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Abstract
Glioblastoma is the most common and lethal type of primary brain tumor. Despite recent therapeutic
advances in other cancers, the treatment of glioblastomas remains ineffective and essentially
palliative. The treatment failure is a result of a number of causes, but we and others have demonstrated
that a highly tumorigenic subpopulation of cancer cells called glioblastoma stem cells (GSCs) display
relative resistance to radiation and chemotherapy. GSCs also contribute to tumor growth through the
stimulation of angiogenesis, which has been shown to be a useful therapeutic target in the treatment
of recurrent or progressive malignant gliomas. Cancer stem cells also have been hypothesized as a
contributor to systemic metastases. While glioblastomas rarely metastasize beyond the central
nervous system, glioblastomas invade into brain structures to prevent surgical cure and GSCs have
an extremely invasive phenotype. Collectively, these studies and others suggest that GSCs may be
important therapeutic targets not only to achieve cure but even reduce tumor relapse and improve
overall survival. Many recent studies suggest that GSCs share core regulatory pathways with normal
embryonic and somatic stem cells, but display important distinctions that provide clues into useful
treatment targets. The cancer stem cell hypothesis may also modify our approaches in tumor imaging
and biomarker development, but clinical validation waits. In this review, we summarize the current
understanding of GSC biology with a focus on potential anti-GSC therapies.
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1. Introduction
Glioblastomas (GBMs, World Health Organization grade IV gliomas) are the most common
type of primary brain tumors in adults. GBMs are among the most lethal and least successfully
treated solid tumors [1]. Median survival of GBM patients treated with aggressive multimodal
therapy, including maximal surgical resection, combined radiation and chemotherapy, and
adjuvant chemotherapy is only 12 - 15 months [2]. Compared to the advances in the treatment
of other types of tumors, the poor prognosis for GBM patients has improved minimally over
decades, underscoring the challenges and difficulties in effectively detecting and treating these
fatal cancers. Metastatic spread is responsible for deaths in many cancer patients, but GBMs
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rarely metastasize out of the central nervous system. In contrast, GBMs are highly infiltrative
into the brain and spinal cord preventing surgical cure even with heroic resections. Invading
tumor cells appear to be particularly resistant to cytotoxic therapy and are often protected by
an intact neurovascular unit [1]. Additionally the majority of patients suffer primary treatment
failure within 2-3 cm of the original resection cavity suggesting that therapeutic resistance is
a common feature of the entire tumor. Collectively, these difficulties have propelled the
refinement of therapy to achieve maximal efficacy with minimized toxicities. Improved intra-
operative imaging and advanced surgical techniques have increased the ability to remove
tumors safely as extent of surgical resection may be associated with increased patient survival
[3]. After resection, patients undergo focused radiation at the primary tumor site instead of
whole brain radiotherapy. Novel radiation technologies, such as intensity-modulated radiation
therapy (IMRT) and proton therapy, permit delivery of higher radiation doses to tumor-bearing
brain while relatively sparing normal brain. While chemotherapy has been used for decades in
neuro-oncology, the oral methylator temozolomide (TMZ) has shown benefit when used
concurrently with radiation and then as adjuvant chemotherapy such that it is now standard
practice [2]. Many molecularly targeted therapies have been investigated in trials of malignant
gliomas (glioblastomas and anaplastic gliomas) but to date only bevacizumab (Avastin) has
been approved by the FDA, unfortunately lacking a definitive impact on survival [4-6].
Immunotherapies and toxin-ligand conjugates have shown promise in early trials but so far
lack definitive efficacy in larger (phase III) trials. Transforming glioblastoma into a treatable
entity will require new paradigms in cancer biology and the mechanisms underlying the GBM
invasion, resistance and recurrence.

Most solid tumors consist of heterogeneous cancer cells, as well as recruited vasculature,
inflammatory cells and stromal elements [7]. As the name indicates, glioblastoma multiforme
displays striking intratumoral heterogeneity not only morphologically but also in
differentiation status. Tumor heterogeneity may be derived from both genetic and non-genetic/
epigenetic causes. Growing evidence from hematopoietic malignancies and solid tumors
(including breast, brain, head and neck and colorectal cancers) has supported the hypothesis
that a subpopulation of cancer cells in each malignancy has greater potential of tumor initiation
and repopulation [8-19]. The nomenclature of these cells has been highly controversial due to
the lack of definitive criteria (it is worth noting that we lack absolute definitions for somatic
stem cells as well). The term tumor-initiating cell is commonly used but the evidence that these
are the cells at tumor initiation is unclear. Tumor propagating cells has been proposed [20] as
the defining assays involve tumor propagation into secondary hosts. Cancer stem cell or stem
cell-like cancer cell terminology is imperfect due to distinct differences from stem cells and
frequent confusion over a stem cell cell-of-origin but does capture the shared characteristics
with normal stem cells especially somatic stem cells, including the capacities for self-renewal,
differentiation, and maintained proliferation. Based on these concerns, we employ the term
cancer stem cell with a firm recognition of the challenges of the name.

