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Abstract

Chromatin immunoprecipitation combined with massively parallel sequencing methods (ChIP-seq) is becoming the
standard approach to study interactions of transcription factors (TF) with genomic sequences. At the example of public
STAT1 ChIP-seq data sets, we present novel approaches for the interpretation of ChIP-seq data. We compare recently
developed approaches to determine STAT1 binding sites from ChIP-seq data. Assessing the content of the established
consensus sequence for STAT1 binding sites, we find that the usage of ‘‘negative control’’ ChIP-seq data fails to provide
substantial advantages. We derive a single refined probabilistic model of STAT1 binding sequences from these ChIP-seq
data. Contrary to previous claims, we find no evidence that STAT1 binds to multiple distinct motifs upon interferon-gamma
stimulation in vivo. While a large majority of genomic sites with high ChIP-seq signal is associated with a nucleotide
sequence ressembling a STAT1 binding site, only a very small subset of the over 5 million potential STAT1 binding sites in
the human genome is covered by ChIP-seq data. Furthermore a surprisingly large fraction of the ChIP-seq signal (5%) is
absorbed by a small family of repetitive sequences (MER41). The observation of the binding of activated STAT1 protein to a
specific repetitive element bolsters similar reports concerning p53 and other TFs, and strengthens the notion of an
involvement of repeats in gene regulation. Incidentally MER41 are specific to primates, consequently, regulatory
mechanisms in the IFN-STAT pathway might fundamentally differ between primates and rodents. On a methodological
aspect, the presence of large numbers of nearly identical binding sites in repetitive sequences may lead to wrong
conclusions about intrinsic binding preferences of TF as illustrated by the spacing analysis STAT1 tandem motifs. Therefore,
ChIP-seq data should be analyzed independently within repetitive and non-repetitive sequences.
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Introduction

The precise spatial and temporal regulation of gene expression

remains poorly understood despite an increasing number of

species with nearly complete genome sequences available. Proteins

which regulate the expression of genes by binding to specific DNA

sequences in the vicinity of their targets have been termed

transcription factors (TFs). The nucleotide sequences of observed

binding sites generally display a considerable variation, which may

cause difficulties in the description of binding preferences using

sequence motifs. Recent benchmarking studies confirmed that

transcription factor binding sites (TFBS) prediction based on

statistical motif discovery approaches is unreliable and thus

remains a major bottleneck in the study of transcriptional

regulatory regions [1,2]. Identification of regulatory elements

based on evolutionary conservation, also known as phylogenetic

footprinting, has the evident drawback of missing regulatory

elements responsible for diversity among species. Therefore

laboratory experiments assaying DNA-protein interactions in vivo

remain indispensable. Especially massively parallel sequencing

technologies in combination with chromatin immunoprecipitation

(ChIP-seq) has proven a very powerful method to locate precisely

the DNA elements that physically interact with the targeted

protein in the specific cell population [3]. The enhanced precision

in the large-scale mapping of binding sites occupied in vivo might

also overcome some of the limitations of descriptors of binding

sites based on conventional ChIP-chip approaches.

Methods for interpreting ChIP-seq data are currently under

intensive development. A common aspect of emerging solutions

includes the possibility to recognize and process separately

sequence reads from the + and the 2 strand of pulled down

fragments [4]. The exact mapping of the ChIP fragment ends

allows consequently for more accurate delineation of DNA regions

that interact with the targeted protein. The other main task in the

analysis of ChIP-seq data consists in the separation of ‘true signal’

from spurious background associated with ChIP or additional still

uncharacterized experimental artifacts. Various approaches of

‘peak calling’ have been applied to determine loci with a clearly

increased coverage of ChIP-seq reads. Some of these methods

include complex statistical approaches and data from ‘negative

control’ experiments [5,6,7,8,9,10,11,12].

STAT1 is a member of an intensively studied family of TFs with

implications in the regulation of immune responses. In resting cells

STAT1 is mainly located in the cytosol. Upon stimulation with the

cytokine interferon gamma (IFN-c), STAT1 is trans-located to the

nucleus to bind to target DNA sequences. Early studies on
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relatively few binding sequences defined a consensus sequence

TCCNNNGAA of the IFN-c-activated site (GAS [13]). Subse-

quent studies established a descriptor of STAT1 binding

preferences with an improved specificity by defining a position-

specific weight matrix (PWM) derived from the in vitro binding of

STAT1 to synthetic oligonucleotides [14]. Described alternative

STAT1 binding sites include the ISRE motif [15] and an

additional variant of the GAS motif (M2, [7]).

Repetitive sequence elements constitute almost half of the

human genome, however their potential functions are still poorly

defined. A number of recent studies either predict TFBS within

repeat sequences [16,17], or present evidence for an interaction of

regulatory proteins with repeats [18,19,20,21]. In addition to an

enhanced positional resolution, ChIP-seq is more effective in

mapping DNA-protein complexes located inside repetitive ele-

ments, where the ChIP-chip approach faces serious limitations due

to cross-hybridization.

