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Identifying interactions in the time and frequency
domains in local and global networks - A Granger
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Abstract

Background: Reverse-engineering approaches such as Bayesian network inference, ordinary differential equations
(ODEs) and information theory are widely applied to deriving causal relationships among different elements such
as genes, proteins, metabolites, neurons, brain areas and so on, based upon multi-dimensional spatial and temporal
data. There are several well-established reverse-engineering approaches to explore causal relationships in a
dynamic network, such as ordinary differential equations (ODE), Bayesian networks, information theory and Granger
Causality.

Results: Here we focused on Granger causality both in the time and frequency domain and in local and global
networks, and applied our approach to experimental data (genes and proteins). For a small gene network, Granger
causality outperformed all the other three approaches mentioned above. A global protein network of 812 proteins
was reconstructed, using a novel approach. The obtained results fitted well with known experimental findings and
predicted many experimentally testable results. In addition to interactions in the time domain, interactions in the
frequency domain were also recovered.

Conclusions: The results on the proteomic data and gene data confirm that Granger causality is a simple and
accurate approach to recover the network structure. Our approach is general and can be easily applied to other
types of temporal data.

Background
One of the most fundamental issues in computational
biology is to reliably and accurately uncover the network
structure of elements (genes, proteins, metabolites, neu-
rons and brain areas etc.), based upon high throughput
data [1,2]. There are several well-established reverse-
engineering approaches to explore causal relationships
in a dynamic network, such as ordinary differential
equations (ODE), Bayesian networks, information theory
and Granger Causality.
The notion of Granger causality, which was first intro-

duced by Wiener and Granger [3-5], proposed that
there is a causal influence from one time series to
another if the prediction of one time series is improved
with the knowledge of the second one. The prediction is
made in terms of an auto-regressive model. In addition,

Granger causality has the advantage of having a corre-
sponding frequency domain decomposition so that one
can clearly find at which frequencies two elements inter-
act with each other. Granger’s conception of causality
has been widely and successfully applied in the econo-
metrics literature and recently in the biological literature
[6-11].
Considering the four different approaches to the same

problem, a natural question is to investigate which
should be preferred. In a previous paper [12], we pre-
sented a comparison study of Granger causality and
dynamic Bayesian network inference approaches. The
result showed that Granger causality outperformed the
dynamic Bayesian network inference when the time ser-
ies were long enough because the Granger causality was
then able to detect weak interactions. In a recent Cell
paper [13,14], the authors carried out a systematic com-
parison between the ODE, Bayesian and information
theoretic approaches for a small synthesized gene* Correspondence: jianfeng.feng@warwick.ac.uk
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network in the yeast (Saccharomyces cerevisiae). The
authors concluded that the ODE was the best
approaches amongst those three. We have applied our
conventional Granger causality approach on the same
recorded time-series and found that the results derived
by it were better than all the other three approaches’ in
the original paper. A small network of seven previously
investigated proteins [15] was also re-constructed. Inter-
estingly, the two important proteins DDX5 and RFC1
found in experiments were at the top of the re-con-
structed network. Frequency domain results were ana-
lyzed and they indicated that DDX5 and BAG2
interacted at a frequency of one cycle per three hours.
Due to the complexity of biological processes, in order

to capture the dynamics of complex systems and investi-
gate the functions of genes and neurons in detail, it is
much better to treat the network as a whole instead of
analyzing a very limited portion of it. Until now, most
of the analysis tools currently used for the whole net-
work are based on clustering algorithms. These algo-
rithms attempt to locate groups of genes that have
similar expression patterns over a set of experiments.
Such analysis has proven to be useful in discovering
genes that are co-regulated and/or have similar function.
A more ambitious goal for analysis is revealing the
structure of the transcriptional regulation process, for
example, for a given transcription factor, could we find
all its upstream and downstream transcription factors?
This is clearly a challenging and fascinating problem.
Most popular approaches, such as Granger causality,

are powerful in cases where the length of the time series
is much larger than the number of variables, which is
exactly the reverse of the situation commonly found in
microarray experiments, for which relatively short time
series are measured over tens of thousands of genes or
proteins. The real difficulty comes from the fact that
when the dimension is larger than the length of time ser-
ies, the design matrix of predictors is rectangular, having
more columns than rows; in such case, the model is
under-determined and cannot be uniquely fitted. Baye-
sian network is a graph-based model of joint multivariate
probability distributions that captures properties of con-
ditional independence between variables, but as it
requires a large number of parameters and assumptions
upon the variable distribution, it also quickly becomes
intractable for large networks. Keeping these limitations
in mind, it is still an important task to developing meth-
odologies that are both statistically sound and computa-
tionally tractable to make a full use of the wealth of data
now at our disposal. In order to tackle this problem, we
propose a new framework: Global Granger Causality
(GGC) This framework builds on the use of partial Gran-
ger causality which was illustrated in our previous paper
[16]. We first construct an initial sparse network by