Glioma stem cells (GSCs) have been described by several groups [10,11,17,18]. These cells
are functionally defined with self-renewal measured by serial neurosphere assay and tumor
propagation by in vivo intracranial limiting dilution assays. Although cancer stem cells need
not recapitulate normal differentiation cascades and commonly display aberrant differentiation
signatures with multiple lineage markers, GSCs have been shown to differentiate into
astrocytes, oligodendrocytes and neurons [10,11,17,18,21] (Fig. 1). Studies from a number of
groups including ours have demonstrated that GSCs display much greater tumorigenic potential
than matched non-stem tumor cells when xenotransplanted into brains of immunocompromised
rodents [10,11,17,18,21]. Although the origin of GSCs is not defined, GSCs share
developmental programs with normal neural stem cells (NSCs) that endow these cells with key
traits in carcinogenesis. Finally, we posit that the definition of a cancer stem cell will likely
encompass a broader spectrum of behaviors in parallel to those of somatic stem cells, including
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the ability to modulate immune responses, interact and support the vasculature, and disperse
into new locations.

GSCs have been implicated in several malignant behaviors. We found that GSCs express
elevated levels of vascular endothelial growth factor (VEGF) to promote tumor angiogenesis
[22]. This finding has been confirmed by others with an additional determination that stromal-
derived factor-1 (SDF-1, CXCL12) is another pro-angiogenic ligand expressed by GSCs [23,
24]. This is of particular significance as bevacizumab (Avastin), a humanized neutralizing anti-
VEGF antibody, has demonstrated activity against GBMs and was recently approved by the
United States Food and Drug Administration for the treatment of recurrent or progressive
GBMs [4-6,25]. We also demonstrated that GSCs are relatively resistant to radiation due to
preferential activation of the DNA damage checkpoint and lesion repair [21], while other
groups have described relative resistance of GSCs to chemotherapies [26-28]. These studies
may explain in part how even patients with a promising radiographic response universally
suffer recurrence and/or progression of their cancers. Therefore, direct targeting of GSCs may
improve the efficacy of conventional cytotoxic therapies as well as anti-angiogenic therapies.
In this review, we summarize the roles of GSCs in the malignant behavior of these cancers
with attention to signaling pathways involved in GSC maintenance and growth, and discuss
molecular strategies for development of novel therapeutics targeting GSCs.

2. Targeting vascular niche of glioma stem cells
Florid angiogenesis is one of hallmarks of malignant gliomas [1]. Tumor growth is limited by
constraints of the supportive vasculature to feed the tumor and remove waste products. Initial
tumor growth occurs through vessel cooption but eventually neoangiogenesis is required
although the vessels formed are abnormal and often inefficient. The degree of vascularization
is significantly correlated with the glioma malignancy, tumor aggressiveness, and clinical
prognosis [29]. Based on this background, a number of laboratories have aggressively
investigated the relationship between the tumor vasculature and GSCs. Characterizing in
vitro and in vivo growth of GSCs in relation to matched non-stem glioma cells, we determined
that GSCs formed tumors with greater vascularity than the non-stem tumor cells [22]. The
mechanism of this hypervascularity appeared in part due to a secreted factor from GSCs
induced microvascular endothelial cell migration and vessel formation. We examined the
conditioned media for expression of a series of angiogenesis regulators and noted that markedly
higher levels of VEGF were the most consistent findings. Targeting VEGF effects through
bevacizumab specifically blocked GSC pro-angiogenic effects both in vitro and in vivo. Using
the C6 cell line, Folkins and co-workers showed that GSCs promote both tumor angiogenesis
and vasculogenesis via VEGF and SDF-1 [24]. To understand the upstream mechanisms that
drive VEGF expression in GSCs, we interrogated the role of hypoxia and the hypoxia inducible
factors (HIFs). As expected, hypoxia treatment induced VEGF expression in both GSCs and
non-stem glioma cells but the levels were consistently higher in GSCs [22,30]. Interestingly,
HIF-1α and HIF-2α specifically controlled VEGF expression in GSCs in a non-redundant
manner. Hypoxia can also expand the GSC fraction and regulate stem cell marker expression
[31-33]. Therefore, hypoxia may function in tumor progression and therapeutic resistance
through its promotion of a cancer stem cell phenotype.

The relationship between GSCs and the vasculature is complex and bi-directional. Normal
neural stem cells (NSCs) reside in perivascular locations that provide essential pro-survival
and maintenance cues [34-36]. In a seminal study, Gilbertson and co-workers demonstrated
that brain tumor cells that express stem cell markers reside in a perivascular niche [23]. They
further showed that endothelial cells increase brain tumor stem cell survival and targeting the
tumor vasculature with bevacizumab reduces the number of cancer stem cells in treated tumors.
They also found that co-transplantation of GSCs with endothelial cells accelerates tumor
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initiation and progression [23]. Another group showed that a metronomic chemotherapy
regimen decreased the growth of sphere forming C6 brain tumor cells [37]. We have observed
that glioma cells bearing cancer stem cell markers, CD133, HIF2α or L1CAM (CD171), are
localized near blood vessels [21,22,30] (Fig. 2). Thus, the symbiotic relationship between
GSCs and vasculatures may explain the promising efficacy of anti-angiogenesis therapy with
bevacizumab [4-6,25] or cediranib (AZD2171, a VEGFR inhibitor) for GBM patients in the
clinical trials [38]. Thus, anti-angiogenic therapy may function as an anti-GSCs therapy. A
further nuance has come from early studies that suggest that glioblastoma cells can form parts
of the tumor vasculature [39]. It is likely that anti-angiogenic drugs might not only inhibit
tumor vascularization to suppress GBM growth, but also directly disrupt the niches for the
maintenance of GSCs, therefore weakening the “tumor roots”.