The present re-analysis of ChIP-seq data extends the analysis of

STAT1 binding for the first time to repetitive sequences. We

furthermore show that ChIP-Seq data can be used to analyze the

relation of in vivo interactions and extended sequence features

such as spacing within regulatory modules of binding sites. A large

number of virtually identical binding sites within repeats

potentially induces a strong bias in a corresponding binding site

model and could lead to wrong conclusions regarding preferential

associations and constraints in distances to other TFBS. We

present therefore approaches to analyze ChIP-seq data which also

take into account the emerging roles of repeats in the regulation of

gene expression and evolutionary aspects. All results shown in this

article are based on public ChIP-Seq data described in [3] defining

the genome-wide distribution of STAT1 protein in HeLa cells

upon c-interferon stimulation.

Results

ChIP-peak calling and comparison to other algorithms
ChIP-peak (see methods), defines a set of 4446 STAT1 binding

sites highly occupied in IFN-c-stimulated HeLa cells (list as Files

S1 and S2). In accordance with limited amounts of STAT1 in the

nucleus of unstimulated cells [13], we obtain only 356 sites if

applying peak detection with identical parameters on the control

ChIP-seq data set derived from unstimulated HeLa cells. 286

(80%) of these ‘unstimulated sites’ are located within +/- 100bp to

a corresponding peak in the stimulated set.

Next, we aim to compare the results of our peak detection

approach to previously described STAT1 sites (or center positions

of ‘binding regions’) derived from the identical ChIP-seq data set

[3,7] and to an additional independent STAT1 ChIP-seq data set

[12]. The consensus sequence TCCNNNGAA of the IFN-c-

activated site (GAS [13]) does not comprehensively describe all

binding sequences of STAT1, but it allows an unbiased assessment

of the positional precision of the determination of STAT1 binding

in sequence sets. The original analysis of the ChIP-seq data set [3]

produced 41582 binding regions with an average size of about

1kb. In our approach the concentration of the counts of ChIP-seq

reads at the putative center position of IP fragments considerably

enhances the precision and the sensitivity in the detection of sites

with high ChIP-seq signal (peaks). We sort the sets of STAT1

binding sites by decreasing confidence levels either according to

the coverage by ChIP-seq reads or according to statistical scores

provided by the analysis [12]. Comparing equally sized samples of

all sets, a significant increase in the average content of GAS

consensus sequences precisely at the position of the inferred

STAT1 binding sites is consistently observed for all sets (Fig. 1,

background content at distant positions ,5%). For the 3000 top

ranking sites, our ChIP-peak set stands out with the highest and

best focused enrichment featuring a GAS within 100bp of almost

50% of the inferred sites. This frequency exceeds that of 37

STAT1 binding sites collected from descriptions in the literature

[22]. This apparent discrepancy is most likely explained by a

considerable fraction of sites with an alternative STAT1 binding

motif (ISRE [15]) in the literature set, while ISRE is not detected

in any of the ChIP-seq derived sets (Fig. 1). In the comparison in

Fig. 1 the set by Jothi et al. closely follows our set and the

algorithm by Rozowsky et al. catches up in the larger sets of 30000

highest ranking sites. These larger sets include also lower affinity

sites and accordingly display a lower frequency of ‘perfect’ GAS

without mismatches. At least for sites with moderate to high ChIP-

seq coverage, the inclusion of information from ‘control’ ChIP-seq

data sets in the peak calling [7,12] (e.g. DNA from unstimulated

Figure 1. Content of binding sites to assess STAT1 ChIP-seq sets. The frequencies of binding sequences TCCNNNGAA in 4 sets of genomic
loci derived from STAT1 ChIP-seq data. ‘ChIP_peak’ contains STAT1 sites as defined in this study, FindPeaks (Robertson et al.), SISSR (Jothi et al.), and
MACS (Zhang et al.) are derived of analyses of the identical ChIP-seq data set and PeakSeq (Rozowski et al.) uses an independent STAT1 ChIP-seq data
set. The sets contain the top 3000 (left panel) or top 30 000 sites (center & right panel) of the corresponding data. The literature set consists of 37
STAT1 sites collected in the ORegAnno database. The occurrence of GAS is assessed in 100 bp sequence windows (SSA web server http://www.isrec.
isb-sib.ch/ssa/). Plotted points represent the center positions of windows relative to the position of the putative STAT1 site predicted from ChIP-seq
data. The right panel displays the frequency of the ISRE PWM (Transfac entry M00258).
doi:10.1371/journal.pone.0011425.g001

STAT1 on MER41
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cells, or from ChIP input, respectively) does not to provide

significant advantages in terms of precision and content of

consensus STAT1 binding sequences. A sequence motif closely

resembling the GAS consensus is associated with large parts of the

observed ChIP-seq signal. Allowing one mismatch in the GAS

consensus raises its frequency to 95% within 100bp to the

determined binding sites in our set. Consensus sequences with

mismatches are however unspecific descriptors of binding sites as

reflected by background frequencies of 60% in this example.

Refinement of description of STAT1 binding motif (GAS)
Position-specific scoring approaches using weight matrices

(PWM) or Hidden Markow Models (HMM) feature superior

performances as descriptors of binding preferences [23]. PWMs

enable also the prediction of potential binding sites in genomic

sequences. Previous approaches characterized the binding of

STAT1 in vitro to synthetic oligonucleotides [14]. We observed

that a number of thereby predicted genomic binding sites remain

devoid of the now available STAT1 ChIP-seq data [3]. This

prompted us to investigate potential differences in characteristics

of binding sites in vitro vs. in vivo.

