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Abstract

Background: The etiologic agent of Chagas Disease is Trypanosoma cruzi. Acute infection results in patent parasitemia and
polyclonal lymphocyte activation. Polyclonal B cell activation associated with hypergammaglobulinemia and delayed
specific humoral immunity has been reported during T. cruzi infection in experimental mouse models. Based on preliminary
data from our laboratory we hypothesized that variances in susceptibility to T. cruzi infections in murine strains is related to
differences in the ability to mount parasite-specific humoral responses rather than polyclonal B cell activation during acute
infection.

Methodology/Principal Findings: Relatively susceptible Balb/c and resistant C57Bl/6 mice were inoculated with doses of
parasite that led to similar timing and magnitude of initial parasitemia. Longitudinal analysis of parasite-specific and total
circulating antibody levels during acute infection demonstrated that C57Bl/6 mice developed parasite-specific antibody
responses by 2 weeks post-infection with little evidence of polyclonal B cell activation. The humoral response in C57Bl/6
mice was associated with differential activation of B cells and expansion of splenic CD21highCD23low Marginal Zone (MZ) like
B cells that coincided with parasite-specific antibody secreting cell (ASC) development in the spleen. In contrast, susceptible
Balb/c mice demonstrated early activation of B cells and early expansion of MZ B cells that preceded high levels of ASC
without apparent parasite-specific ASC formation. Cytokine analysis demonstrated that the specific humoral response in the
resistant C57Bl/6 mice was associated with early T-cell helper type 1 (Th1) cytokine response, whereas polyclonal B cell
activation in the susceptible Balb/c mice was associated with sustained Th2 responses and delayed Th1 cytokine
production. The effect of Th cell bias was further demonstrated by differential total and parasite-specific antibody isotype
responses in susceptible versus resistant mice. T cell activation and expansion were associated with parasite-specific
humoral responses in the resistant C57Bl/6 mice.

Conclusions/Significance: The results of this study indicate that resistant C57Bl/6 mice had improved parasite-specific
humoral responses that were associated with decreased polyclonal B cell activation. In general, Th2 cytokine responses are
associated with improved antibody response. But in the context of parasite infection, this study shows that Th2 cytokine
responses were associated with amplified polyclonal B cell activation and diminished specific humoral immunity. These
results demonstrate that polyclonal B cell activation during acute experimental Chagas disease is not a generalized response
and suggest that the nature of humoral immunity during T. cruzi infection contributes to host susceptibility.
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Introduction

The protozoan parasite, Trypanosoma cruzi is the etiologic agent of

Chagas’ disease. Chagas disease is a chronic and debilitating

syndrome that affects millions of people in Latin America. Infection

with T. cruzi leads to patent parasitemia and systemic spread of the

parasite throughout the host during acute phase disease. Immune

control resolves patent parasitemia, but tissue infection persists for

the life of the host and leads to chronic phase disease in as many as

30 percent of infected individuals [1]. Due to the difficulties of

human studies, the majority of research regarding immune control

of parasite infection has been done in experimental murine models,

which develop detectable parasitemia during acute infection

followed by chronic tissue parasitism that mimics human disease.

Control of T. cruzi infection depends on clearance of blood

stream parasite through both innate and acquired immune

mechanisms. Macrophages, NK cells, T and B lymphocytes, and

the production of cytokines, which play key roles in regulating

both parasite replication and immune response [2], are required to

control parasitemia. The depletion or absence of any given innate

or adaptive effector mechanism leads to increased parasitemia and

susceptibility to disease [3,4,5,6,7,8,9].

Humoral immunity is important for control of parasite infection

as B cell depletion leads to increased parasitemia and mice
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succumb to otherwise non-lethal infection [7]. Adoptive transfer of

antibodies from late stage T. cruzi infected mice to naı̈ve mice leads

to rapid clearance of parasite from circulation [10]. Transfers of

splenocytes from mice that have recovered from acute phase

infection to naı̈ve mice confers protection against lethal T. cruzi

infection, which is abolished by removal of B lymphocytes, but

relatively insensitive to T cell or macrophage depletion [11]. Yet,

evidence indicates that the majority of B cells are not parasite-

specific during early T. cruzi infection [12].

Polyclonal B cell activation that leads to hypergammaglobulin-

emia and delayed specific humoral immune response is generally

accepted as a characteristic of acute phase Chagas disease in

humans and is reported in rodent experimental models of T. cruzi

infection [13,14,15,16,17]. The acute phase polyclonal response to

T. cruzi infection is associated with delayed specific responses [14].

Different IgG isotypes have been implicated in polyclonal B cell

activation and parasite-specific antibody responses [18,19,20,21].

Several parasite encoded mitogenic proteins have been identified,

but the role of each has yet to be elucidated [22,23,24,25,26,27]. B

cell expansion in the spleen and lymph nodes during acute T. cruzi

infection is associated with polyclonal, rather than specific

responses [28,29]. Fas/FasL mediated apoptosis of parasite

specific B cells and immature B cells in the bone marrow (BM)

has also been reported in Balb/c mice [30,31,32]. Studies in Balb/

c XID mice show that the depletion of B cell subsets in this model

led to an increased resistance to disease that was associated with

improved IFN-c responses, decreased hypergammaglobulinemia,

and a skewed natural antibody repertoire [33,34,35]. Limited

studies of B cell dynamics during T. cruzi infection in resistant

versus susceptible mice have been reported [20,28].

Marginal zone (MZ) and follicular (FO) B cells constitute two

functionally and anatomically distinct B cell subsets within the

spleen [36,37,38,39,40]. MZ B cells are located at the marginal

sinus of the spleen, making these cells first line responders to

pathogens in the blood. MZ B cells are more responsive to TI-

antigens, respond quickly with natural antibody responses, and

generate short-term plasma cells [41]. MZ are also able to migrate

to the follicles and participate in germinal center T cell dependent

(TD) reactions [42]. FO B cells circulate through the lymph and

are found in B cell follicles of the spleen. FO B cells respond to TD

antigen and can become long-term plasma cells or memory B cells

[43]. Due to their differential location and function, these two B

cell subsets can have distinct roles in the development of specific

versus polyclonal B cell responses to pathogens [36,37,44,45].

While mouse models have been informative for analysis of

immune responses to T. cruzi infection, inbred mouse strains

experience variable disease progression and severity [46,47].

Disease progression in these models also differ depending upon

the strains of parasite used [48]. In general, Balb/c mice are more

susceptible to infection compared to C57Bl/6 mice in terms of

increased parasitemia and mortality given a similar parasite

challenge [49]. Kinetic analysis of cytokine production by

lymphocytes provides evidence that resistance in C57Bl/6 mice

is associated with increased early production of IFN-c [49].

Further studies show that immunization protocols capable of

inducing polarized Th1 but not Th2 responses are able to protect

Balb/c mice against T. cruzi challenge, but transfer of CD4 T cell

alone was not enough to confer protection to naı̈ve mice [50].

While these studies indicate that Th1 versus Th2 responses are

correlated with protection versus resistance, the complete profile of

effector mechanisms leading to increased resistance in Th1 skewed

mice has yet to be elucidated.