3. Targeting therapeutic resistance of glioma stem cells
Glioblastoma remains to be one of the most fatal cancers despite optimal therapies. These
diffusely infiltrative tumors are highly resistant to conventional radiotherapy and
chemotherapy, and often recur in a local fashion despite maximal surgical resection [1]. Studies
from our group and others have demonstrated that GSCs promote the therapeutic resistance
and likely are responsible for the relapse of GBM [21,27,28]. The presence of a subpopulation
of cancer cells within GBM possibly responsible for generating the entire mass of cancer cells
has important implications for the understanding of the efficacy of current therapies and the
resistance issue. It should be noted that the hierarchical relationship between the stem-like
population and bulk tumor remains controversial [40], but it is possible that cancer stem cells
may contribute to tumor repopulation after therapy. Radiation is the most effective non-surgical
therapy for GBMs but is palliative suggesting that tumors contain resistant populations. Indeed,
we found that GSCs are more resistant to radiation than the matched non-stem glioma cells
[21]. In response to radiation-induced DNA damage, GSCs preferentially activate several
critical checkpoint proteins (ATM, Rad17, Chk2 and Chk1). As a result of the preferential
DNA damage checkpoint activation, GSCs are more efficient in repairing the damaged DNA
and more rapidly recover from the DNA damage than the matched non-stem tumor cells. Thus,
GSCs are more resistant to radiation-induced apoptosis than the non-stem tumor cells in
vitro and in vivo. Further, a low molecular weight inhibitor (Debromohymenialdisine, DBH)
of Chk2 and Chk1 checkpoint kinases abolished the radioresistance of GSCs, suggesting that
targeting the DNA damage checkpoint response may sensitize GSCs to radiotherapy and thus
overcome the radioresistance of GBM during treatment. Although inhibitors of checkpoint
activation may be used as radiosensitizers of GSCs, consideration of the effects of the therapy
on normal stem cells must also be considered, as inhibition of checkpoint activation in normal
cells may lead to oncogenesis. Recently, we also showed that inhibition of the Notch pathway
by the γ-secretase inhibitor or Notch shRNA renders GSCs more sensitive to radiation [41],
suggesting that Notch pathway may serve as another potential therapeutic target for reducing
GBM radioresistance. Additional recent studies suggest that targeting SirT1 expression or
HSP90 activity can also attenuate GSC radioresistance [42,43]. It is likely that multiple
mechanisms regulate cancer stem cell radioresistance, perhaps with intertumoral variation. In
breast cancer stem cells, decreased radiosensitivity may be due to lower levels reactive oxygen
species (ROS) [44] or activity of Wnt/β-catenin signaling [45]. To date these mechanisms have
not been described in GSCs, but they give hope that several druggable targets may be targeted
in GSCs to overcome radioresistance.

Besides radiotherapy, the current standard of care for newly diagnosed GBM includes adjuvant
chemotherapy with temozolomide (TMZ), an oral methylating chemotherapeutic agent [2].
TMZ induces DNA alterations at several locations but achieves significant cytotoxic effect by
methylating the O6 position of guanine in DNA. This DNA adduct can be removed by the
repair enzyme O6-methylguanine-DNA-methyltransferase (MGMT) that is expressed in
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graded levels in GBM. MGMT expression is likely regulated at several levels but recent
attention has focused on its promoter methylation that has been linked to reduced MGMT levels
and greater sensitivity to TMZ treatment [46]. The addition of TMZ to GBM therapy has been
potentially most effective by a radiosensitization effect [2], but TMZ is commonly used as
adjuvant therapy as well. Although therapy with TMZ may slow GBM tumor growth and
increases the proportion of patients surviving for two years, long-term survivors are still rare
due to drug resistance and GBM recurrence. Invariable tumor recurrence after TMZ therapy
indicates the presence of TMZ-resistant cancer cells in GBM. Recently, it was shown that GSCs
also contribute to the chemoresistance to TMZ [26-28]. In a genetically engineered glioma
mouse model, TMZ treatment increased the side population (SP), a potential measure of cancer
stem cells [47] and TMZ does not inhibit GSC self-renewal [48], although it has been shown
that TMZ can eliminate MGMT-negative GSCs [49]. Several other potential mechanisms of
GSC drug resistance have also been reported. Increased expression of drug transporters that
pump out chemotherapeutic agents may be one of critical mechanisms, including the ABC
(ATP-binding cassette) drug transporters. Some studies suggest that ABC expression may
enrich for cancer stem cells [16]. A side population (SP) of cancer cells isolated from tumors
may represent a class of cancer stem cells with high drug efflux capacity and thus show
inherently high resistance to chemotherapeutic agents [50]. SP cells express high levels of the
ABC drug transporters such as ABCG2 and ABCA3 in GBM cell lines [50], suggesting that
targeting these drug transporters may reduce drug resistance of GSCs. In addition, several
studies have shown that the poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors such as
CEP-8983 and E7016 can increase sensitivity of chemoresistant GBM tumor cells to TMZ and
radiation [51-53]. PARP-1 plays a critical role in DNA repair, particularly in the base excision
repair of DNA strand breaks caused by ionizing radiation or DNA lesions induced by
methylating agents such as TMZ [54-57]. In vivo studies have demonstrated PARP-1 inhibitors
enhance the anti-tumor effects of radiation or chemotherapy and sensitize glioma cells to TMZ
treatment [23,53]. As GSCs display preferential DNA repair capacity, it is worth of testing
whether PARP-1 inhibitors can be used to overcome the radio- or chemo-resistance of GSCs.