We use the PWM (Fig. 2c) derived from in vitro SELEX assays

[14] as initial model and apply a probabilistic modeling tool [24]

for sequence motif discovery (results in Fig. 2a (sequence logo), and

Fig. 2e (PWM)). Repetitive sequences with a considerable number

of virtually identical sequences tend to impose repeat-specific

characteristics of motifs in probabilistic approaches on repeat-

containing sequence sets. To control for eventual biases brought in

by repeats, we compare the results of independent motif discovery

approaches on the repeat-containing sequence set of the 4446

STAT1 sites (see above) and on a subset of 3267 sites depleted of

repetitive sequences. The almost identical motif resulting from

motif discovery on a repeat-filtered set (Fig. 2a & b) indicates a

minimal bias by repetitive sequences. The resistance to bias by

repetitive sequences may however be intrinsic to the method of

motif discovery. An independent reanalysis of the identical ChIP-

seq data set using the popular motif discovery program MEME

[25] on a very similar set of ‘high-coverage’ binding sequences [7]

reports two motifs named M1 and M2. M1 is virtually identical to

the motif found by us. M2 is a highly conserved 20mer sequence

containing a classical GAS motif in the middle. Upon further

analysis (see below) we find that this motif is nearly identical to a

part of a repetitive sequence element containing two GAS sites

(Fig. 2d). Based on these observations, we conclude that M2 is a

motif discovery artifact reflecting repetitive sequences in the

human genome rather than the intrinsic binding preference of

STAT1.

A recent high-throughput study of transcription factor binding

specificity challenges our molecular understanding of how proteins

interact with their DNA binding sites by the conclusion that

roughly half of the analyzed proteins recognize multiple distinct

motifs [26]. In order to consider this finding, we re-analyzed our

collections of highly enriched in vivo STAT1 site with an algorithm

reporting multiple motifs (MEME). In this case, the results

obtained with the complete and repeat-filtered sets are strikingly

different. With the complete set, we found three motifs with E-

values in the order of 1021000 or lower (Table 1). The top-ranked

corresponds to the GAS motif. The second and third closely

resemble parts of repetitive element MER41B and alpha satellite

DNA, respectively, reproducing a bias by repetitive sequence as

Figure 2. Descriptors of binding preferences of STAT1. Sequence logos (http://weblogo.berkeley.edu/) visualize the information content of
occurrence frequencies of the 4 nucleotides by variable letter sizes at each position. Sequence logos of MAMOT motifs derived from in vivo ChIP-seq
sites (a), repeat-filtered in vivo ChIP-seq (b), and in vitro SELEX sites (c). Note the symmetrical half sides with the presumable STAT1-interacting
nucleotides are almost identical in a) to c). (d) Alignment of motif M2 (Jothi et al.) with the reverse complement of the consensus sequence of
repetitive element MER41B (repbase). Table (e) specifies the PWM for STAT1 as visualized in panel a), each number indicating a score for matching
nucleotides at corresponding positions.
doi:10.1371/journal.pone.0011425.g002

STAT1 on MER41
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observed in the results by Johti et al. With the repeat-filtered set we

also found at the top of the list a motif containing a GAS site with

very low E-value. The second and third-ranked motifs consist of

homopolymers and have considerably higher E-values. Homo-

polymers are strongly over-represented in the human genome and

therefore are, together with repetitive sequences, frequently picked

up by some of the motif finding programs. The still very low E-

values of the homopolymer motifs in the order of 102200 can be

explained by the fact that the background sequence model used by

MEME does not account for their over-representation in natural

DNA. In our interpretation, the lack of any additional motif

ranking higher than commonly found homopolymer motifs

constitutes evidence that IFN-c induced STAT1 recognizes only

a single motif in the non-repetitive part of the human genome. In

conclusion the binding preferences of STAT1 in vivo are very

comparable to the in vitro binding of recombinant STAT1 protein

to random oligonucleotides. And the binding sites occupied by

STAT1 in vivo upon IFN-c stimulation do not diverge between

repetitive or non-repetitive genomic loci.

Limited occupation of potential STAT1 sites in specific
cell type

As shown above, most loci with strong ChIP-seq signals are

associated with an occurrence of the consensus STAT1 binding

site. Therefore we address the question if the genomic nucleotide

sequence and the refined PWM could be used to predict ChIP-seq

tag counts. Our refined PWM allows to establish a comprehensive

catalog of 5 454 192 potential STAT1 binding sites in the human

genome, if using a deliberately low-stringency PWM score

(. = 20, PWM in Fig. 2e). For each PWM score class we compute

the fraction of binding sites occupied by more than 5 ChIP-seq

tags within 100bp distance to the predicted binding site. This

fraction reflects the in vivo occupation by STAT1, which clearly

increases with higher PWM scores (Fig. 3). Thus for cells

stimulated by IFN-c, the better a genomic sequence is matching

the PWM, the higher is the probability to be occupied by STAT1.

Conversely, the fraction of occupied sites inferred from the ChIP-

seq experiment with unstimulated cells, is largely independent of

the PWM score. This finding indicates that in unstimulated cells,

sequences with putatively higher affinity are not preferentially

bound by STAT1 and sampled by ChIP-seq. Therefore the ChIP-

seq signal in unstimulated HeLa cells consists to a large extent of

unspecific background sequences [3].

