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Summary
Population-based genetic association analysis may suffer from the failure to control for
confounders such as population stratification (PS). There has been extensive study on the
influence of PS on candidate gene-disease association analysis, but much less attention has been
paid to its influence on marker-disease association analysis. In this paper, we focus on the Pearson
chi-square test and the trend test for marker-disease association analysis. The mean and variance
of the test statistics are derived under presence of PS, so that the power and inflated type I error
rate can be evaluated. It is shown that the bias and the variance distortion are not zero in the
presence of both PS and penetrance heterogeneity (PH). Unlike the candidate gene-disease
association analysis, when PS is present, the bias is not zero no matter whether PH is present or
not. This work generalizes the results of Ewens and Spielman (1995), where only the fully
recessive penetrance model is considered and only the bias is calculated. It is shown that candidate
gene-disease association analysis can be treated as a special case of marker-disease association
analysis. Consequently, our results extend previous study on the candidate gene-disease
association analysis. A simulation study confirms the theoretical findings.
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INTRODUCTION
Population-based gene-disease association analysis is the most commonly used statistical
method for detecting genetical variants underlying human diseases (Risch and Merikangas,
1996; Risch, 2000). Such an approach makes use of the case-control design, which is easy to
carry out and cost-effective. However, the case-control studies often suffer from a failure to
account for confounders such as population stratification (PS), resulting in spurious
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associations (Knowler et al., 1988; Lander and Schork, 1994; Cardon and Palmer, 2003;
Campbell et al., 2005). When parental genotypes of affected individuals are available, the
transmission disequilibrium test (TDT) can be used to control for false positives due to PS.
However, for diseases with a late age of onset, the parental genotypes are generally
unavailable and, therefore, TDT is not applicable. There have been studies in recent years on
the impacts of PS on gene-disease association analysis, particularly with respect to the bias
and/or variance distortion of the test statistic (Ewens and Spielman, 1995; Gorroochurn et
al., 2004; Heiman et al. 2004; Qin et al., 2006; Whittemore, 2006; Li et al., 2009; Zheng et
al. 2009). Most of the existing studies focus on a candidate locus, where the null hypothesis
states that the penetrance does not depend on genotype in any subpopulation. Markers are
widely used in preliminary association analyses for detecting disease genes, especially in
genome-wide association analyses. However, the impact of PS on marker-disease
association has not been studied, with the exception of the work of Ewens and Spielman
(1995), where the bias of the test statistic for marker-disease association was obtained by
assuming a very special disease model, namely a fully recessive penetrance model, but the
variance distortion and power function were not given.

In this paper, we extend the results of Ewens and Spielman (1995) to a more general class of
models, without assuming any mode of inheritance. Besides the bias, we also derive the
variance distortion and power function under both the null hypothesis and the alternative
hypothesis. The null hypothesis in the marker locus case states that the linkage
disequilibrium (LD) measures are zero in any subpopulation. It is shown that the bias and
variance distortion under the null hypothesis are not zero in the presence of both PS and
penetrance heterogeneity (PH). In addition, the bias is not zero when PS is present, even if
PH is not, in contrast to the result for candidate gene-disease association analysis, where the
bias is equal to zero when PH is absent. We demonstrate that candidate gene-disease
association analysis can be treated as a special case of marker-disease association analysis,
so that our results are extensions of the previous work on candidate gene-disease association
analysis. Because the null hypothesis in the marker locus case is different from that in the
candidate locus case, the existing results under the null hypothesis for a candidate locus
cannot be transformed through simple reparameterization to yield our results.

Our contributions consist of the following: 1) we extend the existing results to the general
case of marker-disease association analysis; 2) we find that the presence of PS can lead to
bias of the marker-disease association test statistic even when the PH is absent, while in the
candidate locus case the bias is always zero when PH is absent; 3) we derive the power
functions for the Pearson chi-square test and the trend test so that one can study the impact
of PS and PH on both the type I and type II errors of the two tests.