4. Targeting glioma stem cells through specific cell surface molecules
Cell surface molecules differentially expressed in GSCs and functionally associated with the
maintenance of GSC may be ideal targets. Several molecules, including CD133 [17,18], CD15
[58-60], L1CAM [61], A2B5 [62,63], have been identified on cell surface of brain tumor stem
cells. Although CD133 (prominin-1) has been widely used as a marker for enrichment of GSC
population from GBM tumors or xenografts, many normal cells express CD133 potentially
limiting its utility as a target and the reliability of CD133 to discriminate GSCs is not absolute
[64]. CD15 (stage-specific embryonic antigen-1, SSEA-1; Lewis X antigen) originally
identified as a marker of mouse embryonic stem cells [65,66] has recently been used as an
alternative marker to enrich GSCs from some GBM tumors (and medulloblastoma stem cells
as well) in which CD133 marker is not a informative maker for GSC population [58-60]. But
whether CD15 can be used as a target for GSCs is not clear because CD15 is a carbohydrate
antigen rather than a distinct protein target, expressed in the normal brain including normal
neural and progenitor cells [67], and the function of CD15 in normal stem cells and cancer
stem cells remains poorly understood. Other surface markers such as A2B5 have been used for
the enrichment of GSC population [62,63], but whether these surface markers can be used for
targeting GSCs need further investigations.

In the search for specific functional surface targets for GSCs, we have identified L1CAM as a
cell surface molecule that is differentially expressed in GSCs and plays critical roles in the
maintenance, survival and functions of GSCs [61]. L1CAM was originally identified as a neural
cell adhesion molecule in the nervous system and plays important roles in the development of
nervous system [68]. This glycoprotein contains a cytoplasmic tail, a transmembrane domain
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and an extracellular domain that can interact with another L1CAM molecule through
homophilic interaction, or binds to EGFR and FGFR, α5β1 and αvβ3 integrins, Neuropilin-1,
and a number of extracellular matrix proteins through heterophilic interaction (reviewed in
[69]). L1CAM mediated intra- and inter-cellular signaling plays important roles in regulating
cell adhesion, migration, survival, growth and cancer cell invasion. We have found that
L1CAM is highly expressed in GSCs relative to non-stem GBM tumor cells and normal neural
progenitor cells [61]. Knockdown of L1CAM using specific shRNA specifically disrupts
neurosphere formation and growth of GSCs in vitro. Targeting L1CAM in GSCs remarkably
suppressed the tumor growth and increased the survival of mice bearing intracranial GBM
xenografts [61]. We have determined that the molecular mechanism by which L1CAM
promotes GSC maintenance and tumor growth is through up-regulation of Olig2 to suppress
expression of p21WAF1/CIP1. Our data indicate that L1CAM as a functional surface molecule
may represent a novel target for development of anti-GSC specific therapeutics.

5. Targeting glioma stem cells through blocking specific signaling pathways
Although the therapeutic targeting of cancer stem cells has generated excitement [70], the
understanding on the molecular signaling of cancer stem cells is in early development. While
cancer stem cells share some properties with normal somatic stem or progenitor cells, they are
distinct from the normal stem cells at genetic and molecular signaling levels. The identification
of specific signaling pathways involved in the maintenance and functions of GSCs may be
useful to develop novel strategies to improve GBM treatment. A number of singling pathways
associated with cancer stem cell maintenance have been reported [70]. Here we discuss a few
of the critical signaling transduction pathways mediated from external signals to nucleus in
GSCs.

5.1. RTK-Akt signaling
Receptor Tyrosine Kinases (RTKs) transduce signaling of multiple oncogenic growth factors,
including the epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) that
are used in culturing GSCs [71]. Among these RTK pathways, the EGFR-mediated growth
signaling through phosphoinositide 3-kinase (PI3K)/Akt is one of the most important and best
characterized pathways in gliomas. Malignant gliomas, particularly GBMs, frequently display
EGFR amplification and/or expression of the constitutively active variant EGFRvIII that leads
to increased EGFR-Akt signaling in cancer cells [72,73]. Overexpression of EGFRvIII in
genetically engineered models induces glioma-like tumors [74,75]. It is not then surprising that
EGFR activity is required for maintenance of GSCs as EGFR kinase inhibitors attenuates in
vitro GSC proliferation and neurosphere formation [76,77]. The intracellular pathways that are
activated in turn upon EGFR activation are numerous but prominently the PI3K-Akt axis has
been strongly linked to glioma stem cell biology [78]. Our group recently demonstrated that
GSCs are more dependent on Akt signaling than non-stem cancer cells [79]. Inhibition of Akt
with the pharmacologic inhibitors (SH-6 or LY294002) disrupts GSC neurosphere formation,
induces apoptosis, reduces migration and invasion in vitro, and significantly delays intracranial
tumor formation of GSCs. These results have been validated by other groups, including in a
genetically engineered mouse model [47,80]. Although targeting EGFR-PI3K-Akt signaling
pathway may have specific effects on GSC population to reduce tumorigenic potential, the
results to date in clinical trials of EGFR inhibitors have been disappointing suggesting that
alone this is an insufficient therapeutic paradigm and prompting greater focus on PI3K
inhibitors.