Figure 3 suggests furthermore a PWM score of 30 as threshold

for binding sites exhibiting a marked difference in occupation from

background levels. Therefore such analysis based on in vivo

occupation may complement statistical approaches to define

PWM cutoff scores [27,28].

While the observed higher occupation in the ChIP-seq

experiment at sites with higher affinity is conceivable with models

of DNA binding [29], the average occupation remains unexpect-

edly low. The fraction of occupied sites with PWM score above 30

remains below 4%, and even high affinity sites with the maximal

PWM score are occupied at a frequency of less than 18%.

The specificity of the ChIP-seq signal is further underlined by

the coverage at a collection of 37 experimentally characterized

STAT1 binding sites [22] including both GAS and ISRE sites. 7 of

these loci contain only ISRE motifs and lack any GAS matches

(score .30) within 300bp to the ISRE motif. The ISRE motif [15]

is mainly interacting with STAT1–STAT2–IRF9 complexes

formed following stimulation with type-I-interferons, but not with

IFN-c [30]. Accordingly these ISRE loci are occupied by an

average of only 18.1 ChIP-seq tags, whereas the remaining 30 loci

containing GAS exhibit an average of 311.9 tags. The latter

number represents a 60-fold excess of the threshold of 5 tags

applied to determine occupation, evidencing sufficient ChIP-seq

sequencing coverage for our approach. In summary the compar-

ison of sequence-based prediction of STAT1 binding and of

observed ChIP-seq tag counts indicates that the predictions are

hampered by a high number of false positives. This may results in

a reasonable sensitivity, but a very low specificity.

Repetitive elements MER41 contain STAT1 binding sites
Approximately one forth of our STAT1 binding sites map

within annotations of repeats (RepeatMasker track in UCSC,

[31]). Remarkably the relative number of STAT1 ChIP-seq reads

within repetitive sequences displays a strong increase following

IFN-c stimulation, ruling out potential systematic mapping

artifacts related to repetitive sequences or to the completely

abnormal karyotype of HeLa cells. The induction of the STAT1

binding is though restricted, the complete class of LTRs and also

other repeat classes do not display significant changes in normal-

ized numbers of ChIP-seq tags upon treatment with IFN-c
(Table 2). Conversely the medium reiteration frequency inter-

spersed repeats MER41B of the class of Long Terminal Repeats

(LTR) feature almost 20-fold more ChIP-seq tags in IFN-c
stimulated cells as compared to unstimulated control (log ratio 2.7

in Table 2). Accordingly 292 (6.5%) of our identified binding sites

are located within MER41 annotations, collecting 41080 (5.4%)

tags, while MER41 elements cover only approximately 4 Mb

(0.1%) of the genome.

The specific induction as well as the comparable occupation of

predicted binding sites inside repeats argues against a generalized

‘inactivation’ of repetitive elements as proposed earlier [32]. In

support of the observed binding at MER41 elements, the

consensus sequence of MER41B [33] contains two high scoring

GAS arranged in tandem with a spacing of 21bp (center-to-center

distance). Tandem GAS bound by hetero- or homotetramers of

Table 1. MEME reports motifs derived from repetitive
sequences.

Motif number Consensus sequence E-value in MEME

all STAT1 sites

M1 TTTCCCGGAA 7.7e-3209

M2 TCCACCCCTTGTT-

TAGCATATAATCA

1.6e-1501

M3 TGATGTGTGCATT-

CAACTCAC

9.1e-848

repeat-filtered

M1 GATTTCCGGGAAATG 2.0e-2351

M2 AAAAAAAAAAAAAA-

AAAAAAA

9.6e-205

M3 CCCCTCCCCCGCC-

CCCCCCCC

5.3e-202

Motif discovery using MEME with default parameters on sequences spanning
either the complete set or a repeat-filtered set of STAT1 sites derived from ChIP-
seq data. Top 3 motifs (M1 to M3) for both cases are displayed by consensus
sequences and the corresponding E-values indicating an estimate of the
number of motifs with similar or better statistics in a random sequence set. The
striking differences among the secondary motifs indicate a strong bias by
repetitive sequences (M2 and M3 of the complete set resemble sequences from
MER41B, and satellite Satellite/ALR/Alpha, respectively). Their absence in the
repeat-filtered set furthermore suggests a single motif for STAT1 binding in the
non-repetitive part of the human genome.
doi:10.1371/journal.pone.0011425.t001

STAT1 on MER41
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Figure 3. Estimation of PWM cutoff score from fraction of occupied STAT1 binding sites. 5 454 192 potential STAT1 binding sites in the
human genome are grouped according their PWM score. In general the number of occurrences decrease with increasing PWM score, i.e. 664 981 sites
for PWM 20, 213 877 for 30, and 7471 for 42. Missing bars are due to lack of combinations generating the corresponding PWM score. Occupation is
defined as the fraction of sites covered by more than 5 ChIP fragments (within +/2100 bp). Plotted are data derived from ChIP-seq experiments with
unstimulated (open boxes) or IFN-c-stimulated HeLa cells (filled boxes). The dotted line represents the occupation frequency (0.015) at a collection of
4819 random genomic sites in stimulated cells.
doi:10.1371/journal.pone.0011425.g003

Table 2. Induction of STAT1 binding within specific repetitive sequences.