considering all possible links by computing bivariate
pair-wise Granger causality. Once we identify such a net-
work structure, there is uncertainty about the true causal
structure; we need to check whether the links appearing
in pairwise causality are direct or indirect. We do so by
computing GGC step by step. If a link is found to be an
indirect relationship in the sense of GGC, we delete such
a link from the initial network. Theoretically, iterating
the procedure will remove all indirect links and only
direct connections will remain. The advantage of such an
approach is obvious. By explicitly taking more sources
into account, it provides a less biased structure of the
network due to latent variables than in a small network
as described above. It also provides information on the
ancestors and descendents of key elements such as DDX
and RFC1 in our network. The results can then guide
experimentalists to investigate the properties of a small
subset of specific proteins.
The rest of the article is divided in two sections. First,

in the method sections, we introduce Granger causality
in details, as well as its formulation in the frequency
domain. We also describe global Granger causality, the
new procedure for applying Granger causality to large
networks. Next, in the result section, we apply our
method on small (local) and large (global) networks. In
both cases, simulations and actual biological data (gene
and protein time-series) are used and results discussed.
And we also provide a theoretical proof of its reliability

Method
A measurement of Causal influence for time series was
first proposed by Wiener-Granger. We define the causal
influence of one time series on another by quantifying
the improvement made on the prediction of a time ser-
ies when we incorporate the knowledge of a second one.
Granger implemented this notion in the context of lin-
ear vector auto-regression (VAR) model of stochastic
processes. In the AR model, the variance of the predic-
tion error is used to test the prediction improvement.
For instance, consider two time series; if the variance of
the autoregressive prediction error of the first time ser-
ies at the present time is reduced by the inclusion of
past measurements from the second time series, then
one can conclude that the second time series have a
causal influence on the first one. Geweke [17,18]
decomposed the VAR process into the frequency
domain and converted the causality measurement into a
spectral representation which made the interpretation
more appealing.
The pair-wise analysis introduced above can only be

applied to bivariate time series. For more than two time
series, a time series can have a direct or indirect causal
influence to other time series. In this case, pairwise ana-
lysis is misleading and not sufficient to reveal whether
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the causal interaction between a pair is direct or indir-
ect. In order to distinguish direct and indirect causal
effects, one introduces conditional Granger causality
which takes account of the other time series effect. In
the following we present an analysis on how to define
the conditional Granger causality on an ARIMA (autore-
gressive integrated moving average) model. ARIMA is a
generalization of an ARMA model. The model is gener-
ally referred to as an ARIMA(p,d,q) model where p, d,
and q are integers greater than or equal to zero and
refer to the order of the model. Given a time series of
data Xt, an ARIMA(p,d,q) model is given by:
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Where L is the lag operator, the error term εt has nor-
mal distribution with 0 mean.

Conditional Granger Causality in the time domain
Giving two time series Xt and Zt and their kth and mth

order differences ΔkXt and ΔmZt (without loss of gener-
ality, we assume that m = k from now on), the joint
autoregressive representation for ΔkXt and ΔkZt by
using the knowledge of their past measurement can be
expressed as
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The noise covariance matrix for the system can be
represented as
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where var and cov represent variance and co-variance
respectively. Incorporating the knowledge of the third
time series, the vector autoregressive mode involving the
three time series ΔkXt, Δ

kYt and ΔkZt can be repre-
sented as
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And the noise covariance matrix for the above system
is
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where εit, i = 1,2,...,5 are the prediction errors, which
are uncorrelated over time. If we rewrite equation (2)
and equation (4) in terms of X, Y and Z themselves, we
see that whether a coefficient vanishes or not is almost
unchanged. Hence it is safe to say that the conditional
Granger causality form Y to X conditional on Z can be
defined as (see [19] for the classical definition)
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When the causal influence from Y to X is entirely
mediated by Z, the coefficient b2i is uniformly zero, and
the two auto-regressive models for two or three time
series will be exactly same, thus we can get var(ε1t) =
var(ε3t). We then have FY®X|Z = 0, which means Y can
not further improve the prediction of X including past
measurements of Y conditional on Z. In other words, Y
doesn’t have an influence on X. For var(ε1t) > var(ε3t),
FY®X|Z > 0 and therefore there is a direct influence
from Y to X, conditional on the past measurements
of Z.

Conditional Granger Causality in the frequency domain
To derive the spectral decomposition of the time
domain conditional Granger causality, we multiply the
normalization matrix
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to both side of equation (2) and rewrite it in terms of
the lag operator L. I is identity matrix. The normalized
equations are represented as:
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Then we can apply the same normalization procedure
to the equation (4) multiplying the matrix
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to both sides of equation (4) and rewrite it in terms of
the lag operator
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After Fourier transforming equation (8) and (12), we
can rewrite them in the following representations
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where Δ(l, k) is the Fourier transform of the differ-
ence operator Δk. Therefore, for ARIMA and ARMA
model in the frequency domain, their causality is identi-
cal. This is in agreement with our conclusions in the
time domain causality and in general the Kolmogorov
identity holds true, that is: integrating the frequency-
domain Granger causality over all frequencies yields the
time-domain Granger causality.