5.2. Notch signaling
Notch proteins including four members (Notch 1-4) are transmembrane receptors that mediate
short-range cellular communication through interaction with ligands (Jagged-1, -2, and Delta-
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like-1, -3, and -4). The Notch signaling pathway is essential for the maintenance and fate
determination in somatic stem and progenitor cells by promoting self-renewal and repressing
differentiation. The critical roles of Notch signaling in regulating self-renewal and determining
cell fate have been well established in neural stem cells (reviewed in [81]). The activation of
Notch requires sequential proteolytic cleavages by the γ-secretase complex to release its
intracellular domain from membrane to nucleus. The nuclear translocation of the cleaved Notch
leads to Notch-dependent transcription. Notch signaling promotes the proliferation of normal
neural stem cells and is required for the maintenance of neural progenitors both in vitro and
in vivo [82]. Aberrant Notch signaling has been found in several types of tumors including
gliomas [83,84]. The role of Notch signaling in brain tumor stem cells was initially identified
in medulloblastomas. Inhibition of Notch signaling by a γ-secretase inhibitor (GSI-18) induces
differentiation and apoptosis of CD133+ stem-like cells derived from medulloblastoma and
impairs the tumorigenic potential of these cells [85]. Recently, the function of Notch signaling
has been linked to GSCs, as blockade of Notch signaling in GSCs attenuates the formation of
neurosphere-like colonies [86]. In addition, Notch overexpression in a K-ras-induced
glioblastoma mouse model increased expression of NSC marker Nestin and induced glioma
formation in the NSC-rich subependymal zone [87]. As mentioned above, Notch signaling has
been linked to radioresistance of GSCs by our group [88], suggesting that inhibition of Notch
signaling may not only disrupt the maintenance of GSCs but also reduce the radioresistance
of GSCs. Other regulators of Notch signaling, including Delta/Notch-like epidermal growth
factor-related receptor (DNER) and the Notch ligand Delta-like 4 (DLL4), can also regulate
glioblastoma growth [89,90]. Further, other signaling pathways – inhibitor of differentiation
4 (ID4) and CXCR4 – functionally interact with Notch signaling in brain tumors as well [91,
92]. Anti-DLL4 therapies have demonstrated anti-cancer stem cell activity [93] but concern
has been raised as chronic DLL4 targeting can induce neoplasia as well [94]. Although blocking
Notch signaling may be a good strategy targeting GSCs, γ-secretase inhibitors are still in early
clinical development for brain cancers.

5.3. Bone morphogenetic proteins (BMPs)/transforming growth factor-β (TGF-β)
The BMPs and TGFβ superfamily regulates a large number of cellular processes during
development and injury responses. The BMPs instruct cell fate during neural development.
Based on this background, the Vescovi group performed a seminal study that demonstrated the
ability of BMP ligands to activate their canonical receptors on GSCs to induce differentiation
and inhibit tumor growth [95]. This study demonstrated that direct implantation of BMP-
bearing beads into glioblastomas slowed tumor growth laying the foundation for a potential
therapy. The role of BMPs in GSCs became more nuanced after the Fine group showed that
some GSCs epigenetically regulate BMP receptors to shift towards a fetal phenotype to escape
the pro-differentiation effects of BMPs [96]. In contradistinction, TGF-β serves as a largely
oncogenic stimulus in glioblastoma growth through induction of angiogenesis, immune
evasion, and invasion [97]. Recent studies have added a new dimension in TGF-β oncogenesis
as autocrine and paracrine loops function to maintain GSCs through induction of leukemia
inhibitory factor (LIF) [98] and the SOX family members [99]. TGF-β inhibitors have already
entered into clinical trial and BMPs are being considered.

5.4. Hedgehog-Gli signaling
The Sonic Hedgehog-Gli signaling is one of the key regulatory pathway during embryogenesis
and is critical for the maintenance of several types of adult stem cells, including neural stem
cells [100]. The binding of Hedgehog ligands to the PTCH receptor activates Gli signal
transducers that then translocate into the nucleus to activate or repress transcription of
downstream genes. Aberrant Hedgehog signaling has been associated with medulloblastomas,
the common childhood tumors [100,101]. Hedgehog signaling is mediated not only through
specific signaling molecules but also in association with a physical organelle, primary cilia,
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that function in medulloblastoma development [102]. Active Hedgehog-Gli signaling is also
found in gliomas [103], in fact the key intracellular mediator Gli was originally discovered in
gliomas [104]. Gli activity correlates with tumor grade in a genetically engineered mouse model
[105]. Several groups have studied the role of Hedgehog-Gli signaling in GSCs and found that
this signaling pathway regulates self-renewal and tumorigenic potential of GSCs [48,
106-108]. Treatment of GSCs with the hedgehog inhibitor cyclopamine or Gli RNA
interference suppresses self-renewal and proliferation while increases apoptotic cell death.
Importantly, inhibition of Hedgehog-Gli signaling enhances the efficacy of TMZ to inhibit
GSC proliferation and induce cell death [109]. In vivo studies showed that the inhibition of the
Hedgehog signaling pathway blocks GSC tumor growth, and the viable neoplastic cells after
the cyclopamine treatment failed to propagate tumors in vivo [109]. Furthermore, cyclopamine
treatment has been shown to improve the effect of radiation on GSC cell survival. Collectively,
these studies indicated that Hedgehog-Gli signaling pathway is critical for GSC maintenance
and targeting this pathway with pharmacologic inhibitors may suppress GSC growth and
improve the efficacy of conventional therapies against malignant gliomas. Although the side
effect of these inhibitors on normal stem cells needs to be carefully evaluated, recent clinical
studies with the Hedgehog inhibitor GDC-0449 have shown promising responses with
acceptable toxicity [110,111].