The rest of the paper is organized as follows. Some notation and definitions are given in the
next section. The subsequent sections give the mean and variance of the Pearson chi-square
test statistic and the trend test statistic and their power functions. A small-scale simulation
study is conducted to verify the theoretical results. This is followed by some concluding
remarks.

NOTATION
Suppose that in a case-control study n1 cases and n2 controls are sampled from their
respective populations, where n = n1+ n2. A marker with alleles M and m is then genotyped,
with the counts of genotypes and alleles given in Tables 1 and 2, respectively.

Let the proportions of cases and controls with allele M be denoted by q̂D = (2D2+ D1)/(2n1)
and q̂C = (2C2+ C1)/(2n2), respectively. In addition, let q̂ = (2D2+ D1+ 2C2+C1)/(2n) be the
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proportion of the pooled sample with allele M. The commonly used Pearson chi-square test
statistic based on allele counts is the square of the following test statistic:

(1)

where

(2)

is an estimate of the variance of q̂D−q̂C. The estimate V is used when Hardy-Weinberg
equilibrium (HWE) holds in the overall population. In the “variance adjustment” section, we
will present a variance estimate that is valid even when HWE does not hold.

We assume that the total population consists of K subpopulations, with HWE holding within
each subpopulation. Throughout this paper, we shall use Si to denote the event that a
randomly selected individual is from subpopulation i and wi to denote the proportion of the
total population that belongs to subpopulation i. Assume that only one locus, with alleles A
and a, is responsible for the disease. For subpopulation i, let pi and qi denote the frequencies
of alleles A and M, respectively. Thus, the frequencies of alleles A and M in the overall

population are  and , respectively. Furthermore, let xi1, xi2, xi3 and
xi4 denote the frequencies of gametes MA, Ma, mA and ma, respectively, and δi =
xi1xi4−xi2xi3 the LD measure between the marker locus and the disease locus. Finally, denote
by f2i, f1i and f0i the penetrances of genotypes AA, Aa and aa, respectively. Under the HWE,
the frequencies of genotypes AA, Aa and aa at the disease locus for subpopulation i are

, p1i = 2pi(1−pi) and p0i = (1−pi)2, respectively. The null hypothesis of linkage
equilibrium becomes

(3)

Under the null hypothesis H0, all LD measures δi, i = 1,…,K, are equal to 0, while under the
alternative hypothesis, at least one LD measure is not equal to 0. It is clear that the null
hypothesis implies that the marker is not associated with the disease.

Definition 1
PS is said to be present if the allele frequencies at the marker locus are heterogenous, i.e.,
the qi vary with i.

EXPECTATION OF FREQUENCY DIFFERENCE
In this section, we calculate the expectations of q̂D and q̂C under both the null and the
alternative hypotheses. We study the null expectation of q̂D−q̂C, which is termed bias.
Hereafter, let Y = 1 denote the event that a randomly chosen individual is a case, and Y = 2
the event that a randomly chosen individual is a control.

By definition, the expectations of q̂D and q̂C are equal to
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(4)

and

(5)

respectively. The disease prevalence, which we denote by B, satisfies 
by the Law of Total Probability. In Appendix I, we show that,

(6)

and

(7)

Similarly, we have

(8)

and

(9)

Substituting the above four probabilities for those in (4) and (5) gives

(10)

where
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(11)

and

(12)

Since A2 = 0 under the null hypothesis, the bias is A1/[B(1−B)]. Define a random variable Z

with probability function P(Z = i) = wi, i = 1, ···, K. Then , where qz,
fjZ and pjZ are conditional probabilities that are equal to qi, fji and pji, respectively,
conditional on Z = i.

The following are some scenarios that occur in practice.

Scenario 1
If PS is absent, then random variable qZ degenerates to a constant. In this scenario, A1 = 0
and the bias is zero.

Scenario 2
If PS is present but PH is absent (i.e., fji = fj1, j = 0,1,2, i = 1,···,K), then the random variables
fjZ, j = 0,1,2, degenerate to constants, but A1 is not zero. Hence the bias is not zero in general
since qZ and pjZ, j = 0,1,2, are not necessarily constant.