Global Granger Causality
Partial Granger causality (PGC) provides an accurate
description of the internal dynamics of the system when
the number of nodes is much smaller than the length of
recorded time series. However, when the number of nodes
increases, especially when they are larger than the length
of time series, a ‘curse of dimension’ immediately arises, it
is a situation for which usual methods break down.
Here we propose the following Global Granger Caus-

ality (GGC) algorithm to tackle this problem. The

general idea is as follows: if we could find all ancestors
of a given target T, the whole network could be recon-
structed. Hence for a given target T, we want to find all
directed ancestors (parents of target T). For illustration,
a small subset of the whole network, which contains tar-
get T and all its ancestors, is shown in the Fig. 1A. We
assume that each nodes from {X1,...Xn} has only a single
pathway to target T, and each nodes from {Y1,...,Yn} has
two distinct pathways to target T. From Fig. 1A, we can
find the parents of target T are T1, T2, T3.
The detailed algorithm is illustrated as follows:
First, apply the bivariate pair-wise Granger causality to

find all of the ancestors of the target T. This set is
denoted A0(T). In theory, we can detect all possible
Granger-causal links in this procedure, both direct and
indirect. In Fig. 1A, A0(T) = {T1, T2, T3, X1,...Xn, Y1,...,Yn}.
Secondly, we identify whether the links detected in

step 1 are direct or indirect. For such a purpose, we
carry out the following iterative procedures.

(I) For each node in A0(T), compute the partial
Granger causalities conditioned on all other single
nodes in the A0(T). If the relationship vanishes,
delete this node from the initial network and obtain
the 1-stage network. After this procedure, all indirect
links conditioned on one single node have been
removed. In Fig. 1A, {X1,...Xn} are deleted from A0

(T), denoting the remaining set as A1(T) ={T1, T2,
T3, Y1,...,Yn}. This is proved in Lemma 1 of Discus-
sion section.
(II) For each node in A1(T), compute the partial
Granger causalities conditioned on all possible pairs
in A1(T). We obtain the 2-stage network in where
all indirect links conditioned on a pair of nodes have
been removed. In Fig. 1B, {Y1,...,Yn} is further deleted
from A1(T), denoting the remaining set as A2(T) =
{T1, T2, T3}.
(III) Continue the procedure above until we can not
remove any nodes from Ak(T).

The rationale is as follows: if the usual Granger caus-
ality from Y ® X is large but significantly decreases
when conditioned on a third signal Z (FY®X|Z ), then
the connection Y®X is only indirect and should be dis-
carded. We use this principle to find the direct ances-
tors (signals acting on a target X with no intermediate)
of each nodes. At step 0, we search for all signals Y
such that FY®X is large. We call A0 this collection of
candidate ancestors. At step 1, we filter this set further
with keeping the signals YÎA0 such that FY®X|Z is still
large for all ZÎA0. We call A1 this new set and carry on
the procedure by conditioning on groups of 2, then 3
etc. signals from the previous set until such an opera-
tion is not possible (the size of Ai decreases or stabilizes
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Figure 1 Global Granger causality approach. (A) Ancestors of target node T, A0(T) = {T1, T2, T3, X1,...,Xn, Y1,...,Yn}. T1, T2, T3 are direct ancestors
to target T. {X1,...,Xn} connect to T through a single pathway, thus, {X1,...,Xn} are not direct ancestors to target T. {Y1,...,Yn} connect to T through
two distinctive pathways (B) {X1,...,Xn} can be removed by Granger-conditioning on a single node, A1(T) = { T1,T2,T3,Y1,...,Yn}. (C) S is connected to
T through two different paths, both {B1,B2} and {B3} are sections from S to T, but {B3} is the bottleneck. (D) There may exist other common drives
to the observed nodes X and T, we assume the partial Granger causality can delete the influence of such drive and exclude such case in our
analysis. (E) Histograms of the number of bottleneck for a variety of connection probability p for N = 100 and 500 simulations.

Zou et al. BMC Bioinformatics 2010, 11:337
http://www.biomedcentral.com/1471-2105/11/337

Page 5 of 17



at each iteration). The result is a list of direct ancestors
for each node, which we aggregate to produce the global
network.

