cell in the XDM reconstructions is a result of the imposition of a finite
support constraint in the reconstruction process.
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Fig. 6.
Plots of the signal-to-noise ratio SNR as a function of incident photons per pixel n¯ for our
simulation set. The results at left are for the defined object “cell A”, while those at right are
for “cell B” (see Fig. 2). The results for both x-ray diffraction microscopy (XDM) and
transmission x-ray microscopy (TXM) are shown. In each case a slope of about 1/2 is observed
in the log10(SNR) versus log10(n¯) plot (Eq. (5)), and for both objects the SNR for x-ray
diffraction microscopy is about 7 times higher than it is for transmission x-ray microscopy.
For x-ray diffraction microscopy of cell B, the SNR curve oscillates around the straight line
fit. This oscillation corresponds to providing enough signal to phase data in successive Airy
rings in the diffraction pattern of the overall spherical shape of cell B, as shown in Fig. 3.
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Fig. 7.
Investigation of the dose versus resolution trend for x-ray diffraction microscopy of defined
object B. (a) The ratio 〈Irecon(f)〉 / 〈Idata(f)〉 for the example case of incident photon number
n¯ = 1000. This ratio measures how consistent the reconstructed intensity Irecon averaged over
many iterates compared to the recorded intensity Idata. We chose a cutoff value of 0.7 as
providing an estimate of the resolution of the reconstructed image. (b) The resulting trend of
incident photon number n¯ versus resolution Δmin, along with a straight line fit to determine
the dose versus resolution scaling parameter mr. The value of mr = −3.2 ± 0.2 is consistent with
the scaling of m = −3.30 ± 0.03 shown in Fig. 3 for the diffracted signal from this object.
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