Scenario 3
If both PS and PH are present, then the bias is not zero in general.

Remark 1—When f2i = 1, f0i = f1i = 0, i = 1, ···,K, the model degenerates to the so-called
fully recessive penetrance model and the expectation becomes

(13)

The above expression is almost identical to expression (5) in Ewens and Spielman (1995).

Remark 2—If the marker locus and the disease locus coincide, so that pi = qi and the LD
measures are , then the marker locus becomes a candidate locus. In this case, (6)–
(9) become
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and

The resulting expectation corresponds to the candidate locus case studied by Li et al. (2009).
In the candidate locus case, the null hypothesis is f0i = f1i = f2i for i = 1,…, K, and the bias is
equal to zero if either PS or PH is absent. In the marker locus case that we study in the
current paper, however, the bias is generally not zero if PH is absent but PS is present.

VARIANCE OF THE FREQUENCY DIFFERENCE
In Appendix II, we derive the following variance formula for q̂D:

(14)

Under the null hypothesis H0, the conditional probabilities P(MM|Y = 1) and P(Mm|Y = 1)
given by (6) and (7) are equal to

(15)

and

respectively, where

It follows from (14), (15) and (16) that the null variance of q̂D is
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Similarly,

where

Under the alternative hypothesis, the variance of q̂D can be expressed as

(16)

We refer to Appendix III for its detailed derivation. Similarly, the variance of q̂C is equal to

(17)

By virtue of the independence between the cases and controls, the variance of q̂D−q̂C is
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(18)

In particular, the null variance of q̂D−q̂C is

(19)

Definition 2
We say variance distortion exists if under the null hypothesis, the variance estimator V for
q̂D−q̂C as given by (2), is not asymptotically equivalent to the true variance, that is, if 
does not converge to 1 with probability 1 under the null hypothesis.

By the Law of Large Numbers, q̂D → q̄D and q̂C → q̄C, which imply that q̂ converges to
c1q̄D + c2q̄C with probability 1, where cj = limn→∞nj/n, j = 1,2. It follows that under the null
hypothesis V is asymptotically equivalent to

(20)

Remark 3

If PS is absent, then under the null hypothesis q̄D = q̄C = q and . Hence,  and
the variance distortion vanishes under the null hypothesis and HWE. Otherwise, the variance
distortion is present in general.

VARIANCE ADJUSTMENT
In this section, we derive the power function of the test statistic T, which is given by (1). By
the Central Limit Theorem, TA = (q̂D−q̂C−Δ)/σ converges in distribution to the standard
normal distribution, since the mean and variance of q̂D−q̂C are Δ and σ2. The two-sided T
test at level of significance α is determined by rejection region {|T|> uα/2}, where uα/2 is the
upper α/2 -quantile of the standard normal distribution. The corresponding power function is
therefore approximated by

(21)

where Φ is the standard normal distribution function and σ ̄2 is defined by (20).

As we mentioned earlier, variance distortion exists in presence of PS. Therefore, it is
necessary to use a consistent estimate of the variance σ2. Notice that under the null

hypothesis, σ2 becomes . We can estimate
it with
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(22)

where  and  are consistent estimates of  and ,
respectively. The estimator V* was used by Li et al. (2009) for the candidate locus. In the
marker locus case, we can show that V* is asymptotically equivalent to σ2 under both the
null hypothesis and the alternative hypothesis. Actually, V* is a special estimate of the trend
test statistic that will be studied in the next section, and it will be shown that V* is
asymptotically equivalent to σ2 even when HWE does not hold.

Now, a modification of T takes the form

(23)

The T* test with rejection region {|T*|>uα/2} has an approximate power function

(24)

EXTENSION TO TREND TEST
The trend test statistic is defined as

where x is a given real number between 0 and 1 and Vx is an estimator of the variance of the
numerator. From (6)–(9), it follows that the expectation of (D2/n1−C2/n2)+ x(D1/n1−C1/n2)
is
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Under the null hypothesis, this expectation is equal to ,
where Z is the random variable defined below (12). In the absence of PS, the random
variable Z becomes non-random, making the null expectation 0. Otherwise, the expectation
is nonzero in general. Furthermore, under the assumptions in Remark 2, the expression Δx
reduces to that given by Zheng et al. (2009).