class name Ln ratio stim unstim cov space

LTR MER41B 2.69 68619 3978 1069 21

tandem GAS within reps 1.97 65482 7819 1870 21

LTR MER41E 1.65 3785 618 135 21

LTR LTR19B 1.64 2460 407 116 +

LTR MER93B 1.26 2540 616 134 +

LTR LTR47A 1.19 4709 1222 228 49

LTR MER41A 0.66 5834 2581 964 +

tandem GAS outside rep 0.63 32731 14948 2900 21

LTR MER93a 0.60 2194 1026 192 +

LTR LTR22C 0.59 1204 569 167 +

LTR MER66C 0.54 1992 989 184 +

tRNA Class 0.43 3541 1970 108 na

snRNA Class 0.04 2410 1979 338 na

LTR Class 0.03 1157617 955767 248357 na

SINE Class 20.07 1255938 1148004 388907 na

STAT1 ChIP-seq tag counts located within repetitive sequence annotations. The table is sorted according the strongest induction of STAT1 binding (column 3) and
indicates in the top part all major repeat types which cover more than 100 kb of genomic sequence. The lower part shows major repeat classes in the genome
annotation. For comparison the table includes also the STAT1 binding within 400 bp around the center of tandem matches to the STAT1 PWM either within or outside
repetitive sequences (italic). Columns 4 and 5 indicate the number of centered tags within the corresponding repeat in the ChIP-seq data from IFN-c stimulated cells or
from unstimulated cells, respectively. The induction of STAT1 binding by IFN-c is indicated by column 3 representing the natural logarithm of the ratio in (col. 4/col. 5)
normalized by the total tag counts (stim: 15.1M; unstim: 12.9M). The 6th column indicates the genome coverage in kb and column 7 indicates the spacing in bp between
tandem STAT1 sites within the corresponding consensus sequence. (+) indicates spacing larger than 100bp or a single STAT1 site. Only very specific repetitive elements
display a significant induction, classes with highest coverage and tag counts (e.g. SINEs) display similar tag counts in IFN-c stimulated or unstimulated cells. Tandem
STAT1 sites inside repeat annotations display an almost 4-fold increased induction compared to similar sites outside repeats.
doi:10.1371/journal.pone.0011425.t002

STAT1 on MER41
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STAT family members have been reported previously with

ambiguous spacings [34,35,36].

Induced GAS tandems display a preference of spacing
18–21 bp

Eukaryotic transcription factors commonly act as multimeric

complexes recognizing two or more DNA motif that occur at

appropriate distances from each other. Tandem GAS sites may be

part of such complex regulatory modules. Literature reports of

tandem GAS sites in promoters of genes induced by STATs (for

review [37]) support our observation of a coexistence of tandem

STAT1 binding sites both within repeats as well as outside

repetitive sequence annotations. In order to reveal features of

tandem GAS sites potentially predicting their affinity to STAT1,

we analyzed the occupation by ChIP-seq fragments at putatively

‘high-affinity’ tandem sites (average PWM score .30) depending

on the center-to-center spacing between GAS tandem sites. The

induction of STAT1 binding by IFN-c stimulation and the spacing

of GAS tandems exhibit considerable heterogeneity as displayed in

Fig. 4, equally for sites within repetitive as well as within non-

repetitive sequences. Concordantly with the limited occupation

described above, a significant portion of sites exhibit no change in

binding (log ratio = 0), mostly associated with 0 counts in both

stimulated and unstimulated data sets. If selecting sites with

induced binding (log ratio .2), repetitive sequences feature a high

proportion of exact spacing of 21 bp, whereas sites within non-

repetitive sequences display slightly less pronounced preferences

for spacings of 18–21 bp (Fig. 4). Within repeats, 21 bp spacing is

mostly associated with MER41 annotation.

In summary, occupied individual STAT1 binding sites within

repetitive sequences do in general not differ significantly from

similar sites in non-repetitive parts of the genome, as indicated by

comparable populations of STAT1 binding sites observed in the

refinement of PWMs. In contrast the distribution of spacings

separating GAS tandems displays clear differences between

repetitive and non-repetitive sequences. A combined genome-

wide analysis would therefore lead to a biased value of 21 bp for

an optimal spacing and incorrect conclusions on structural

arrangements of STAT1 complexes on the DNA helix.

Unoccupied STAT1 sites display phylogenetic
conservation

Functional TFBS are plausibly under selective pressure and

should thus display an enhanced conservation in closely related

species. To assess the conservation of human STAT1 sites within

non-repetitive sequences, PhastCons scores [38] were averaged

over predicted high-affinity STAT1 sites with PWM scores .30.

Repeat sequences spoil multiple genome alignments used for the

computation of PhastCons scores, therefore we limit this analysis

to 298 431 sites within non-repetitive sequences. We split the

Figure 4. Spacings of GAS tandems differ in repetitive sequences. Putatively ‘high-affinity’ tandem GAS (average PWM score .30) are
classified according the spacing between the centers of two sites (x axis), and the induction ratios (y axis). For each spacing class, histograms
representing the frequencies of corresponding log ratios are displayed in vertical orientation. Red color indicates location within repetitive sequence
annotations and blue specifies tandem GAS within non-repetitive sequences. Two histograms at the bottom summarize the data above for sites with
induced binding (log ratio .2). Within non-repetitive sequences spacings 18–22 bp are moderately enriched in induced GAS tandems. For induced
sites within repetitive sequences, a clear predominance of spacing 21 bp is observed, mostly related with MER41 repeats.
doi:10.1371/journal.pone.0011425.g004

STAT1 on MER41

PLoS ONE | www.plosone.org 6 July 2010 | Volume 5 | Issue 7 | e11425



predicted STAT1 sites into 4 classes according to their occupation

with ChIP-seq tags and further separate sites located at TSS

(within 1 kb to annotated TSS) from those distant to TSS. Table 3

displays the statistics of number of sites and average PWM scores

for each class. The average PWM scores only slightly increase with

increased ChIP-seq occupation, likely due to limited occupation of

predicted high-affinity STAT1 sites (Fig. 3).