Result and Discussions
Local Network: Synthesized Data
To illustrate the conditional Granger causality approach
in both time and frequency domains, a simple multivari-
ate model with fixed coefficients which has been dis-
cussed in previous ([9,16]) papers is tested first.
Suppose we have 5 simultaneously recorded time ser-

ies generated according to the equations:
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X n X n X n

(15)

Where n is the time, and [ε1, ε2, ε3, ε4, ε5] are indepen-
dent Gaussian white noise processes with zero means
and unit variances. From the equations, we see that X1

(n) is a cause of X2(n), X3(n) and X4(n), and X4(n) and
X5(n) share a feedback loop with each other. Fig. 2A
shows an example of the time trace of 5 time series. We
obtain 95% confidence intervals by bootstrapping: we
simulated the fitted vector autoregressive model to gen-
erate a data set of 1000 realizations of 1000 time points
with a sampling rate 200 Hz and used their statistics for
estimating the confidence intervals [20]. (Fig. 2D). An
ARMA (Auto-Regressive Moving Average) model was
used to fit the data, and samples were drawn from this
fitted ARMA model. To depict all causal relationships in
a single figure, we enumerated them in a table as shown
in Fig. 2C. According to the confidence intervals, one
can derive the network’s structure as shown in Fig. 2B.
From the result, the Granger causality approach cor-
rectly recovered the pattern of the connectivity in this
toy model. Furthermore, we applied the conditional
Granger causality approach on frequency domain as
shown in Fig. 2E. The causal relationships from X1 to
X2, X3 and X4 show strong interactions at around 25 Hz.

Local Network: A yeast synthetic network of five genes
A recent Cell paper by Irene Cantone et al. [14] assessed
systems biology approaches for reverse-engineering and
modeling (see also [13]). To recover a regulatory interac-
tion network, the authors used three well-established
reverse-engineering approaches: ordinary differential
equations (ODEs), Bayesian networks and information
theory. A gene synthetic network in the yeast consisting
of 5 genes with 8 known interactions was investigated.

From the results, the authors found ODEs and Bayesian
networks could correctly infer most regulatory inter-
actions from the experimental data with best values of
PPV = 0.75 [Positive Predictive Value] and Se = 0.5
[Sensitivity]. In order to validate our approach, we
applied conditional Granger causality [12] to the same
experimental data. From our results, we found that the
conditional Granger causality approach could also
correctly infer most regulatory interactions and out-
performed all the other three approaches reported in
[14] with the best values of PPV = 0.83 and Se = 0.83.
Hence the Granger causality approach, although simple,
can be successfully applied to recover the network struc-
ture from temporal data and it could play a significant
role in systems biology [21].
Initially, we applied conditional Granger causality to

the switch-off time series which contained more time
points than switch-on time series. The switch-off experi-
ment data consisted of 4 replicates. Since a shift from
galactose-raffinose- to glucose-containing medium
caused a large initial decay, we simply removed the first
two time points for 2 replicates. The time series were
not stationary. The gene expression level decreased with
time because of the inhibition effect of galactose-raffi-
nose-containing medium. In order to apply conditional
Granger causality, we were required to use ARIMA
(Auto-Regressive Integrated Moving Average) rather
than ARMA model to fit the data. The level of differ-
ence for ARIMA was chosen to be 1.
Firstly, we used the conditional Granger causality

approach to infer regulatory interactions for 5 genes. By
using the bootstrapping method, we constructed 95%
confidence intervals as shown in Fig. 3C. From this fig-
ure, we then constructed the causal network, which is
displayed in Fig. 3A. Only the 5 most significant edges
are shown in this graph. From this causal network, there
are 4 true-positive edges and 1 false-positive edge. Our
approach performs better: the PPV is 0.8, instead of 0.6
and the Se is 0.5, instead of 0.38.
We then grouped Gal4 and Gal80 as a single node as

they form a complex [14], and then applied conditional
Granger causality approach. Fig. 3D. shows 95% confi-
dence intervals for the causality. From this figure, we
can then recover a simplified causal network as shown
in Fig. 3B. It shows the 6 most significant edges. There
are 4 true-positive edges and 1 false-positive edge. By
comparing our PPV (0.83) and Se (0.83) values with the
original paper (PPV = 0.75, Se = 0.5), it is further con-
firmed that the performance of our algorithm is much
better. The reason why the Granger causality outper-
forms the other approaches is clear from the detailed
analysis in [12] where we have reported that the Gran-
ger causality is better than the Bayesian approach pro-
vided the data set is long enough. The Bayesian
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Figure 2 Conditional Granger causality approach applied on a simple linear toy model. (A) Five time series are simultaneously generated,
and the length of each time series is 1000. X2, X3, X4 and X5 are shifted upward for visualization purpose. (B) For visualization purpose, all
directed edges (causalities) are sorted and enumerated into the table. (C) The derived network structure by using conditional Granger causality
approach. (D) The 95% confidence intervals graph for all the possible directed connections derived by conditional Granger causality. (E) Granger
causality results in frequency domain.
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Figure 3 Conditional Granger causality approach applied on experimental gene data. The experiment measured the expression level of 5
genes after a shift from galactose-raffinose- to glucose-containing medium. The regulatory network was inferred by using conditional Granger
causality approach. Solid gray lines represent inferred interactions that are not present in the real network, or that have the wrong direction (FP
false positive). PPV [Positive Predictive Value = TP/(TP+FP)] and Se [Sensitivity = TP/(TP+FN)] values show the performance of the algorithm for
an unsigned directed graph. TP, true positive; FN, false negative. (A) The network structure of 5 genes derived by conditional Granger causality.
(B) Gal4 and Gal80 were grouped as a single node, so that only transcriptional regulation interactions are represented. (C) Conditional Granger
causality results for 5 genes. The 95% confidence intervals graph, which is constructed by using bootstrapping method, is plotted. (D)
Conditional Granger causality results for a grouped genes (Gal4 and Gal80 are grouped). The 95% confidence intervals graph, which is
constructed by using bootstrapping method, is plotted.
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approach is similar to the ODE approach as claimed in
[12]. Hence we could reasonably expect that the Gran-
ger approach is the best among the four approaches.