For notational simplicity, we use g21 = P(MM|Y = 1), g11 = P(Mm|Y = 1), g22 = P(MM|Y = 2)
and g12 = P(Mm|Y = 2) for the expressions given by (6)–(9). Using the facts that (D2, D1,
D0) and (C2,C1,C0) follow trinomial distributions, we obtain the following formula

Replacing the gij by their consistent estimators, we get the following estimate of the variance
of (D2/n1−C2/n2)+ x(D1/n1−C1/n2):

(25)

By the Law of Large Numbers, Vx is a consistent estimate under both the null hypothesis
and the alternative hypothesis, even if HWE does not hold in any subpopulation. When x =
0.5, we have that V0.5 = V* and T0.5 = T*. This shows that V* is a consistent estimate of the
variance of q̂D−q̂C.

The asymptotic power function of the Tx test with rejection region {|Tx|> uα/2} is

(26)
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A SIMULATION STUDY
To study the finite sample performance of the mentioned tests, we conducted some
simulations. We studied the impact of PS on the powers and type I error rates of the T test
(defined in (1)) and the T* test (defined in (23)). In the simulations, we assumed the study
population consisted of 2 subpopulations of equal sizes.

First we considered an additive mode of inheritance in each subpopulation. The underlying
models were specified as follows. The allele frequencies of M at a disease locus were 0.2
and 0.2 (PS is absent) or 0.1 and 0.3 (PS is present) for the two subpopulations. The allele
frequencies of M at a marker locus were 0.3 and 0.3 (PS is absent) or 0.4 and 0.2 (PS is
present) for the two subpopulations. HWE was assume to hold in the 2 subpopulations at
both the marker and the disease loci. The penetrances of genotypes aa, Aa and AA in
subpopulation 1 were 0.1, 0.2 and 0.3, respectively, and they were either 0.2, 0.3, 0.4 for
subpopulation 2 (PH is present) or the same as those in subpopulation 1 (PH is absent). The
LD measures in the two subpopulations were the same, that is, either 0 (null hypothesis) or
0.05 (alternative hypothesis).

We randomly generated the genotypes of 1000 cases and 1000 controls. The empirical type I
error rates/powers at a 0.05 level of significance were estimated based on 5,000,000
replications. The asymptotic type I error rates/powers of the T* test were calculated using
formula (24). The resulting powers are presented in Table 3.

For the T* test, it is seen that the asymptotic type I error rates/powers and the empirical type
I error rates/powers are very close to each other, with differences of no more than 0.001,
showing an accurate approximation of the power function. As expected, when PS is absent,
the type I errors are virtually equal to the nominal level 0.05; when PS is present, the type I
error could be inflated a great deal, especially when PH is also present (0.876). The power is
also influenced by the presence of PS and PH. For example, when both PS and PH are
present, the power is only 0.142, compared with 0.809 for the case where neither PS nor PH
is present.

The T test has type I error rates/powers close to those of the T* test in the absence of PS,
with differences of no more than 0.001. In the presence of PS, there are minor differences
that vary from 0.009 to 0.017.

The above simulations assumed that HWE held in any subpopulation. Our further
simulations without an assumption of HWE (results not shown) showed that the T* test had
type I error rates close to the nominal levels in the presence of PS, but the T test could
distort the type I error rate, with its magnitude depending upon the strength of Hardy-
Weinberg disequilibrium.

Second we considered a fully penetrance recessive model in each subpopulation, with the
penetrance being 1 for AA and 0 for Aa and aa. The other parameters are the same as those
in Table 3, except that the LD measures under the null hypothesis are 0.01. The simulation
results are reported in Table 4. For this mode of inheritance, the impact of PS on the type I
error rates and the powers has a trend the same as that for the additive mode of inheritance.