The resulting Fig. 5 shows a clear increase of the average of

PhastCons scores precisely at the predicted positions for all sets of

STAT1 sites. In general there is a tendency of increased

conservation at STAT1 sites with higher ChIP-seq occupation,

and sites close to TSS display a still increased and positionally

broader conservation profile. The set of sites with highest

occupation is associated with highest average conservation scores,

remarkably independent on their location close or distant to

annotated TSS. Striking is also the conservation profile of STAT1

sites close to TSS, but not occupied by any ChIP-seq tags in HeLa

cells. The high average PhastCons scores of genomic sequences in

close vicinity to the predicted STAT1 sites may originate from

their location within regulatory modules. The clearly enhanced

conservation of the precise location of STAT1 sites not occupied

in HeLa cells might hint for a function most likely as binding site

either in other cell types or by related members of the family of

STAT transcription factors.

The sharp peaks with a width of a few 10 bp putatively identify

conserved STAT1 sites, either isolated or within conserved

regulatory modules. However does this analysis also detect STAT1

sites with augmented conservation which lack any ChIP-seq tags in

stimulated HeLa cells. This suggests a limited predictability of TF-

binding in a specific cell type, even if nucleotide sequences with

preferred binding (via PWM) and phylogenetic conservation are

combined.

Discussion

Aspects of ChIP-seq data analysis
This study aims at the identification of a reference set of robustly

induced STAT1 binding sites upon IFN-c stimulation. Many of

the recent approaches in the analysis of ChIP-seq data use

methods with similar underlying principles to determine genomic

loci with elevated ChIP-seq signal (peak detection). Main

differences consist in the determination of the threshold of signal

intensities which separate signal from background noise. The noise

level in ChIP-seq is still poorly characterized. Therefore the

STAT1 binding motif obtained in the present study does not take

into account putative low affinity sites. For the detection of low

affinity binding sites, specialized approaches may be used [39,40].

Approaches including also ‘weaker’ putative binding sites with

very low ChIP-seq coverage did however so far not provide

evidence for binding sites diverging significantly from the GAS

motif [3,12].

Putative binding sites with very restricted occupation
The limited correlation of the predicted affinity (PWM score) and

the observed STAT1 ChIP-seq signal as presented here suggests

that genomic features additional to the nucleotide sequence

determine the genomic binding of STAT1. Such mechanisms are

likely generalized to all transcription factors and obvious candidates

include cooperative effects between multiple DNA binding proteins.

Epigenetic modifications may reduce the accessibility of the DNA

by chromatin compaction [41] and nucleosome positioning might

conceivably interfere with DNA binding [42]. In agreement with a

number of recent studies [43], the prediction of DNA-protein

interactions solely on the basis of the nucleotide sequence or on their

phylogenetic conservation yields in an inaccurate set of sites actually

occupied in a specific cellular condition. Unoccupied ‘perfect’

STAT1 binding sites may include cell type specific binding sites and

suggest a required but not sufficient function of the nucleotide

sequence for DNA-protein binding.

STAT1 binding on repeats
The present study extends the analysis of STAT1 binding for the

first time to repetitive elements. In distinction to previous reports on

binding sites of other transcription factors within repeats

[18,19,20,21], we demonstrate a specific induction of STAT1

binding to selected repetitive sequence elements in reaction to a

signal increasing the nuclear concentration of STAT1.

ChIP-seq signals are at present not reliably predictable by features

of genomic sequences. Extended analysis of ChIP-seq data in HeLa

cells including additional DNA binding proteins [12] and further

sequence analysis approaches might however reveal combinations of

features to better explain the observed binding of STAT1.

Evolutionary aspects
The binding of STAT1 within repetitive sequences of the LTR

class might relate to the description of functional GAS sites in

retroviruses [44]. Of particular interest may be the fact that the

detected MER41 repeats expanded only in the primate lineage. In

contrast, the STAT1 pathway and thus STAT1 binding sites are

found in species as distant as insects. Therefore the IFN-c – STAT

pathway precedes the expansion of MER41 repeats by several

hundreds of millions years of evolution. Consequently the

expansion of MER41 elements in the primate lineage likely

remodeled parts of the pre-existing regulatory mechanisms of gene

expression. This hypothesis is consistent with a previous study [18]

concluding on an analogous role of a distantly related transcription

factor (p53) binding to distinct LTR subfamilies. In particular

MER41 may contribute to the divergence between primates and

Table 3. Predicted STAT1 binding sites classified according coverage by ChIP-seq tags in HeLa cells stimulated by IFN-c.