5.5. Wnt-β-catenin signaling
The canonical Wnt cascade is one of critical regulators in embryonic stem cells and adult stem
cells. Wnt-β-catenin signaling has clearly defined roles in both normal stem cells and cancer
stem cells (reviewed in [112]). In brain, the Wnt signaling pathway regulates brain development
as well as proliferation and self-renewal of NSCs or neural progenitor cells in the fetal
ventricular zone, the postnatal subventricular zone and hippocampus [113-117] and alterations
have been linked to medulloblastoma [118,119]. Wnt signaling is activated predominantly in
medulloblastoma of the classic subtype [120]. Recent studies indicate that Wnt-β-catenin
signaling may contribute to radioresistance in cancer stem cells [45]. Whether Wnt-β-catenin
signaling is associated with GSC maintenance and radioresistance requires further
investigation, but it is possible that Wnt blockade can effectively target GSCs.

5.6. STAT3 signaling
The signal transducer and activator of transcription 3 (STAT3) is a critical transcriptional
regulator involved in a wide range of cellular activities in the immune response, central nervous
system development, stem cell maintenance and tumorigenesis. The link between the activation
of STAT3 and glioblastoma biology has become increasingly evident (reviewed in [121]).
Abnormal STAT3 activation has been detected in many types of cancers including solid tumors
and hematopoietic malignancies. The canonical oncogenic function of STAT3 depends on its
phosphorylation on Tyr705 that can be attributed to aberrant activity of various upstream
kinases. STAT3 in conjunction with C/EBP-beta correlates with mesenchymal transformation
of glioblastomas and inversely related to patient outcome [122]. Based on this background,
several groups have interrogated STAT3 in GSCs. Genetic knockdown of STAT3 or inhibition
of STAT3 with specific inhibitors disrupts proliferation and maintenance of GSCs [123,124].
Moreover, the phosphorylated active form of STAT3 on tyrosine-705 and serine-727 is present
in GSC population and the active form of STAT3 decreases to undetectable level after
differentiation induction of GSCs [124]. Several pathways upstream of STAT3 are active in
GSCs – interleukin-6 (IL6), erythropoietin, and Notch – and targeting these pathways inhibits
STAT3 activation and GSC growth and self renewal [85,123,125]. STAT3 also contributes to
the immune regulation by GSCs [126]. Since STAT3 is involved in many cellular activities in
a wide range of cancer types, STAT3 inhibitors are undergoing clinical development. However,
as STAT3 is also important for the maintenance of normal stem cells and required for critical
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immune responses and other normal cellular activities, targeting STAT3 may display
significant side effects and is unlikely to be specific for GSCs.

5.7. GSK3-β signaling
GSK3-β is one of isoforms of glycogen synthase kinase 3 (GSK3) and involved in different
signaling pathways regulating cell cycle, proliferation, differentiation and apoptosis. GSK3-
β has been implicated in the regulation of neural stem cell differentiation and proliferation
[127-130]. Recently, it has been shown that GSK3-β is involved in maintaining GSCs, as
reduced GSK3-β activity either by shRNA or the specific inhibitor SB216763 or lithium
chloride (LiCl) induces GSC differentiation and reduces expression of stem cell marker Sox2
and Myc [131]. In addition, down regulation of the stem cell factor Bmi1 (a member of
polycomb group of proteins) reduces GSK3-β expression in GSCs [131]. Since GSK3-β
signaling is very complex, the role of GSK3-β in GSCs needs further investigation, but the
number of specific GSK3-β inhibitors available provides an additional therapeutic strategy for
treating malignant gliomas.

6. Targeting hypoxic responses of glioma stem cells
Hypoxic conditions are commonly present in solid tumors including malignant gliomas.
Hypoxia was thought to have a negative impact for tumor growth, but hypoxia actually
promotes tumor angiogenesis, cancer dispersal and therapeutic resistance such as
radioresistance in GBM [132]. Furthermore, recent work from our group and others has
suggested that hypoxic niches play critical roles in the maintenance of cancer stem cells in
tumor tissue [30,31,133,134]. Similarly, hypoxic niches are also involved in the maintenance
of normal stem cells. For example, hematopoietic stem cells are maintained in hypoxic niches
in bone marrow [135]. Hypoxia also prevents the differentiation of neural stem cells and
promotes the self-renewal of embryonic stem (ES) cells [136-139]. Restricted oxygen
concentrations also enhance the production of induced pluripotent stem cells (iPSC) [140].
GBMs frequently display areas of necrosis – necrosis serves as a grading criterium for GBM
– that occur in avascular and low oxygen regions. While brain tumor stem cells have been
linked to a perivascular niche, we have found an additional enrichment of GSCs around necrotic
regions [30]. Other groups have found that restricted oxygen promotes a GSC phenotype
[32,33]. We also found that restricted oxygen conditions increase expression of GSC markers
and indicator of self-renewal and tumor growth, suggesting that the GSC state may be plastic
and that microenvironmental conditions can promote the acquisition of a stem cell-like state
[31,141]. These studies suggest that disrupting the microenvironment of GSCs, like the hypoxic
niches, may provide a new approach targeting GSCs in malignant gliomas.