In the present study, we analyzed the humoral response to T.

cruzi experimental infection of susceptible Balb/c versus resistant

C57Bl/6 mice. We infected Balb/c and C57Bl/6 mice with

isolates from Y-strain parasite that generated similar timing and

magnitude of initial patent parasitemia. The kinetics, magnitude,

and isotype of the parasite-specific and total circulating antibody

responses during acute T. cruzi infection were examined. We

further evaluated humoral responses in the spleen and the

association of parasite-specific antibody secreting cells (ASC) with

activation of B cells and expansion of B cell subsets, as well as the

expansion and activation of splenic T cells. The combined results

of this study demonstrate that resistant C57Bl/6 mice generated

parasite-specific humoral responses that were associated with

decreased hypergammaglobulinemia, differential kinetics of splen-

ic B cell activation and B cell subset expansion, improved T cell

help, and early IFN-c production compared to more susceptible

Balb/c mice.

Materials and Methods

Ethics Statement
All animals were handled in strict accordance with good animal

practice as defined by the relevant national animal welfare bodies

and all animal work was approved by the Institutional Animal

Care and Use Committee of the University of Pittsburgh

(Assurance Number A3187-01).

Parasites and Mice
Balb/c and C57/Bl/6 mice were obtained from Jackson

Laboratories and maintained in specific pathogen free housing.

Mice husbandry and procedure protocols were reviewed and

performed in accordance with the University of Pittsburgh IACUC.

Y-strain parasites were grown in NIH 3T3 fibroblast cells and

harvested by standard technique [51]. Briefly, 3T3 fibroblasts were

infected with trypomastigote parasites and cultured for 2 days at 37uC
(5% CO2) in DMEM (Gibco) supplemented with 10% FBS, 10 mM

HEPES, 0.2 mM sodium pyruvate, and 50 mg/mL gentamicin, to

allow infection of the growing cells. On day 3, the media was

exchanged and the culture was moved to a 34uC incubator and

Author Summary

Chagas disease, caused by the protozoan parasite
Trypanosoma cruzi, affects 10–12 million people in Latin
America. Patent parasitemia develops during acute dis-
ease. During this phase, polyclonal B cell activation has
been reported to generate high levels of serum antibody
with low parasite specificity, and delayed protective
humoral immunity, which is necessary to prevent the host
from succumbing to infection. In this manuscript, data
show that relatively resistant mice have improved parasite-
specific humoral immunity and decreased polyclonal B cell
activation compared to susceptible mice. Parasite-specific
humoral immunity was associated with differential expan-
sion of B cell subsets and T cells in the spleen, as well as
with increased Th1 and decreased Th2 cytokine produc-
tion. These data suggest that host susceptibility/genetic
biases impact the development of humoral responses to
infection. Th2 cytokines are generally associated with
improved antibody responses. In the context of T. cruzi
infection of susceptible mice, Th2 cytokines were associ-
ated with increased total antibody production concomi-
tant with delayed pathogen-specific humoral immunity.
This study highlights the need to consider the effect of
host biases when investigating humoral immunity to any
pathogen that has reported polyclonal B cell activation
during infection.

Host Resistance and Humoral Immunity to T. cruzi

www.plosntds.org 2 July 2010 | Volume 4 | Issue 7 | e733



maintained under anerobic conditions until harvest of the tissue

derived trypomastigotes (TCT) from the culture supernatant. To

establish models of infection for analysis of kinetics and magnitude of

parasite-specific humoral immunity versus polyclonal B cell

activation in resistant C57Bl/6 and susceptible Balb/c mice, we

evaluated experimental infection using two variants of T. cruzi Y-

strain (Y-US and Y-Br). The LD50 was established for each model,

using intraperitoneal injection of TCT in PBS plus 1% glucose.

Survival curves for these infections indicated that the Balb/c mice

were much more susceptible to the Y-Br variant, with an

approximately 1000 fold higher LD50, but succumbed to infection

with different kinetics than did C57Bl/6 mice (Figure S1A). At

similar LD50, parasitemia was delayed in Y-Br-infected Balb/c

compared to Y-Br-infected C57Bl/6 (Figure S1B). In contrast, using

the Y-US variant, Balb/c mice experienced initial peak parasitemia

comparable with C57Bl/6 mice given a similar LD50 dose of the Y-

Br variant (Fig 1A). In both mouse strains, a dose of parasite equal to

approximately 0.256LD50 was used to allow direct comparison of

humoral responses in a sub-lethal infection of relatively resistant

versus susceptible mice. The approximate 0.256LD50 dose

corresponded to 2.56105 Y-US in Balb/c mice and 6.256103 Y-

Br in C57Bl/6 mice. Control mice were inoculated with the same

dose of parasite after it had been heat-inactivated at 56uC for

25 minutes. Parasitemia was monitored by applying blood diluted

1/4 in RBC lysis buffer (150mM NH4Cl, 10mM NaHCO3, 115uM

EDTA) to a hemocytometer and counting at 4006. Blood was

collected at multiple time-points post infection for analysis by

ELISA.

rCRP Cloning
A full-length cDNA encoding the T. cruzi CRP was isolated by

reverse transcription-PCR as previously described [52]. The T.

cruzi CRP cDNA encoding the mature protein (starting at

nucleotide 303) was subcloned into the pTrcHis expression vector

(Invitrogen). E. coli strain SURE (Stratagene) were transformed

with pTrcHis-CRP DNA for recombinant protein production with

a histidine tag, as previously described [51]. For eukaryotic

expression, CRP was cloned into pcDNA3 with the glycosylpho-

sphatidylinositol (GPI) anchor signal sequence from human decay

accelerating factor (daf), [53].

Gene-Gun Immunization
pcDNA3_CRP DNA was purified from E. coli using endotoxin -

free Mega prep kits (Qiagen). The DNA was coated on 1.0 mm

gold particles (Bio-Rad) and loaded into Tefzel tubing (Bio-Rad)

[54]. DNA (8 mg) was administered by Helios Gene-gun (Bio-Rad)

at 400 psi, in two shots per mouse on shaved abdomen [55]. Four

inoculations were performed at monthly intervals. Immunized

mice were bled after boosting and the blood processed to obtain

sera.

Protein Purification
Expression of recombinant protein was induced by isopropyl-b-

D-thiogalactoside (IPTG) (IBI Scientific, Peosta, IA) in trans-

formed E. coli and the cells harvested by centrifugation (6,000

RCF, 10 min., 4uC). The resulting cleared lysate was prepared

under denaturing conditions and bound to cobalt metal affinity

resin according to the Talon instruction manual with slight

modifications (Clontech, Mountain View, CA). During binding of

lysate to resin, 5–10mM imidazole (Sigma) was added into the

binding buffer (50mM Tris, 300mM NaCl, pH 7.2). Protein was

bound to the resin in batch for 2 hours. The bound protein was

further washed and packed into a disposable column. Imidazole

(150mM) was used to elute bound protein. Protein concentration

in eluted fractions was determined by Bradford assay.