Occupation class 1 2 3 4

# of ChIP-seq tags 0 1-5 6-14 .14

PWM score average (+/2 standard
deviation)

34.15+/22.57 34.34+/22.67 35.21+/23.08 35.89+/23.07

# of sites distant to TSS 109532 165577 9029 5050

# of sites at TSS 2821 4508 1001 913

298 431 high-affinity STAT1 sites (PWM scores .30) are split into 4 classes according to their occupation with ChIP-seq tags. The sets are further separated into sites
located within 1kb to an annotated TSS and those distant to TSS.
doi:10.1371/journal.pone.0011425.t003
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rodents. Thus the contribution of repetitive sequence elements

could be included in detailed studies of the evolution of regulatory

networks, exemplified by a recent analysis on the transcriptional

repressor REST [45]. The DNA binding of TFs does however not

allow definitive conclusions of transcriptional regulation of

neighboring genes. Anticipating considerable experimental diffi-

culties to target repetitive sequences by mutagenesis approaches,

we discuss circumstantial evidence for potential functions of

MER41 repeats in IFN-c induced gene regulation. At first the

presence of MER41 annotations in the 10 kb upstream regions

appears not under negative selection pressure (Table 4). Unfortu-

nately we could not find genome wide gene expression data of

IFN-c stimulated HeLa cells in public data repositories. At the

example of the locus of SECTM1 on human chr17, we identified a

gene regulated by IFN-c in human monocytes [46] featuring an

upstream MER41 element at 5 kb to the TSS with two high

scoring GAS in tandem. A duplication event in the rodent lineage

created two gene copies (Sectm1a and Sectm1b), which display

clearly tissue expression patterns divergent from human SECTM1

[47]. Incidentally we do not find MER41 annotations in the

upstream regions of a set of 10 genes with a common IFN-c
induction in both human and mouse tissues and associated with

STAT1 binding sites [48]. Future comparative gene expression

assays in corresponding cell types might focus on differential gene

expression associated with the presence or absence of MER41

repeats in human and mouse, respectively.

Our analysis confirms the previously described enhanced

resolution of the ChIP-seq approach. However, ‘negative control’

data exploited by some of the current peak calling algorithms don’t

provide substantial advantages. We extend initial characterizations

of STAT1 ChIP-seq data sets to binding sites within repetitive

sequence elements. The selective induction of ChIP-seq signal at

specific repeats upon cellular stimulation corroborates specific

binding by STAT1. These observations bolster previous reports on

binding sites of other TFs within repeats. Repetitive elements may

however bring in biases deflecting the analysis of binding

sequences. We recommend therefore an independent analysis of

sequences derived from ChIP-seq data within repetitive and within

non-repetitive genomic sequences, in order to avoid incorrect

conclusions on general properties of binding sites.

Materials and Methods

ChIP-Seq data
The ChIP-seq data underlying this study are described in [3].

Results from ChIP-Seq experiments carried out with unstimulated

and stimulated HeLa cells were downloaded from http://www.

bcgsc.ca/downloads/chiptf/, providing 2 files with the genomic

coordinates of 12.9 million, and 15.1 million mapped sequence

tags of unstimulated and stimulated HeLa cells, respectively.

Tag centering and peak detection
The source files were converted in SGA (Simple Genome

Annotation) format, the working format of our ChIP-Seq tools

available at http://ccg.vital-it.ch/chipseq/, http://sourceforge.net/

Figure 5. STAT1 sites unoccupied in HeLa cells nevertheless with increased phylogenetic conservation. STAT1 sites within non-
repetitive sequences are classified according to the occupation by ChIP-seq tags and to their location either distant (.1 kb; solid lines) or close to
annotations of TSS (dotted lines). For each of the sets (Table 3), the average PhastCons scores are computed at positions relative to the predicted
STAT1 sites. In general STAT1 sites display a narrow increase of the average conservation score. (averages of PhastCons scores: genome wide 0.07; at
TSS: 0.28). Closely neighboring TSS increase the average conservation, as well as higher ChIP-seq occupation tends to increased conservation at
STAT1 sites. On the other hand TSS-associated STAT1 sites which lack any ChIP-seq tags still display a clearly augmented average conservation. This
observation may suggest limited predictability of TF-binding in a specific cell type, even if information on nucleotide sequences with preferred
binding (PWM) and on phylogenetic conservation are combined.
doi:10.1371/journal.pone.0011425.g005

Table 4. MER41 is under-represented in coding exons, but
not in upstream regions.

Number of
MER41
instances

Length of
genome
compartment
in Mb

Ratio over
genome
average

Genome 7 197 3 093 1

coding exons 8 35 0.09

10 kb upstream
region

1 183 347 1.46

Annotations of MER41 repetitive sequence elements in the human genome
(approx. average length: 330 bp) are selected depending on their location in
coding exons or in 10 kb upstream regions of TSS annotations (at least 10 bp
overlap). The cumulative length of the corresponding genomic sequences is
used to determine a ratio relative to random expectation.
doi:10.1371/journal.pone.0011425.t004
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projects/chip-seq/. An SGA file is a tab-delimited text file with five

obligatory fields per line: chromosome, feature name, position,

strand, and a number representing the count of sequenced tags

mapping to this position. The position field corresponds to the

chromosomal position of the 59 end of the mapped sequence tag, that

is the beginning of the matching region for tags on the positive (+)

strand, or the end position of tags on the negative (2) strand. SGA

files are sorted by chromosome, position and strand, allowing for

rapid, sequential processing by downstream analysis tools.