Third we considered a special case, where the the marker locus and the disease locus
coincide, with a common allele frequency pi for the i th subpopulation, i = 1,2, and where
the LD measures are . The other parameters are the same as those in Table 3
except that the null hypothesis (in each subpopulation the penetrances are independent of the
genotypes) is different and the mode of inheritance under the alternative hypothesis is
recessive. The detailed parameter settings are described and the simulation results are
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presented in Table 5. As expected, the T* test has type I error rates controlled at the nominal
level when either PS or PH is absent (this is different from the marker locus case), but the
type I error rate is inflated when both PS and PH are present. Furthermore, the presence of
PS and/or PH also has an impact on the powers of the T* test, with the trend similar to that
for the marker locus case. There are only minor differences between the T test and the T*

test, except under the null hypothesis with the absence of PS.

DISCUSSION
Population-based marker-disease association analysis is a powerful tool but may suffer from
PS. Our work provides closed forms for the expectation and variance of two commonly used
test statistics, which enable us to study the type I error rate and power under various
scenarios. We extend the work of Ewens and Spielman (1995) by relaxing the assumption of
fully recessive penetrance and studying bias and variance distortion simultaneously. Our
simulation results are in agreement with those from asymptotic approximations, confirming
that the theoretical findings are correct. Both analysis and simulation results show that the
presence of PS can inflate the type I error rate and decrease the power dramatically in the
marker-disease association analysis. Therefore, it is necessary to modify the test statistics to
accommodate PS. Methods have been proposed in the literature for correcting bias and/or
variance distortion in candidate gene-disease association analysis, including genomic control
(Devlin and Roeder, 1999; Devlin et al., 2001), structured association (Pritchard et al., 2000;
Satten et al., 2001; Pritchard and Donnelly, 2001), the delta centralization (Gorroochurn et
al., 2006). Whittermore (2006) suggested sensitivity analysis. However, the performance
qualify for these methods for marker-disease association analysis is unclear and needs
further investigations.

Acknowledgments
We would like to thank the Managing Editor, the Handling Editor and two reviewers for their helpful comments
and suggestions leading to an improvement of the paper. We are grateful to Dr. B. J. Stone for editorial help. This
research was supported in part by the National Natural Science Foundation of China 10701067 (HZ), the
Outstanding Overseas Chinese Scholars Fund of Chinese Academy of Sciences (ZL), and NIH grant
5R37GM047845 (ZY).

References
Armitage P. Tests for linear trends in proportions and frequencies. Biometrics. 1955; 11:375–386.
Campbell CD, Ogburn EL, Lunetta KL, Lyon HN, Freedman ML, Groop LC, Altshuler D, Ardlie KG,

Hirschhorn JN. Demonstrating stratification in a European American population. Nat Genet. 2005;
37:868–872. [PubMed: 16041375]

Cardon LR, Palmer LJ. Population stratification and spurious allelic association. Lancet. 2003;
361:598–604. [PubMed: 12598158]

Ewens WJ, Spielman RS. The transmission/disequilibrium test: history, subdivision, and admixture.
Am J Hum Genet. 1995; 57:455–464. [PubMed: 7668272]

Gorroochurn P, Heiman GA, Hodge SE, Greenberg DA. Centralizing the non-central chi-square: A
new method to correct for population stratification in genetic case-control association studies. Genet
Epi. 2006; 30:277–289.

Gorroochurn P, Hodge SE, Heiman G, Greenberg DA. Effect of population stratification on case-
control association studies. II. False-positive rates and their limiting behavior as number of
subpopulations increases. Hum Hered. 2004; 58:40–48. [PubMed: 15604563]

Heiman GA, Hodge SE, Gorroochurn P, Zhang J, Greenberg DA. Effect of population stratification on
case-control association studies. Hum Hered. 2004; 58:30–39. [PubMed: 15604562]

LI et al. Page 12

Ann Hum Genet. Author manuscript; available in PMC 2011 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Knowler WC, Williams RC, Pettitt DJ, Steinberg AG. Gm 3;5,13,14 and type 2 diabetes mellitus: an
association in American Indians with genetic admixture. Am J Hum Genet. 1988; 43:520–526.
[PubMed: 3177389]

Lander ES, Schork NJ. Genetic dissection of complex traits. Science. 1994; 265:2037–2048. [PubMed:
8091226]

Li CC. Population subdivision with respect to multiple alleles. Ann Hum Genet. 1969; 33:23–29.
[PubMed: 5821316]

Li CC. Genetics of subdivided populations and its relationships with certain measures of association.
Genet Epi. 1991; 8:1–11.