Quantitative IgM and IgG ELISA
4 HBX Immulon ELISA plates (Thermo Scientific) were coated

with 100ng of goat-anti-mouse Ig antibody (SouthernBiotech)

overnight at 4uC, washed, and blocked with 1% milk in T-PBS

(0.05% Tween-20, 16PBS), washed and stored at 220uC until

use. Serum samples were stored at less than 220uC then thawed

and maintained at 4uC during ELISA analysis. Serum was diluted

in milk-T-PBS and applied to coated plates. A standard curve was

generated with mouse IgM or IgG (SouthernBiotech). Goat anti-

mouse IgM or IgG conjugated with HRP was used as the

secondary antibody (SouthernBiotech). After incubation with

secondary antibody, plates were washed and developed with

OPTEIA (BD) and analyzed for color change (OD450). Standard

curve fit and calculation of unknowns was performed using Prism

software (GraphPad).

rCRP and Whole Parasite Specific ELISA
For rCRP analysis, 4 HBX Immulon ELISA plates (Thermo

Scientific) were coated with 100 ng of purified protein and

incubated overnight at 4uC. For whole parasite ELISA, plates

were coated with 26105 heat-inactivated TCT per well and

incubated overnight at 4uC. Plates were washed and blocked and

Figure 1. Disease severity and parasitemia in Balb/c and C57Bl/6
mice. Mice were injected with tissue culture trypomastigotes
(0.256LD50; i.p.). A, Parasitemia levels were analyzed in mouse blood at
6–9, 15, and 28 days post-infection (n$5 mice per group). B, Mouse
weights were collected at multiple time-points post-infection and the
change from baseline determined for each mouse (n = 5 mice per group).
doi:10.1371/journal.pntd.0000733.g001
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stored at 220uC until used. Mouse serum was diluted in block and

applied to ELISA plates overnight at 4uC. Plates were washed and

developed with the appropriate secondary antibody. The estimat-

ed reciprocal endpoint titer (RET) was determined graphically

based on the OD450 values from equivalent dilution of pooled

mouse pre-immunization serum samples. RET was defined as the

first dilution with a value below the pre-immune OD450 plus SD

(two to three replicates). Alternatively, equivalent units, deter-

mined by dividing the OD450 of test serum by the OD450 of pre-

immune serum, were reported at a single dilution of sera.

Antibody Secreting Cell (ASC) ELISPOT
Spleens were processed for single cells, by gentle mashing in a

40mM cell strainer, treated with RBC lysis buffer (150mM NH4Cl,

10mM NaHCO3, 115uM EDTA), washed with 16PBS, and

suspended in cRPMI. Multiscreen HTS 96-well ELISPOT plates

(BD Biosciences) were coated with 2.5 mg/mL of rCRP or 5 mg/

mL of goat anti-mouse Ig (SouthernBiotech) and incubated

overnight. ELISPOT plates were washed with T-PBS and blocked

with cRPMI for 2 hrs. Blocking media was removed and cells were

plated into the ELISPOT plates (5 wells per sample) at several

dilutions. After 5–6 hrs, the cells were washed off with PBS (36)

followed by T-PBS (36). Secreted antibodies were detected by

incubating with anti-mouse IgG conjugated to biotin (16 hrs, 4uC),

washing with T-PBS (3–46), incubation with avidin-peroxidase

complex (30 min, RT)(Vector Laboratories, Burlingame, CA),

washing with T-PBS (36) and PBS (36), followed by incubation

with AEC ELISPOT substrate (8 min, RT)(BD Biosciences). The

reaction was stopped by washing with PBS. Spots were analyzed

using ImmunoSpot image acquisition 4.5 and ImmunoSpot 5.0

Professional DC software (ImmunoSpot). The frequency of ASC

per 106 splenocytes was determined [56,57,58].

Flow Cytometry
Splenocytes were isolated, counted, and plated at 56105 cells

per well in 96 well plates. Cells were collected by centrifugation

(5006g, 5 min, 4uC) and washed with FACS staining buffer

(16PBS with 2.5% FCS, 1% goat serum, and 1% human AB

serum). 107 cells per mL were incubated with fluorescently labeled

abs, diluted in FACS buffer, for 20 min on ice or 5 min at 4uC.

Abs used for staining included anti-CD19 (MB19-1), CD3 (17A2),

CD69 (H1.2F3), CD86 (GL1), CD21 (eBio4E3), CD23 (B3B4),

CD4 (RM4-5, L3T4), CD8a (53-6.7), PanNK (DX5), CD95

(15A7), CD95L (MFL3). For determining population gating on

cells with multiple stains, florescence minus one controls were

used. For analysis of surface activation, B and T cells were counter

stained and doublets were excluded to ensure only the reported

lymphocyte population was analyzed. Antibodies were purchased

from BD Biosciences or eBioscience. Data were collected on an

LSRII (BD Biosciences) and analyzed using FlowJo software (Tree

Star). The data were analyzed using bi-exponential transformation

for complete data visualization.

Statistical Analysis
2-way ANOVA was used for comparing the two mouse models

over time. Bonferroni post-test analysis, Student’s t test, or Mann-

Whitney tests were used for comparison of individual doses or time-

points, either between infected and control mice or between models.

Results

Balb/c and C57Bl/6 Models of T. cruzi Infection
Balb/c and C57BL/6 mice were infected with a sub-lethal

parasite dose (0.25 LD50) of TCT. The magnitude and timing of

the initial peak parasitemia was similar in both models, although

Balb/c mice experienced a second wave of parasitemia at day 15

post-infection that was not evident in the C57Bl/6 mice (Fig 1A).

Furthermore, Balb/c mice displayed significant weight loss by day

15 post-infection (p = 0.005, Student’s t-test) that did not rebound

until after acute infection (.30 days post-infection), whereas

C57Bl/6 mice maintained their weight over the course of infection

(p = 0.009, 2-way ANOVA) (Fig 1B). These data show that given

the same relative dose with similar early parasitemia kinetics,

Balb/c mice remained more susceptible to the adverse effects of T.

cruzi infection than were C57Bl/6 mice.

Resistant Mice Have Decreased
Hypergammaglobulinemia and Improved Parasite
Specific Antibody Response

To investigate systemic antibody responses during infection,

serial pooled serum samples were collected and analyzed for levels

of circulating IgG and IgM as well as antibodies specific to a T.

cruzi surface antigen, T. cruzi complement regulatory protein

(CRP), a member of the transialidase superfamily [51,59,60,61].

The profiles of total IgM and IgG response in Balb/c and C57Bl/

6 mice were significantly different during early infection (Fig 2A).

C57Bl/6 mice had more circulating IgM after infection than did

Balb/c mice. In contrast, Balb/c mice had significantly greater

hypergammaglobulinemia post-infection than did C57Bl/6 mice

(Fig 2B).

Parasite-specific antibody responses were evaluated by measure-

ment of T. cruzi CRP-specific IgM and IgG following infection of

Balb/c and C57Bl/6 mice. C57Bl/6 mice developed CRP-specific

antibodies by day 20 post-infection (3.360.5 fold increase from

baseline) (Fig 2B), whereas Balb/c mice had minimal CRP-specific

responses until late in acute phase (Fig 2B). Delayed parasite-specific

IgG response was also evident when Balb/c mice were inoculated

with the low doses of the Y-BR variant (data not shown). In contrast,

to the relative delay in CRP specific antibody responses in Balb/c

versus C57Bl/6 mice during experimental infection, genetic

immunization with CRP resulted in an improved CRP-specific

IgG response in Balb/c mice compared to C57Bl/6 mice (Fig 2C).

Taken together, these data suggest that the delayed CRP-specific

antibody response in Balb/c mice compared to C57Bl/6 mice was

not due to an inherent inability of Balb/c mice to respond to CRP

antigen, but rather a host-pathogen interaction leading to

diminished generation of parasite-specific antibody responses.