Local Network: A Local Circuit of Seven Proteins
After testing our approach in the gene circuit, we
applied conditional Granger causality approach on
dynamic proteomics of individual cancer cells in
response to a drug treatment [15,22]. In the experi-
ment, an anticancer drug, camptothecin (CPT), with a
well-characterized target and mechanism of action was
used to affect the cell state. The drug is a topoisome-
rase-1 (TOP1) poison with no other target, which can
eventually cause cell death. To follow the response to
the drug, 812 different proteins in individual living
cells were measured with a time interval of 20 minutes.
A total number of 141 sample points (more than 40
hours) were collected. This dataset, much larger than
the gene data reported above, gives us the opportunity
to construct both local and global networks. In [15],
seven proteins were investigated in more details,
including two proteins (DDX5 and RFC1) that were
reported to be essential. Fig. 4A shows the time traces
of the seven proteins, denoted as X. They clearly are
not stationary, a property that is required for Granger
Causality. To overcome this, the model used to fit the
time series is changed from ARMA (Autoregressive
moving average model) to ARIMA (Autoregressive
integrated moving average). Crucially, this transforma-
tion does not impact on the true connections between
elements. Fig. 4B shows the transformed data, obtained
after differencing the original data term by term 3
times. Fig. 4E. shows the Granger causality found for
all possible pairs of proteins, together with their 95%
confidence intervals calculated though a bootstrap.
From the figure, we can then construct the causal pro-
tein-interaction network, which is displayed in Fig. 4C.
Only the 12 most significant edges are shown in this
graph. In the literature, it has been reported that the
protein DDX5 was significantly correlated with the cell
fate (with a p-value p < 10-13). It has been further
proved that it plays a functional role in the response
to the drug: a doubling in the death rate was observed
during the first 40 hours when DDX5 was knocked-
down [15]. Protein RFC1 also showed a significant cor-
relation with cell fate (with a p-value p < 10-6). Our
derived network is in good agreement with these two
biological characteristics. Protein DDX5, which is the
most significantly correlated with the cell fate, is on
the top level of the network. Protein RFC1 is in a
lower level comparing to DDX5, since the causal rela-
tion is from DDX5 to RFC1. Therefore, the results on
the proteomic data and gene data confirm that the

Granger causality is a simple and accurate algorithm to
recover the network structure.
Fig. 5. shows the same analysis in the frequency

domain. From the result, we find that there are strong
interactions from D (DDX5) to C (BAG2) at around
0.006 cycle/min or one cycle every three hours. From
the power spectrum result for D and C, we can also
find an energy peak at this frequency. In addition, there
is a strong chain interaction from D to G (RFC1) via C
and F (SPCS1). This chain contains the 3 strongest
interactions. Each element in the chain affects its down-
stream element at a similar frequency.

Global Network: Synthesized Data
To measure the performance of the Global Granger
Causality algorithm introduced in this paper, we first
consider some toy models. The first toy model is a
high-dimensional time series. We also compare the
result of GGC with that of PGC.
Example 1
Suppose that 12 simultaneously generated time series
were generated by the equations:
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(16)