Li Z, Zhang H, Zheng G, Gastwirth JL, Gail MH. Excess false positive rate caused by population
stratification and disease rate heterogeneity in case-control association studies. Comput Statist
Data Anal. 2009; 53:1767–1781.

Qin, H.; Zhang, H.; Li, Z. The impact of population stratification on commonly used statistical
procedures in population-based QTL association studies. In: Hsiung, A.; Zhang, C.; Ying, Z.,
editors. Random Walk, Sequential Analysis and Related Topics-A Festschrift in Honor of Yuan-
Shih Chow. Singapore: World Scientific Publisher; 2006. p. 311-333.

Risch N. Searching for genetic determinants in the new millennium. Nature. 2000; 405:847–856.
[PubMed: 10866211]

Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;
273:1516–1517. [PubMed: 8801636]

Spielman RS, McGinnis RE, Ewens WJ. Transmission test for linkage disequilibrium: the insulin gene
region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet. 1993; 52(3):506–516.
[PubMed: 8447318]

Whittemore, AS. Population structure in genetic association studies. Proceedings of the American
Statistical Association, Statistics in Epidemiology Section [CD-ROM]; Alexandria, VA: ASA;
2006.

Zheng G, Li Z, Gail MH, Gastwirth JL. Impact of population substructure on trend tests for genetic
case-control association studies. Biometrics. 200910.1111/j.1541–0420.2009.01264.x

APPENDIX I. Proof of (6) and (7)
By the definition of the linkage equilibrium measures δi, the probabilities of gametes MA,
Ma, mA and ma are

(27)

(28)

(29)

and

(30)

respectively. Random mating gives
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(31)

(32)

(33)

(34)

(35)

(36)

Here (MM, AA) is the joint genotype at the marker locus (MM) and the disease locus (AA),
so are the other 5 pairs. It follows from (31)–(36) that

and

APPENDIX II. Proof of (14)
Define two indicator functions
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Then,

where the summation is taken over all cases. Since

the variance of q̂D is

APPENDIX III. Proof of (16)

Define , c2 ≡ Σi2qi(1−qi)αi, x1 ≡ P(MM|Y = 1)−c1, x2≡ P(MM|Y = 1)−c2.
Substituting c1, c2, x1 and x2 into (14), we have

(37)

By the definitions,

(38)

(39)
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(40)

It follows from (39) and (40) that

(41)

Equation (16) follows from (37), (38) and (41).
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Table 1

Genotype counts

MM Mm mm Sum

Cases D2 D1 D0 n1

Controls C2 C1 C0 n2

Sum r2 r1 r0 n
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Table 2

Allele counts

M m Sum

Cases 2D2+D1 2D0+D1 2n1

Controls 2C2+C1 2C0+C1 2n2

Sum 2r2+r1 2r0+r1 2n
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Table 4

Type I error rates/powers for marker locus under fully recessive mode of inheritance1

T test T* test

Hypothesis2 PS3 Empirical Asymptotic Empirical

Null Absent 0.050 0.050 0.050

Null Present 1.000 1.000 1.000

Alternative Absent 0.941 0.941 0.941

Alternative Present 0.838 0.828 0.828

1
In both of the subpopulation, the penetrances of genotypes aa, Aa and AA are 0, 0 and 1, respectively.

2
“Null”: δ1 =δ2 = 0; “Alternative”: δ1 =δ2 = 0.01.

3
“Absent”: p1 = p2 = 0.2 and m1 = m2 = 0.3; “Present”: p1 = 0.1, p2 = 0.3 and m1 = 0.4, m2 = 0.2.
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