A Th1 Skewed Early IFN-c Response in Resistant Mice
versus Delayed IFN-c and Increased Th2 Cytokines in
Susceptible Mice

Cytokines influence the generation of cellular and humoral

responses to infection and can be differentially produced in resistant

versus susceptible mice during T. cruzi infection [49,50]. Cytokine

production from T helper (Th) cells fall broadly into classification as

T helper type 1 (Th1), T helper type 2 (Th2), or T helper 17 (Th17)

categories: Th1 are defined by production of pro-inflammatory

cytokines, particularly IFN-c and TNF, Th2 by IL-4, IL-5, and IL-

10, and Th17 cells by IL-17 [62]. To evaluate levels of circulating

cytokines post-infection, multi-plex cytokine analysis was performed

on serum samples from day 8, 15, and 28 post-inoculation, and

compared to control mice inoculated with heat-inactivated parasites.

The timing of IFN-c, TNF-a IL-10, IL-5, and IL-6 responses were

significantly different in Balb/c mice compared to C57Bl/6 (Fig 3).

In C57Bl/6 mice, an early significant IFN-c response was evident

along with increased IL-6 and IL-10, which then decreased to near

control levels by day 15 post-infection. In comparison to C57Bl/6

Host Resistance and Humoral Immunity to T. cruzi
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mice, Balb/c had delayed IFN-c and IL-6 response, an early IL-10

that persisted to day 15 and increased by day 28 post-infection, and

IL-5 levels that were significantly elevated by day 15 and remained

so at day 28 post-infection. TNF-a levels increased earlier in C57Bl/

6 mice than in Balb/c mice. In addition, Balb/c mice had IL-4 by

day 28 post-infection, whereas Balb/c controls and C57Bl/6 mice

(infected and control) did not produce detectable IL-4 in their serum

(data not shown). These data indicate that C57Bl/6 responded to

infection with an early Th1 biased cytokine response, whereas Balb/

c mice responded to infection with a more Th2 skewed response.

IgG1 and IgG2a Predominate in Total and Specific
Response of Susceptible Mice versus a More Mixed
Isotype Response in Resistant Mice

Different IgG isotypes have been implicated in effective

immunity and polyclonal B cell responses to T. cruzi

[18,19,20,21]. To compare the level of IgG isotype switching in

Balb/c versus C57Bl/6 mice, serum samples were analyzed over

the course of infection for concentration of IgG1, IgG2a (Balb/c)

or IgG2c (C57Bl/6), IgG2b, and IgG3 [63]. The serum levels for

each isotype were significantly different in Balb/c versus C57Bl/6

mice over the time-points tested (day 8 through 125, post-

infection) (Fig 4A). IgG1 and IgG2a were increased in Balb/c mice

compared to C57Bl/6 mice (p,0.0001 for each, 2-way ANOVA).

IgG2b was increased in C57Bl/6 mice compared to Balb/c mice

(p,0.0001, 2-way ANOVA). The profile of IgG3 showed an

overall difference that was significant at days 15 and 125 post-

infection (p,0.01 and p,0.001, respectively, by Bonferroni post-

test; p = 0.0007 by 2-way ANOVA). Serum samples from infected

mice were analyzed for CRP-specific IgG isotype responses at day

28 post-infection, revealing a significant difference in the isotype

profile of parasite specific IgG (p = 0.0006, 2-way ANOVA), with

predominantly IgG1 and IgG2a produced in Balb/c, with a mixed

response including IgG2b and IgG3 in C57Bl/6 mice (Fig 4B).

Resistant Mice Generated Parasite Specific IgG ASC;
Susceptible Mice Generated Non-Specific IgG ASC and
Have Increased Numbers of B Cell Blasts

Acute T. cruzi infection has been reported to induce expansion

of B and T cell subsets in the spleen without generation of parasite

Figure 2. Circulating Total and CRP-specific IgM and IgG after T. cruzi infection. A, Infected mice (n = 5 per group) were bled at multiple
time-points post-infection and their pooled sera analyzed for total IgM (top) and total IgG (bottom), with triplicate repeats for each time-point. B,
Pooled sera were analyzed for CRP-specific IgM and CRP-specific IgG by ELISA in duplicate. C, Balb/c generate a higher titer CRP-specific IgG than do
C57Bl/6 mice in response to genetic immunization (p = 0.002). Each data point represents one mouse, data pooled from several individual
experiments. Balb/c are represented by open squares, solid line; C57Bl/6 mice by closed circles, dashed line. * p,0.05, *** p,0.001 by Student’s t test
comparing Balb/c and C57Bl/6 models.
doi:10.1371/journal.pntd.0000733.g002
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specific responses [28,64]. To determine whether resistant and

susceptible mice display altered humoral responses in the spleen,

splenocytes were analyzed for total B cells and large B cell blasts,

as well as total and parasite-specific IgG antibody secreting cells

(ASC) after T. cruzi infection (Fig 5). T. cruzi infection led to

expansion of splenic B cells in both Balb/c and C57Bl/6 mice

compared to controls by day 8 post infection (1.9260.60 fold

increase p,0.01 and 1.5760.54 fold increase p = 0.04, respec-

tively). (Fig 5A). B cell blasts, defined by their increased size and

granularity, were increased to a greater extent in Balb/c mice

compared to C57Bl/6 mice post-infection (Fig 5B). Balb/c mice

had B cell blasts levels $2.4 fold higher than controls at day 8 and

15 post infection (p = 0.002 for both time-points), with levels falling

to 1.760.9 by day 28 post-infection (p = 0.03). In contrast, C57Bl/

6 mice first experienced a significant increase in total B cell blasts

compared to controls (2.060.9, p = 0.02) at day 15 post-infection.

Elevated levels of total IgG ASC were seen in both models but to a

greater extent in Balb/c mice (Fig 5C). Furthermore, the increase

in IgG ASC in Balb/c mice was not associated with an increase in

parasite-specific ASC measured by CRP-specific ASC (Fig 5D). In

contrast, C57Bl/6 show a parasite-specific response in the spleen

at day 15 post-infection (Fig 5D). These data indicate that splenic

B cells in Balb/c mice were more susceptible to T. cruzi induced

polyclonal activation, but were less capable of generating a specific

response to T. cruzi antigen. C57BL/6 mice were able to generate

specific IgG ASC against a parasite specific protein, indicating an

improved humoral response in the spleens of these mice.

Furthermore, these data demonstrate that while there were similar

changes in total B cell numbers in these two mouse models during

T. cruzi infection, these changes were associated with different

outcomes and that these differences in B cell effector function were

also linked to phenotypic differences, such as blast formation.

Analysis of B Cell Activation by Surface Expression of
CD69, CD86 Fas, and FasL

To analyze activation status of splenic B cells post-infection,

flow cytometry was performed to measure surface expression of

CD69, CD86, CD95 (Fas) and CD95L (FasL) at days 8, 15, and

28 post-inoculation, comparing expression on B cells in infected

mice to control mice receiving heat-inactivated parasite (Fig 6).