where ω1,...,ω12 are zero-mean uncorrelated process
with identical variance. We generated time series of 80
points. The true network structure is depicted in Fig.
6A, there are 21 actual links. We first applied PGC to
the data directly and used a bootstrap method to con-
struct the network structure. More specifically, we simu-
lated the fitted VAR model to generate a dataset of 1000
realizations of 80 time point, and used 3s as the confi-
dence interval. If the lower limit of the confidence inter-
val was greater than zero, we considered there was a
relationship between two units. The network structure
is depicted in Fig. 6B. The network structure we
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Figure 4 Conditional Granger causality approach applied on experimental protein data. The experiment measured the levels of 7
endogenously tagged proteins in individual living cells in response to a drug. (A) The time traces of 7 proteins are plotted. There are 141 time
points. The time interval is 20 minutes. (B) ARIMA model is used to fit the data. We applied term-by-term differencing 3 times to the data. (C)
The network structure for 7 proteins derived by using conditional Granger causality approach. (D) For visualization purpose, all directed edges
(causalities) are sorted and enumerated into the table. (E) Conditional Granger causality results. The 95% confidence intervals graph, which is
constructed by using method bootstrap, is plotted.
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obtained from PGC was misleading. The reason is that
since the order of the model is 4, the number of total
parameters we should estimate in this model is 12 × 12
× 4, the estimator is unreliable with such little data.
Secondly, we used GGC to investigate the network

structure. Fig. 6C shows the results we obtained after
applying pairwise Granger causality. There are 33 links
in total. We computed partial Granger causality condi-
tioned on any intermediate node to identify whether the
links appearing in Fig. 6C are direct or indirect. If the
lower limit of the confidence interval of partial Granger
causality is less than zero, then the link is regarded to
be indirect and is deleted from Fig. 6C (dashed arrows).
Fig. 6D is the final structure we get from GGC; it is
consistent with the actual structure Fig. 6A.
Example 2: Random network
Next we present a validation of our method with a ser-
ies of experiments on random networks for which the
true structure is known. We built an Erdös-Rényi ran-
dom graph with N = 200 nodes and M = N × log(N) =
1060 edges. From the network structure, we generated

N time series with an auto-regressive model of order 1
whose transition matrix is the transpose of the adja-
cency matrix of the network, with its largest eigenvalue
normalized to 0.99 to obtain a stable system. Each time
series was 200 time-points long and normal noise of
unit variance was added throughout. The algorithm was
applied to each single node to get a list of their guessed
ancestors. We then compared the true and computed
lists of ancestors. One should expect that the connection
between two nodes to be difficult to uncover if the cor-
responding coefficient in the linear model is small. To
factor this out, we first considered the case where the
non-zero coefficients of the transition matrix were all
equal and maximized. We then applied the method on
the case where the non-zero coefficients were randomly
distributed.
Example 3: Constant coefficients
The data were generated by an auto-regressive model
with transition matrix A. A is a scaled version of the
transpose of the true adjacency matrix. The scaling fac-
tor was chosen so as to be maximal while leading to a

Figure 5 Conditional Granger causality in frequency domain. Conditional Granger causality was applied to experimental data in the
frequency domain and power spectrum density analysis for 7 proteins (the most left column in black line). The significant causalities are shown
in red lines in the figure.
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Figure 6 Global Granger Causality (GGC) algorithm applied on a simple toy model. (A) The actual network structure used in toy model of
global network. (B) Network structure inferred from PGC. (C) Network structure inferred from pair-wise Granger causality (solid and dashed links).
By using partial Granger causality among three units, we can delete some of them (dashed links). (D) The final network structure from GGC, it is
consistent with the actual relationship. (E) ROC curve summarizing the performance of the procedure on a random network with maximum
non-zero coefficients. (F) ROC curve summarizing the performance of the algorithm on a random network with random non-zero coefficients.
(G) True positive rate as a function of the magnitude of the non-zero coefficient.
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largest eigenvalue for A of less than 1 (or the model
degenerates). In this particular case, it was found to be
0.1736. The procedure has one parameter τ, the thresh-
old at which a Granger-causality is deemed significant.
By varying this parameter from 0 to 0.1, we obtained
different large networks which we compared to the
truth. The accuracy of each network was summarized
by its true positive and false positive rates. Fig. 6E
shows the resulting receiver operating characteristic
(ROC) curve that is the graph obtained by plotting the
false positive rate against the true positive rate. The per-
formance of the method was extremely good, with an
area under the curve close to 1. Crucially for biological
applications, the false positive rate is always very small.
Example 4: Random coefficients
In this setup, the non-zero coefficients of the transition
matrix were randomly distributed (normally distributed
with mean 3 and multiplied by -1 with probability 1/2).
The matrix was then scaled in the same manner as
before. Fig. 6F shows the performance of the method on
this harder problem. The method is not as accurate as
before, with a maximum true positive rate just over 0.5.
However, the false positive rate is still very low: the
method doesn’t guess as many ancestors as before but
its guesses are rarely wrong. The fact that more connec-
tions are now missed out is not surprising: the non-
zeros coefficients are randomly distributed and can be
very small. Fig. 6G shows how the true positive rate var-
ies with the magnitude of the coefficients; the true posi-
tive rate goes to zero with small coefficients.