In response to hypoxia, cells undergo significant transcription modification that leads to
alterations of cellular function. The cellular responses to hypoxia are mainly mediated through
the hypoxia inducible factors (HIFs). We recently demonstrated that hypoxia responses in
GSCs differ from non-stem cancer cells. Hypoxia differentially induces HIF2α in GSCs, while
HIF1α is induced in both GSCs and non-stem GBM tumor cells by hypoxia [30]. HIF2α was
essential only in GSCs and was not expressed by normal neural progenitors, suggesting that
HIF2α may represent a specific target for GSCs or other cancer stem cells. Under hypoxic
conditions, GSCs display a specific gene expression profile relative to non-stem cancer cells.
In addition to the increased VEGF expression, GSCs specifically up-regulates HIF2α and
several HIF2α transcriptional targets such as Oct4, Glut1 and Serpin B9 under hypoxia [30].
GSCs display high levels of HIF2α under oxygen concentration as high as 5% that is within
the physiologic range of oxygen in the brain and most tumor tissues [30], whereas HIF1α is
induced in both GSCs and the non-stem tumor cells only at severely hypoxic conditions (<1%
oxygen). Functional studies through RNA interference demonstrated that both HIF1α and
HIF2α are required for GSC growth in vitro and GSC tumor formation in vivo, but only
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HIF1α is required for non-stem GBM tumor cell growth, suggesting that GSCs use both
HIF1α and HIF2α for the hypoxia response and may be able to survive better under stress
conditions. Other groups have found that HIF1α functions in the hypoxia driven expansion of
GSCs [33]. Moreover, the silico analysis of HIFs expression in the REMBRANDT National
Cancer Institute patient database showed that HIF2α but not HIF1α levels informed negative
survival of patients. In addition, overexpression of HIF2α promotes cancer stem state in GBM
[31]. These data indicate that HIF2α is a potential target specific for GSCs since HIF2α is not
expressed in normal neural progenitors. However, the role HIF2α in other normal stem cells
needs to be elucidated, in order to understand whether targeting HIF2α have negative impact
on other normal stem cells.

7. Targeting glioma stem cell maintenance through specific transcription
factors

Since GSCs share some critical characteristics with normal neural stem cells and embryonic
stem cells, some important stem cell transcription factors (SCTFs) are also involved in the
maintenance and functions of GSCs. These SCTFs such as Sox2, Oct4, Nanog, c-Myc, Olig2
and Bmi1 are critical for the self-renewal, proliferation, survival, and maintenance of multi-
lineage differentiation potential of GSCs.

Sox2, Oct4 and Nanog are core components in maintaining embryonic stem cells and somatic
stem cells [142-145]. They are also critical factors for cell reprogram and generation of
inducible pluripotent stem cells (iPS) [146,147]. These SCTFs are highly expressed in GSCs
and may be important for GSC maintenance [21,99]. Although targeting these SCTFs induces
differentiation of GSCs, they present challenging targets for GSCs because these SCTFs are
also highly expressed in normal somatic stem cells and are critical for maintaining normal stem
cells, such as neural stem cells and hematopoietic stem cells.

c-Myc is a well known oncoprotein that has been extensively studied for its crucial role in the
proliferation of both normal stem cells and cancer cells. c-Myc may be a critical link to study
the relationship between “stemness” and tumorigenicity. c-Myc expression levels correlate
with tumor grade in gliomas [140]. Recently, our group and others demonstrated that c-Myc
expression is elevated in GSCs and it is required for maintaining GSCs in vitro and their
tumorigenic potential in vivo [148]. Conditional overexpression of c-Myc in mouse astroglia
leads to brain tumors resembling human malignant gliomas [149]. In addition, c-Myc prevents
cell differentiation and promotes self-renewal of tumor cells derived from the pten/p53 double
null mouse model [150]. These studies support an important role of c-Myc in GSC
maintenance. However, the widespread effects of c-Myc in normal physiology must be
considered. Although c-Myc plays crucial roles in tumorigenesis and tumor progression, it is
unlikely a specific target.