CD69 was increased post-infection in both models, but with

different profiles (p = 0.0002, 2-way ANOVA). C57Bl/6 mice

initially had higher CD69 on the surface of B cells (4.662.2 fold

higher than controls at day 8 p = 0.002), which then decreased

Figure 3. Cytokine profile after T. cruzi infection. Luminex analysis of cytokine levels in mouse serum samples at days 8, 15, and 28 post-
infection. Values are reported as the concentration in infected mice relative to control mice receiving heat-inactivate parasite. Balb/c are represented
by open squares, solid line; C57Bl/6 mice by closed circles, dashed line. * p,0.05, ** p,0.01, *** p,0.001 by Bonferroni post-test after 2-Way ANOVA
comparing Balb/c and C57Bl/6 models (p values reported on graphs) and/or Student’s t test.
doi:10.1371/journal.pntd.0000733.g003
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over the course of infection. Balb/c mice maintained approxi-

mately a 2 fold elevation in CD69 expression (2.360.2 fold higher

than controls at day 8 p,0.0001). CD86 was increased post-

infection in both models, but with different profiles (p = 0.0001, 2-

way ANOVA). CD86 was initially elevated on B cells in both

strains, then decreased in C57Bl/6 mice and increased in Balb/c

mice at d28 post-infection. In both models, Fas and FasL positive

B cells were increased post-infection, but with different profiles

(p,0.0001 and P = 0.03, respectively, 2-way ANOVA). Fas and

FasL on B cells in infected C57Bl/6 mice increased between d8

and d15, then declined between d15 and d28. In contrast, Fas and

FasL on B cells in infected Balb/c mice increased between d15 and

d28 post-infection. Together, these data indicate that B cells were

differentially activated in susceptible versus resistant mice.

Differential B Cell Subset Profiles in Resistant versus
Susceptible Mice

FO and MZ B cells are functionally and phenotypically distinct

B cell populations within the spleen occupying distinct locations in

the spleen. MZ B cells are poised at the marginal sinus of the

spleen, and these cells are a source of natural antibody and T-

independent (TI) responses [65,66]. In contrast, FO B cells are

located in spleen follicles and respond to antigen in a T cell

dependent (TD) manner [39]. To analyze changes in B cell subsets

as defined by phenotype, B cell gates were determined based on

controls and naı̈ve mice, using published population statistics as a

guide [39]. B cell subset populations were defined as

CD19+CD21highCD23low/2 (MZ B cells), CD19+CD21intCD23+

(FO B cells) and CD19+CD21lowCD23low/2 cells (transitional/

newly formed B cells, or cells that may have lost CD21 and CD23

expression due to activation). This gating strategy has been used to

demonstrate changes in phenotypically defined MZ and FO B cell

splenic subsets due to infection with other microbes

[36,37,67,68,69]. While CD21 and CD23 levels have been shown

to be modulated by virus [70], in particular in B cells infected with

virus [71], the extent that other microbes modulate expression of

these markers has not been determined. Analysis of CD21 and

CD23 levels on B cells from T. cruzi infected mice indicates that

the expression of both markers decreased overall on B cells by day

8 post-infection in resistant C57Bl/6 mice, after which expression

increased over the course of infection; CD21 remained relatively

unchanged in susceptible Balb/c mice at day 8 and 15, then

slightly increased at day 28 post-infection, while CD23 levels were

decreased at every time-point analyzed (Fig 7A). The changes in

expression of these markers on total B cells were then reflected in

apparent changes in these phenotypically defined B cell subsets

post-infection with T. cruzi in both mouse models. Representative

plots of B cell subsets for C57Bl/6 and Balb/c mice at d8 post-

infection are shown in Figure 7B.

In Balb/c mice, the percentage of CD19+CD21intCD23+

(phenotypically defined as FO B cells) within the B cell gate

decreased to 36617 percent of controls (p,0.0001) and in C57Bl/

6 decreased to 74641 percent of controls (p = 0.02), which was a

significant retention of FO B cells in C57Bl/6 mice compared to

Balb/c mice (Fig 7C), although absolute numbers of FO B cells

were not significantly different from controls in either model.

Analysis of FO B cells within the total B cell blast population

indicates that FO B cell blasts represent a higher proportion of the

total B cell blasts at day 8 and 15 post-infection in resistant C57Bl/

6 mice than in susceptible Balb/c mice (p,0.01 for both time-

points) (Fig 7C).

CD19+CD21highCD23low/2 splenic B cells (defined as MZ by

phenotype) responses also differed in Balb/c mice and C57Bl/6

mice. The percentage of B cells with the MZ phenotype was

significantly different in Balb/c versus C57Bl/6 mice (p,0.0001,

2-way ANOVA). While in Balb/c mice, MZ B cells accounted for

an increased percentage of the total B cells at d8, in C57Bl/6 mice,

the percentage of MZ B cells were decreased (Fig 7C). The

percentage of B cells accounted for by MZ remained elevated at all

three time-points for Balb/c mice. C57Bl/6 experienced an

increased percentage of MZ B cells at d15 post-infection, which

then declined by d28 post-infection. Absolute numbers of MZ B

cells were significantly different in Balb/c versus C57Bl/6 mice

over the course of infection (p,0.0001) (Fig 7C). By d8 post-

Figure 4. Antibody isotype and cytokine profile after T. cruzi
infection. A, Serum samples from infected mice were analyzed by
ELISA to determine the isotype of the total Ig at days 8, 15, 28, and 125
post-infection. For each isotype the profile was significantly different in
Balb/c versus C57Bl/6 mice. IgG1 and IgG2a were increased in Balb/c
mice compared to levels of IgG1 and IgG2a in C57Bl/6 mice,
respectively (p,0.0001, 2-way ANOVA). IgG2b was increased in C57Bl/
6 mice compared to Balb/c mice (p,0.0001, 2-way ANOVA). The profile
of IgG3 showed an overall difference that was significant at days 15 and
125 post-infection (p,0.01 and p,0.001, respectively, by Bonferroni
post-test; p = 0.0007 by 2-way ANOVA). Five mice were used per group
per time-point. B, Serum samples from infected mice were analyzed for
CRP-specific IgG isotype responses at day 28 post-infection by
determining reciprocal endpoint titers (RET) using pre-infection sera.
p = 0.006 by 2-way ANOVA comparing the CRP-specific isotype profile
of Balb/c versus C57Bl/6 mice. Five mice were used per group.
doi:10.1371/journal.pntd.0000733.g004
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Figure 5. Splenic B cell expansion with or without parasite specific ASC. A, Splenocytes were stained and analyzed by flow cytometry for
enumeration of B cells. B, B cells were analyzed by forward and side scatter for blast formation. These plots show the total splenic B cells in infected
mice compared to the total number of splenic B cells in control mice of the same genotype. C, B cell ELISPOT analysis was completed to enumerate
total IgG ASC from spleens of infected and control mice (n = 5 mice per group per time-point). The results are presented as the ratio of infected to
average control of the same genotype. D, B cell ELISPOT analysis was used to enumerate the frequency of CRP-specific IgG ASC in the spleen of
infected mice (n = 5 mice per group per time-point). Balb/c are represented by open squares, solid line; C57Bl/6 mice by closed circles, dashed line.
** p,0.01, *** p,0.001 by Bonferroni post-test after 2-Way ANOVA comparing Balb/c and C57Bl/6 models (p values reported on graphs).
doi:10.1371/journal.pntd.0000733.g005

Figure 6. Expression of CD69, CD86, Fas, and FasL on splenic B cells. Splenocytes were harvested and stained for analysis by flow cytometry
at multiple time-points post-infection with T. cruzi in Balb/c and C57BL/6 mice. Balb/c are represented by open squares, solid line; C57Bl/6 mice by
closed circles, dashed line. ** p,0.01, *** p,0.001 by Bonferroni post-test after 2-Way ANOVA comparing Balb/c and C57Bl/6 models (p values
reported on graphs) and/or Student’s t test.
doi:10.1371/journal.pntd.0000733.g006
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infection, MZ B cell numbers were increased 4.562.3 fold above

controls in Balb/c mice (p = 0.01). In contrast, MZ B cell numbers

were similar to controls in C57Bl/6 mice (0.8360.29, p = 0.4). MZ

B cell numbers were increased at d15 post-infection in C57Bl/6

and then declined, but remained elevated above controls at d28

post-infection. Analysis of CD19+CD21highCD23low/2IgMhigh B

cells showed these same trends of altered B cell numbers (data not

shown). The percent of total B cell blasts that were represented by

the MZ phenotype followed this same pattern of increased

representation in the B cells from susceptible Balb/c mice,

significantly more than in the resistant C57Bl/6 mice (p,0.0001).