Global Network: A Global Circuit of 812 Proteins
We then applied our GGC approach on the whole data-
set of 812 proteins on dynamic proteomics of individual
cancer cells in response to a drug treatment. Fig. 7C
shows the direct ancestors of protein DDX5, known to
be at the top level of the circuit, as shown in the pre-
vious section. Our result suggests that controlling for
either BC037836, C2ORF25, HMG2L1, MAPK1, RPL24
or RPS23 will have an effect on DDX5 and thus on the
whole circuit. A similar figure for RFC1 is shown in the
Fig. 8.
Setting the same threshold as the one used to obtain

the small circuit, a large, sparse network is obtained:
768 nodes remain (discarding those with no connec-
tions) and 2972 edges were found, which represented
only 0.5% of all the possible edges. The complete struc-
ture can be found in the Additional File 1. Fig. 7A
shows the distributions of in-, out- and total degree of
the nodes. All three distributions are exponential, pre-
cluding the possibility of a scale-free network. Each
node has an average in-degree and out-degree of 3.8,
indicating a well-connected network. This is confirmed
by the characteristic path length (average of the shortest

path between all pairs of nodes). Considered undirected,
the graph has a characteristic path length of 3.8, in line
with those of previously reported biological networks
(see [23] and references within), including protein-pro-
tein interaction networks, although it should be noted
that the present study is concerned with the dynamics
of the proteins (as in [24] for example) and not their
physical interactions (in which case the network is
undirected by construction). The directed graph also has
a small characteristic path length of 5.7 nodes and a
small diameter (largest shortest path) of 12 nodes. Such
connectedness indicates that the network is a small
world [25,26]. However, it is not particularly modular:
while its mean clustering coefficient is an order of mag-
nitude (17 times) higher than one of a random network,
the clustering coefficient is almost constant with respect
to the node’s degree. In other words, the same level of
clustering is found everywhere regardless of the node’s
degree.
The previous small network in Fig. 4 was obtained by

using the conditional granger causality. Conditional
Granger causality can be misled by common influence:
if both nodes are subjected to an unknown common
source, it can have an effect on their connections. Partial
Granger causality - another extension of Granger causal-
ity [16,27,28] - can address this issue by considering an
unseen external input in the linear model and working
out its effect on the connection. For example, the partial
Granger causality between DDX5 and RFC1 is very
small, even though the conditional Granger causality
between them is high (Fig. 4) and there exists a short
path (1 intermediate) from DDX5 to RFC1 in the large
network. This suggests the connection is affected by a
common unseen source.
In order to identify which proteins have an influence

on the connections between the 7 proteins of interest
(AKAP8L, PSMB6, BAG2, DDX5, DKFZP434, SPCS1,
and RFC1), we first extracted them as well as the pro-
teins belonging to the shortest paths between them,
resulting in a subset of 118 proteins. We then applied a
filtering process on each of the 12 connections uncov-
ered in the previous section. The rationale of the algo-
rithm is that if removing the (explicit) influence of a
protein makes the connection between two nodes
change, then this protein should be kept as a potential
influence on the connections - if z is independent of x
and y, then z does not affect the Granger causality and
Fx®y|z = Fx®y. After filtering for those that have an
influence, we then considered their pairs and build a
new subset, then triplets etc.. The end-result is a set of
proteins which have a substantial influence on the
connection.
Fig. 7D shows the small network of 7 proteins with

the now-identified external influences. Note that those
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Figure 7 Global Granger Causality algorithm applied on experimental data for global network re-construction. (A) In-, out- and total
degree distributions of the large network calculated from the whole dataset. (B) For visualization purpose, the proteins are enumerated into the
table (C) Direct ancestors of the protein DDX5: BC037836, C2ORF25, HMG2L1, MAPK1, RPL24 and RPS23.(D) External influences identified by the
second iterative procedure, in brown ovals.
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proteins do not necessarily belong to the path from one
node to the other, but rather they have some substantial
influence on the connection as a whole, for example on
some members of the path.

How reliable is Global Granger Causality?
In theory, we can recover all possible links from the
pairwise Granger causality procedure and have to Gran-
ger-condition on all combinations of the nodes in the

system to remove an indirect connection. However, it is
an NP-hard problem and we will stop at a stage k, i.e.,
we only need to Granger-condition on the combinations
of up to k nodes. Therefore, the analysis on how to
choose k and the probability of correctly uncovering the
true relationship of the whole network when we stop at
stage k is of vital importance. In this section, we will
provide some simulation and theoretic results on these
questions.