The average length of the pulled-down fragments was estimated

with the aid of the ChIP-cor program of the ChIP-seq tools. The

ChIP-cor program generates a histogram indicating how many

times a 2 strand tag is found at a particular distance of a + strand

tag. In ChIP-seq experiments, + and 2 strand tags tend to occur in

equivalent numbers in clusters around the transcription factor

binding site. The relative displacement of + and 2 tags visualized

by ChIP-cor serves as estimation of the typical fragment size,

found to be 140 bp in these ChIP-seq experiments. An additional

ChIP-center program generates ‘‘centered’’ SGA files by adding or

subtracting a user-defined distance from the positions of the + and

2 tags, respectively, in the input SGA files. The strand field is

changed to 0 to reflect the unoriented nature of the center

positions defined in the output SGA file. Based on the estimated

fragment length, we used a centering distance of 70 bp for SGA

files of both stimulated and unstimulated ChIP-seq experiments.

The centered SGA files were used as input to the peak detection

program ChIP-peak. The following summarizes the concepts of the

ChIP-peak program. Each line of the sorted input SGA file is

considered as candidate peak, for which the total number of

mapped tags in a window of chromosomal positions is computed

using neighboring lines in the SGA file. This window is centered on

the position, with a user-specified width. In order to be retained as a

peak, a candidate position must have at least a threshold number of

total tags. Moreover, it must be the position with the highest

number of counts within a so-called vicinity range, an additional

user-specified parameter of the width of a position-centered

window. If an input SGA line is retained as a peak, its position

may be optionally redefined as the center of gravity of the tag counts

in the surrounding window. The weight of sporadically occurring

positions with suspiciously high tag counts can be decreased by a

user-specified count cut-off value. Counts in the input file exceeding

this value are replaced by the cut-off value. In this work, we used a

window width of 200 bp, and a vicinity range of 400 bp, a

(stringent) threshold of 50 counts, and a permissive count cut-off

value of 999999. A posteriori peak refinement was turned off.

GAS motif refinement
The refinement of the STAT1 binding motif description was

carried out using the MArkow MOdeling Tool (MAMOT [24])

starting from the same initial Hidden Markov Model (HMM) as in

a previous work [14]. As a training set, we used 200 bp long

sequence fragments centered at 4446 peak positions obtained as

described above. The STAT1 binding site model was refined with

MAMOT implementing classical Baum-Welch training with the

following parameter settings:

mamot{Bae{i 20 {t {w 1:0 {m stat1 init:model peak:seq

The initial model considers alternative spacer lengths of 2, 3 and

4 bases between the consensus half-site motifs TTC and GAA in

the initial model. The resulting trained HMM assigned very low

probabilities (below 1%) to the spacing classes 2 and 4, which

allows to ignore these classes and to represent the STAT1 binding

specificity by a standard position weight matrix (PWM) with

spacer length 3. The probability matrix extracted from the trained

HMM (shown as sequence Logo in Fig. 1a) was converted into an

integer PWM (shown in Figure 2a) using the following formula:

wib~int
3

ln 2ð Þ|ln
pib

0:25

� �� �

pib is the probability of base b at binding site position i, and wib is

the corresponding weight in the scoring matrix. The function int

rounds the argument to the nearest integer. The choice of the

scaling factor 3/log(2) is arbitrary. Note that 3 score units

correspond to a factor of 2 in terms of base frequencies. Putative

binding sites can be scored by aligning their nucleotide sequence

to the PWM and sum the matching scores over all positions.

Determining the occupation of predicted sites
A genome-wide map of predicted STAT1 binding sites was

generated as follows. A list of 11-mer sequences matching the

weight matrix shown in Fig. 2a with a score $20 was compiled

with a perl script. The fetchGWI program [49] was used to

determine all exact matches of all corresponding 11-mer sequences

on the genome. We then determined STAT1 occupancy by

counting the number of centered tags from the stimulated and

unstimulated data set within a window of 6100bp relative to the

center position of predicted sites.

Measure of induction of STAT1 binding by IFN-c
The counts of the stimulated and the unstimulated ChIP-seq tag

counts at a specific locus were augmented by one pseudocount,

normalized by the total number of tags in the corresponding

ChIP-seq experiment (stim: 15250744; unstim: 13019977 tags),

and the natural logarithm was calculated of the ratio ‘stimulated’

over ‘unstimulated’ (log ratio).

Average conservation scores at STAT1 binding sites
PhastCons scores on human genome coordinates derived from

the 17-way vertebrate genomes alignment were obtained from the

UCSC genome browser [31]. Converting PhastCons scores for each

position into a density representation allows for efficient computa-

tion of average PhastCons scores using ChIP-cor (http://ccg.vital-it.

ch/chipseq/) and applying count density normalization.

Supporting Information

File S1 List of 4446 STAT1 binding sites in sga format

(uploaded to ChIP-seq web server).

Found at: doi:10.1371/journal.pone.0011425.s001 (0.14 MB

TXT)

File S2 List of 4446 STAT1 binding sites in bed format

(uploaded to UCSC Genome Browser).

Found at: doi:10.1371/journal.pone.0011425.s002 (0.15 MB

TXT)
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