CD19+CD21low/2CD23low/2 B cells numbers and percentages

within the B cell gate were expanded in both models by day 8,

Balb/c mice experienced further increased numbers and levels

measured at d15 post-infection, whereas C57Bl/6 mice did not

(p,0.0001, p = 0.002, numbers and percentage of B cells,

respectively)(Fig 7C). These cells represented similar amounts of

the total B cell blasts for both models until day 28 post-infection,

when the numbers of blast cells represented by this subset

decreased in Balb/c mice compared to C57Bl/6 (p,0.001).

Splenic T Cells Expand and Were Activated in Resistant
Mice

To determine the expansion and activation of splenic T cells,

the number of total T cells and T cell blasts were assessed at days

8, 15, and 28 post-inoculation, comparing T cells in infected mice

to control mice receiving heat-inactivated parasite (Fig 8A,B).

C57Bl/6 mice had increased T cells at d15 that decreased but

remained elevated by d28 (Fig 8A). This coincided with higher

levels of T cell blasts at d15 (Fig 8B). Balb/c mice did not have

increased T cells, although T cell blasts were increased at d15.

CD69 expression on T cells was significantly increased compared

to controls in both models and to a similar extend at day 8 post-

infection (3.660.3 for Balb/c and 2.961.3 for C57Bl/6, p,0.01

compared to control, p = 0.12 between models). CD69 expression

diverged at day 28 post-infection, when C57Bl/6 T cells had

CD69 levels comparable to controls and Balb/c T cells had

3.260.8 fold increased CD69 expression compared to controls

(p = 0.0002) and compared to the previous time point (1.962.6

p = 0.004). Fas and FasL profiles were significantly different on T

cells from Balb/c versus C57Bl/6 mice (Fig 8C), especially at d15.

CD4 and NKT cells levels were significantly higher in C57Bl/6

mice compared to Balb/c mice at d15 post-infection (Fig 8D).

C57Bl/6 mice maintained or slightly increased splenic CD4

numbers at d15 pi, whereas Balb/c mice had decreased CD4

numbers post-infection (Fig 8D).

The results presented in this study demonstrate that increased

polyclonal B cell antibody responses were associated with

decreased parasite-specific humoral immunity and increased

disease susceptibility during T. cruzi infection (Figure 9). Hyper-

gammaglobulinemia was more pronounced in susceptible Balb/c

mice and was associated with delayed generation of parasite-

specific antibodies. The parasite-specific humoral immunity in the

resistant C57Bl/6 mice was concomitant with a Th1-skewed

cytokine burst. In comparison, delayed and then maintained Th2-

skewed cytokine production in Balb/c mice was associated with

polyclonal B cell activation. B cell activation in resistant mice was

associated with low levels of total ASC and appreciable parasite-

specific ASC in the spleen. Total B cell expansion and activation in

the spleen of susceptible mice was associated with the development

of high levels of antibody secreting cells (ASC) without detection of

parasite-specific response. Figure 9 provides a model for the

association of polyclonal versus parasite-specific antibody with

disease severity and cytokine responses in resistant and susceptible

mice. Furthermore, analysis of B cell surface markers (CD69,

CD86, Fas, FasL, CD21, CD23) indicated differential profiles in

the context of polyclonal versus parasite-specific activation in

resistant C57Bl/6 versus susceptible Balb/c mice. B cells with the

marginal zone (MZ) phenotype were differentially expanded in the

spleen of resistant C57Bl/6 mice in association with parasite-

specific responses. MZ-like B cells were expanded early and

remained elevated in susceptible Balb/c mice. Changes in T cell

surface marker expression (Fas, FasL, CD69) and subsets (CD4,

CD8, NK) were observed in resistant versus susceptible mice and

associated with differential humoral responses.

Discussion

As in many experimental models of infection, there are

significant differences in susceptibility to pathogens among mouse

strains; however the host-pathogen interactions that account for

these differences are not completely clear. In the case of T cruzi

experimental infection, protective cytotoxic CD8 responses and

Th1 responses have been well characterized [72,73,74,75]. The

extent of B cell activation during T. cruzi infection and its

association with effective parasite-specific immunity versus adverse

polyclonal responses remains unclear.

It has been previously been shown that T. cruzi induces

polyclonal B cell activation during acute infection and that B cell

mitogens are expressed by infectious trypomastigotes

[22,28,76,77]. It has been postulated that this aberrant B cell

response may contribute to a delayed parasite-specific humoral

response, thus promoting infection [12,14,33,76]. In this study, we

examined the humoral responses of two murine strains with

differing susceptibility to T. cruzi infection to 1) determine whether

induction of polyclonal B cell activation was associated with

increased disease susceptibility and 2) determine whether changes

in circulating cytokines, splenic B cell function and phenotype, and

splenic T cell activation and subset expansion were associated with

polyclonal versus parasite-specific humoral responses.

Analysis of total circulating IgG and IgM indicated that resistant

C57Bl/6 mice demonstrated increased total IgM followed by an

IgM response to a parasite specific antigen (CRP) (Fig 2). The IgM

responses in C57Bl/6 mice developed as parasites were cleared

from circulation and were followed by a rise in total IgG and then

parasite-specific IgG. In contrast, Balb/c mice had very little

change in total IgM in the blood post-infection and minimal

parasite-specific IgM responses. In contrast to the lack of IgM

Figure 7. Splenic B cell subset changes. Splenoctyes were harvested from infected and control mice at days 8, 15, or 28 post infection and
analyzed by surface markers for B cell populations. A, Analysis of CD21 and CD23 expression levels over the course of infection. B, Representative
contour plots from day 8 post-infection show gates used for subset determination. C, These plots show the relative change in splenic B cell
phenotype between infected and control mice. The first row graphs show percent of B cells accounted for by each of the subsets, the second row
graphs show the absolute numbers for each population, the third row graphs shows the percent of B cell blasts accounted for by each of the subsets.
In these sets of graphs, the y-axis shows the ratio of infected to average control (n = 5 mice per group per time-point). Graphs for a given population
are underneath that title. Balb/c are represented by open squares, solid line; C57Bl/6 mice by closed circles, dashed line. Reported p values indicate
the result of 2-way ANOVA analysis between Balb/c and C57Bl/6 mice. * p,0.05, ** p,0.01, *** p,0.001 by Bonferroni post-test after 2-Way ANOVA
comparing Balb/c and C57Bl/6 models (p values reported on graphs) and/or Student’s t test.
doi:10.1371/journal.pntd.0000733.g007
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response, Balb/c mice had an increased hypergammaglobulinemia

response compared to C57Bl/6 mice. The increased hypergam-

maglobulinemia evident in Balb/c mice was associated with a

further delay and diminished parasite-specific IgG response

compared to C57Bl/6. This lack of a robust IgG response to a

parasite specific antigen (CRP) in Balb/c mice during experimen-

tal infection with T. cruzi was not due to an inherent inability to

generate a response to this T. cruzi antigen, as evident by the

magnitude of the IgG response to CRP after genetic immunization

in Balb/c versus C57Bl/6 mice. Rather, these data suggest

underlying host-parasite interactions that determine the balance of

hypergammaglobulinemia versus the development of parasite

specific responses.