Figure 8 Global Granger Causality algorithm applied on experimental data for global network re-construction. (A) The overall mean
clustering coefficient (the probability of neighbours being inter-connected) is an order of magnitude larger than the one of a random network
(0.022 instead of 1/768 = 0.0013). But the network is not modular: the mean clustering coefficient with respect to degree is more or less
constant. (B) Direct ancestors of RFC1, as well as their own direct ancestors. The causal link from DDX5 to RFC1 is now completely identified: an
intermediate protein (SLBP) connects them.
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Consider a network with N nodes {X1,...,XN} with a
connection probability p. There are N × (N - 1) × p
direct links on average in the whole system. We intend
to estimate how many indirect connections are left
when we stop at stage k. Here we focus on a pair X to
T, where X, T are in {X1,...,XN}. If there exists only one
single path from X to T, this link can be discarded by
Granger-conditioning on a single intermediate node in
the path. If there are more than one paths from X to T,
in theory, this link should be discarded by Granger-con-
ditioning on all the other nodes.
Definition 1 (bottleneck). Assume that there are m dis-
tinctive directed paths from S Î {X1,...,Xn} to T and p(S,
T) be the set of all distinctive directed paths from S to T.
A set of nodes {Z1,...,Zm} is called a section from S to T if
there is no directed path from S to T in the graph {X1,...,
XN}-{Z1,...,Zm}. A section which minimizes its total num-
ber of elements of the section is called a bottleneck.
For example, in Fig. 1C both {B1, B2} and {B3} are sec-

tions from S to T, but {B3} is the bottleneck..
Lemma 1. Assume that the set {B1,...,Bm} is the bottle-

neck from S to T, we have

FS T B Bm→ =|{ }1
0

Proof. We only check two cases here. The first case is
that there is a single serial connection from S to T. For
example, we have S ® B1 ® B2 ®...Bn ® T where every
single node {Bi} is a bottleneck of the path. If we condition
on one of the single node Bi in the path, we need to show

FS T Bi→ =|{ } 0

According to the definition, we need to find the auto-
regression expression:

T C T D Bi= + +( ) ( )Γ Γ 

where Γ is the delay operator and C, D are polyno-
mials, ξ is the noise term. From the assumption of the
path structure, we conclude
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where E, F, G are polynomials and ε is the noise
(could be different). From the equation above, we see
that for any node Bi, we have FS T Bi→ =|{ } 0 . Intuitively,
in a serial path S ® B1 ® B2 ®...Bn ® T, the informa-
tion cannot be transmitted from S to T if Bi is removed.
In conclusion, for a single path, the Granger causality is
zero whenever we condition on one of its nodes in the
path. It is not necessary to condition on the whole path
to remove the causality.
The second case is as depicted in Fig. 1C. There are

two different paths from S to T, B1 and B2 converge to
a common bottleneck B3. It is easy to see that informa-
tion can not be transmitted from S to T if B3 is
removed, then we can easily see that

FS T B→ =|{ }3
0

Combining the above two cases completes the proof
of the lemma.
Lemma 1 tells us that if there are m distinctive paths

from S to T, i.e., the number of the bottleneck is m,
then the causality between S and T will vanish when we
take into account the partial Granger causality on {X1,
...,Xm}. There may exist other common drives to the
observed nodes S and T such as Fig. 1D. We assume
the partial Granger causality can delete the influence of
such drive and exclude such case in our analysis.
The exact formula of the number of bottlenecks seems

to be fairly complicated but we can have a first look at
the empirical distribution of it. For a variety of connec-
tion probability p, we generate 500 random networks
when N = 100. For each network, we randomly select
two nodes and compute the number of the bottleneck
between them. Fig. 1E shows the histograms when p =
0.015, 0.02, 0.03 and 0.05, respectively. From these fig-
ures, it can be easily seen that the sparser the network
is, the quicker we can detect the true structure from
global Granger causality. When p = 0.015, it is very
likely for any two nodes to be unconnected or directly
connected, then almost all the true relationships can be
uncovered at stage 1. When p = 0.02, all the true rela-
tionships can be uncovered at stage 2. When p = 0.03,
the probability of uncovering the true relationship is
90.8% at stage 2 and 98.6% at stage 3. When p = 0.05,
the probability of uncovering the true relationship is
82.2% at stage 4 and 97.8% at stage 6. It is not until
stage 9 that all indirect links can be discarded.

Conclusion
In this paper, we focused on the Granger causality
approach in both the time and frequency domains in
local and global networks. For a local gene circuit, a
recent Cell paper by Irene Cantone et al. [14] assessed
systems biology approaches for reverse-engineering and
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modeling by investigating a gene synthetic network in
the yeast consisting of 5 genes with 8 interactions (also
see highlight [13]). From our results, we found that our
conditional Granger approach could also correctly infer
most regulatory interactions and outperform the three
approaches reported in the [14]. For a local protein-
interaction network, our derived network is in good
agreement with biological characteristics. Therefore, the
results on the proteomic data and gene data confirm
that the Granger causality is a simple and accurate
approach to recover the network structure. For a global
network, our novel approach was successfully used to
build a large network from all the recorded 812
proteins.

Additional material

Additional file 1: The global network derived by Global Granger
causality algorithm. The re-constructed global network is stored in PDF
format.
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