As Th responses play a role in the generation of specific immune

responses, as well as polyclonal B cell activation [21], we

hypothesized that the differential humoral immune response to

Figure 8. T cell expansion and activation in the spleen. Splenoctyes were harvested from Infected and control mice at days 8, 15, or 28 post-
infection and analyzed by surface markers for T cell populations. Populations are reported as the ratio of absolute cell numbers or geometric mean
florescent intensity (GeoMFI) on T cells in infected mice to the average absolute numbers for control mice. Data represent four-five infected mice per
time-point. Balb/c are represented by open squares, solid line; C57Bl/6 mice by closed circles, dashed line. * p,0.05, ** p,0.01, *** p,0.001 by
Bonferroni post-test after 2-Way ANOVA comparing Balb/c and C57Bl/6 models (p values reported on graphs) and/or Student’s t test.
doi:10.1371/journal.pntd.0000733.g008
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T. cruzi infection may be associated with differential production of

cytokines in these two models. Analysis of circulating cytokines

post-infection confirmed the skewing of Balb/c mice toward Th2

responses and the C57BL/6 mice toward Th1 responses (Fig 3).

These data are in agreement with previous reports that early Th1

IFN-c responses are associated with resistance to infection [50,78]

and that Th2 cytokines, especially IL-4 and IL-10 are associated

with susceptibility to infection [34,79,80,81,82,83,84]. The results

of the present study show that early Th1-skewed cytokine burst

was coincident with control of parasitemia and preceded the

generation of parasite-specific humoral immunity in resistant

C57Bl/6 mice (Fig. 9). Susceptible Balb/c mice had a delayed

cytokine response, which was Th-2 skewed including IL-5 and IL-

4 production, and was associated with delayed parasite-specific

responses and exacerbated hypergammaglobulinemia (Fig. 9). The

apparent delay in cytokine responses and the lack of detectable IL-

4 until day 28 post-infection in susceptible Balb/c mice may have

been due to rapid consumption of these cytokines, especially IL-4,

rather then lack of their production. Overall, these data suggest

that the early Th-1 cytokine burst in susceptible mice may have

dampened parasite-mediated polyclonal B cell activation, allowing

for improved parasite-specific humoral responses, whereas sus-

tained Th-2 cytokine production in susceptible mice may

exacerbate parasite-induced polyclonal B cell activation. As B

cells have been shown to produce cytokines in response to parasite-

derived mitogenic factors [85], it is possible that B cell activation

Figure 9. Differential antibody and cytokine responses associated with resistance to T. cruzi. These plots model responses in T. cruzi
infected C57Bl/6 and Balb/c mice compared to control mice inoculated with heat-inactivated parasite (original data in Fig 1–5) and show the
association of parasite-specific antibody responses in the blood and spleen with decreased polyclonal antibody responses and differential cytokine
expression (kinetics and quality summarized here). Serum cytokine levels (see Fig 3 for details) in C57Bl/6 compared to controls were IFN-c.TNF-
a= IL-6.IL-10 with significantly elevated IL-12p40 and undetectable IL-5. The overall cytokine profile of Balb/c mice was IL-10$IL-5, IL-6, and TNF-a,
with increased IFN-c and IL-12p40 later during infection (Fig. 3). The isotype of serum IgGs for C57Bl/6 mice were IgG1.IgG3.IgG2b.IgG2c,
whereas Balb/c mice were IgG1.IgG2a.IgG3.IgG2b (Fig 4). Weight; the y-intercept is 100% and the origin is approximately 80% of the baseline.
Parasitemia; the origin is the limit of detection (104 parasites/mL) and peak parasitemia approximately 56105 parasites/mL. For cytokine responses,
serum IgG, and parasite-specific IgM/G in both the blood and the spleen, the y-axis is the relative change in infected versus control mice and is to
scale for each measure (i.e. directly compare IgG between C57Bl/6 and Balb/c mice). The plots for serum IgG are offset above the others for clarity.
doi:10.1371/journal.pntd.0000733.g009
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may account for some of the observed increases in cytokine levels

post-infection with T. cruzi.

Cytokines can drive antibody production and influence isotype

switch [86].The differential production of cytokines in susceptible

Balb/c versus resistant C57Bl/6 mice was associated with

differential total and parasite-specific IgG isotype response over

the course of acute infection (Fig 2, 3, and 9). IgG1 and IgG2a

made up the majority of the hypergammaglobunemia in Balb/c

mice, whereas C57Bl/6 mice had a much lower IgG1 and IgG2a

responses and increased total IgG2b (Fig 4). While IgG1 was the

most elevated isotype in both mouse models, IgG2a showed a

much greater increase from baseline in Balb/c and IgG2b in

C57Bl/6 mice. C57Bl/6 mice experienced isotype switching of

parasite-specific antibodies to IgG1, IgG2c, IgGb, and IgG3. In

contrast, the Balb/c mice had limited isotype switching; the

parasite-specific response remained predominately IgG1 and

IgG2a out to day 28 post-infection. These data confirm the

previously reported trend towards differential IgG isotype

responses in resistant versus susceptible mice [19,20] and further

support the association of parasite-specific IgG2, particularly

IgG2b, with increased resistance to T. cruzi [10,87,88].

Previous studies have reported B cell expansion in the spleen

during T. cruzi infection [12,20,21,28,31,89]. This expansion is

increased when intact CD4 T-cell responses are present [21] and

evidence shows that it is dissociated from parasite specific

responses [12], although some studies report both total and

specific B cell responses. In the present study, we performed a

detailed analysis of the B cell response to infection and found that

although total numbers of B cells were expanded to similar extents

in susceptible and resistant mice, the outcome of these expansions

were different in terms of production of total and specific IgG

ASC, activation status by CD69, CD86, Fas/FasL expression, and

B cell subset expansion (Fig 5–7).

Splenic B cell expansion in susceptible Balb/c mice was

associated with increased numbers of B cell blasts, as well as

with increased numbers of IgG ASC, without appreciable

expansion of parasite specific IgG ASC. In contrast, B cell

expansion in resistant C57Bl/6 mice led to moderately

increased B cell blast formation, moderate to low levels of IgG

ASC, and the formation of parasite-specific IgG ASC (Fig 5).

CD69, a marker of lymphocyte activation [88], was moderately

increased on Balb/c splenocytes throughout infection, whereas

in C57Bl/6 mice, CD69 was differentially expressed over the

course of acute infection, with an early peak expression that was

two fold higher on C57Bl/6 B cells compared to Balb/c B cells.

The early rise in CD69 on C57Bl/6 B cells preceded parasite-

specific ASC formation, after which CD69 levels decreased

(Fig. 6). These data demonstrated that transient high level CD69

expression preceded parasite-specific B cell activation, while

moderate sustained CD69 expression was associated with

polyclonal B cell activation. Previous studies have indicated a

role for increased CD86 on B cells during T. cruzi infection in

leading to increased immunoglobulin production through

interaction with NK cells [90]. In this study, CD86 expression

on B cell was not significantly different between these two

models early in infection, but diverged later with increased

levels of Balb/c B cells at day 28 post-infection concomitant

with peak hypergammaglobulinemia in these mice.

Recent studies have indicated that T. cruzi causes parasite

specific B cells to undergo Fas-FasL mediated fratricide [30].

Fas is also expressed on B cells during germinal center reactions,

without leading to apoptosis (reviewed in [91]). Our data shows

that Fas and FasL were differentially expressed on the surface of

B cells in C57Bl/6 versus Balb/c mice during T. cruzi infection

(Fig 6). In resistant C57Bl/6 mice, increased Fas and FasL

positive B cell numbers were associated with CRP-specific IgG

ASC. Fas and FasL were also increased on T cells in

conjunction with this CRP-specific IgG response in the spleen.

Together, these data suggest that the Fas/FasL expression on B

cells in C57Bl/6 mice was associated with a productive,

germinal-center like, reaction in the spleen. In contrast, elevated

Fas/FasL positive B cell numbers in susceptible Balb/c mice

were not associated with a parasite-specific response. Rather,

the sustained elevated expression of these death ligands may

have limited the non-specific expansion of B cells in these mice

through B-cell fratricide, as increased activation and blast

formation did not lead to overwhelming expansion of B cells

during acute infection.

To better understand which B cells account for the observed

increase in splenic B cells during T. cruzi infection, we evaluated B

cell subsets based on CD21 and CD23 expression of CD19+ B

cells (Fig 7). These markers have previously been used to define

splenic B cell subsets ex vivo during microbial infection

[36,37,67,68,69]. As the expression of these markers may be

modulated by activation induced by infection, the definition of

these subsets is not definitive. Future studies are necessary to define

the affect of T. cruzi infection on these B cell subsets in vivo. For

the purposes of this study, B cell subset populations were defined as

CD19+CD21highCD23low/2 (MZ B cells), CD19+CD21intCD23+

(FO B cells) and CD19+CD21lowCD23low/2 cells. In Balb/c mice,

B cells retained CD21 expression, but decreased CD23 expression,

the low affinity IgE receptor. Susceptible mice had an apparent

increase in B cells with the MZ phenotype within total B cells and

B cell blasts that was associated with polyclonal rather than

parasite-specific humoral responses (Fig. 5). Two possible

explanations for the expansion of B cells with the MZ phenotype

are that MZ B cells proliferated or parasite activation induced B

cells differentiation toward a MZ B cell phenotype. MZ B cells

were not expanded early in infection in C57Bl/6 mice. Rather,

transient expansion in MZ phenotype within B cells and B cells

blasts coincided with the development of parasite-specific IgG

ASC in resistant C57Bl/6 mice. The percentages of B cells with a

FO phenotype decreased in both models, but were retained to a

greater extend in the C57Bl/6 mice, although the variability

between mice was quite high, leading to a lack of significant

difference in absolute numbers of FO in C57Bl/6 versus Balb/c

mice. The relative amount of B cells with the FO phenotype within

the B cell blast population was higher during early infection of

C57Bl/6 mice compared to Balb/c mice, suggesting that in the

context of parasite-specific response B cell blasts retain the FO

phenotype to a greater extend than in the context of polyclonal B

cell activation. Analysis of CD19+CD21lowCD23low/2 cells

indicated that Balb/c mice experienced increased expansion of

these cells compared to C57Bl/6 mice. The expansion of

transitional B cells without parasite-specific ASC in susceptible

mice suggests that this expansion results from polyclonal B cell

activation rather than parasite-specific humoral immunity. The

relatively low representation of this population in the total number

of B cell blasts in susceptible mice suggests that perhaps decreased

CD23 expression, rather than proliferation led to the relative

expansion of this subset compared to controls. All together, these

data indicate differential changes in B cell subset phenotype in

resistant versus susceptible mice. Further studies are needed to

fully define the functional consequence of these apparent B cell

subset changes and their contribution to humoral response during

T. cruzi infection.

To evaluate whether these differences in humoral response were

associated with differences in T cell dynamics in resistant versus
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susceptible mice, bulk splenic T cells were analyzed for expansion,

blast formation, and expression of Fas and FasL (Fig 8). T cell

expansion was coincident with the generation of parasite specific

IgG responses at day fifteen post-infection in resistant mice, but

remained near control levels in during the polyclonal B cell

activation in susceptible mice at this same time-point. CD69

expression on total T cells was similar early during infection for

both models. Later in infection, T cells from infected Balb/c mice

experienced a second wave of CD69 activation, which was

coincident with clearance of parasite from circulation and the first

detection of parasite-specific IgG in circulation, although these

levels did increase much until later on during infection (after day

36). Low Fas and FasL expression in Balb/c mice suggests that the

contribution of T cells to control of B cell numbers via apoptosis

was minimal in these mice. The expression of Fas and FasL on T

cells coincided with parasite-specific B cell responses in C57Bl/6

mice, suggesting they may have formed a productive association.

Further analysis of T cells at this time-point indicated that resistant

mice had significantly higher levels of CD4 and NK T cells than

susceptible mice, both of which can provide B cell help [92]. While

previous studies show that lack of CD4 T cells led to decreased

polyclonal B cell activation [21], these results suggest that

maintenance of CD4 and increased NK T cells may also be

important for directing the efficacy of the specific humoral

response to parasite antigen. Activation of NK T cells has

previously been linked to increased resistance to T. cruzi, but

depends upon the presence of CD8 and CD4 T cells, as well as

IFN-c production [93,94]. The increased numbers of NK T cells

in resistant C57Bl/6 mice is particularly intriguing as they may

provide B cell help through direct interaction (CD40L) or rapid

cytokine responses, especially IFN-c, which was produced to a

much greater extent in these resistant mice [95]. These data

provide rationale for further studies to fully define the contribution

of CD4 and NK T cells to polyclonal versus parasite-specific

humoral immunity during T. cruzi infection of susceptible versus

resistant mice.

While susceptibility and resistance of Balb/c and C57Bl/6 mice

have been documented and explored in terms of cellular and

cytokine responses to T. cruzi experimental infection

[2,49,78,79,96,97,98,99,100,101], humoral responses in these

studies have been largely neglected. This is the first study to

examine both polyclonal and specific humoral responses in these

mice in the context of equivalent initial parasitemia. Taken

together, the results in this study support the hypothesis that

polyclonal B cell activation leading to hyper-IgG responses are

associated with increased disease susceptibility and highlights the

importance of host-parasite interactions in development of

humoral responses to T. cruzi. By further characterizing associa-

tions between Th1 and Th2 responses, the development of

polyclonal versus parasite-specific humoral responses, and the

potential contribution of B cell subsets to these processes, this

present study provides a more detailed understanding of the

development of effective versus detrimental humoral responses

during T. cruzi infection. Furthermore, these results have

implications for vaccine design in T. cruzi, as host genetic biases

that lead to differential polyclonal B cell activation may have

profound effects on the development of humoral immunity to T.

cruzi target antigens [14,102,103].

Supporting Information

Figure S1 Survival curves and parasitemia profile of mice

infected with Y strain variants. Mice (5–10 per dose) were injected

i.p. with TCT derived parasites and monitored for survival and for

parasite numbers in tail blood. A, Top: Babl/c mice inoculated

with the indicated doses of Y-Br variant. Middle: C57Bl/6 mice

inoculated the indicated doses of Y-Br variant. Bottom: Balb/c

mice inoculated with the indicated doses of Y-US variant. B,

Parasitemia profiles for Balb/c mice inoculated with 10 (,LD50)

or 50 (2–36LD50) Y-Br variant parasites, or C57Bl/6 mice with

10,000 Y-Br parasites (,0.5LD50).

Found at: doi:10.1371/journal.pntd.0000733.s001 (0.24 MB

DOC)
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