Olig2 is a unique transcription factor that is almost exclusively expressed in the stem cells or
progenitors in the CNS (central nervous system). Olig2 is expressed in neural progenitors fated
to give rise to oligodendrocytes and subtypes of neurons [151]. Several studies have revealed
that Olig2 is widely expressed in astrocytomas and is required for tumor initiation and growth
[152,153], suggesting a link between Olig2 expression and GSCs. Indeed, Olig2 differential
expression was found in GSC populations isolated from most cases of GBM tumor specimens
obtained in our group, suggesting that Olig2 is a common marker for GSCs. This transcription
factor is required for maintaining the multi-lineage differentiation potential of neural
progenitors and GSCs. Olig2 mediates GSC proliferation in part through suppression of
p21WAF1/CIP1, a key cell cycle regulator [61]. Since Olig2 expression is limited in GSCs and
CNS stem cells/progenitors, Olig2 could be a potential target for GSCs even it is not an ideal
target.
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REST (repressor element 1-silencing transcription factor) or NRSF (neuron-restricted
silencing factor) is a master neuronal repressor that plays a critical role in maintaining neural
stem cells by suppressing neuronal differentiation [154]. The zinc-finger domain of REST
recognizes a conserved RE-1 element (21-23 base pairs) within regulatory regions of target
genes to repress the transcription of the differentiation-associated genes. REST promotes
oncogenesis in medulloblastomas and neuroblastomas that usually arise from neural
progenitors [155,156]. This transcription repressor is also highly expressed in human
glioblastomas and neuroblastomas [155]. REST is targeted for proteasomal degradation by the
ubiquitin E3 ligase SCFβ-TRCP to promote neural differentiation [157]. We have observed
that REST is differentially expressed in GSCs isolated from some cases of GBM tumor samples
(unpublished data), suggesting that targeting REST may induce GSC differentiation.

Bmi1 is one of Polycomb group genes that normally function as epigenetic silencers. Bmi1 is
a positive regulator of neural stem cells and has been implicated in stem cell fate determination
in several tissues [158]. Bmi1 is required for the malignant transformation of both neural stem
cells and differentiated astrocytes [159]. Transformed Bmi1 wild-type neural stem cells give
rise to high grade gliomas in vivo, but Bmi1-deficient neural stem cells only initiate less
malignant type of gliomas with fewer cells expressing stem cell markers. Bmi1 is frequently
overexpressed in several types of cancer including gliomas. Interestingly, Bmi1 is also highly
expressed in GSCs and required for GSC self-renewal [160]. Similar finding for an essential
role of Bmi1 in maintaining cancer stem cells has been shown in hepatocellular carcinomas
[161].

8. Targeting glioma stem cells through induction of differentiation
One of important properties that GSCs share with normal stem cells is their multi-lineage
differentiation potential, although differentiation potential is not one of essential characteristics
to define a cancer stem cell. GSCs isolated from primary GBM tumors or xenografts have the
capacity to differentiate into cells with the morphologies and marker profiles of astrocytes,
oligodendrocytes and neurons (ref [21] and Fig. 1). These differentiated cells lose long-term
repopulation potential in vitro and fail to propagate tumors in vivo, suggesting that inducing
GSC differentiation may be a practical strategy to deplete the GSC population. Several
signaling pathways involved in differentiation induction of stem cells have been identified. As
noted above, the BMPs inhibit GSC proliferation and deplete GSC population by inducing the
differentiation of GSCs into astroglial and neuron-like cells [95]. Targeting GSCs with BMP4
in vivo significantly inhibits GBM tumor growth and reduces tumor invasion [95]. Recent study
by Lee et al has confirmed that BMPs promote glial differentiation of GSCs [96], but they also
found that GSCs derived from one GBM sample showed enhanced cell proliferation rather
than differentiation in response to BMP treatment. This is because GSCs from this sample lost
BMPR1B expression due to epigenetic silencing by an EZH2-dependent mechanism [96].
Restoration of BMPR1B expression rescued the BMP4-induced differentiation in these GSCs.
These studies suggested that individual epigenetic characteristics may determine GSC response
to the differentiation-inducing agents, and BMPs in combination with epigenetic modulators
may be critical to induce GSC differentiation.

In addition, there are other factors that have been implicated to promote differentiation of GSCs.
Recent study showed that inactivation of PTEN (a well-known tumor suppressor) promotes
undifferentiated state of glioma stem cells [162], suggesting that PTEN may promote GSC
differentiation. PTEN is a phosphatase with dual-specificity for both protein and lipid. PTEN
deletion or functional loss has been linked to initiation and/or progression of malignant gliomas.
PTEN inactivation leads to increased expression of Myc that is critical for maintaining GSC
proliferation and self-renewal, suggesting promoting PTEN function may suppress the
“stemness” of GSCs. In another study, Sox11 was shown to promote GSC differentiation
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[163]. Overexpression of Sox11 inhibits tumorigenic potential of GSCs by promoting neuronal
differentiation. Furthermore, inactivated Sox11 expression was detected in GSCs derived from
some cases of GBM when a gene expression profile was analyzed between tumorigenic and
non-tumorigenic clones of glioma cells. Although these factors have been shown to promote
GSC differentiation, whether these factors can be used for targeting GSC in clinical
applications needs further studies.

9. Regulation of glioma stem cells by micro RNAs (miRNA)
The roles of miRNAs in regulating embryonic stem cells, somatic stem cells or cancer stem
cells have received much attention in recent years. miRNAs are a group of small non-coding
RNAs that potently silence gene expression through post-transcriptional modification on target
mRNAs. Since a single miRNA may regulate several or many distinct mRNAs, miRNAs are
powerful regulators of gene expression. miRNAs are emerging as crucial regulators of cellular
proliferation and differentiation. They can function as either oncogenes or tumor suppressors
in various tissues or tumors. miRNA has been shown to be critical in the regulation of glioma
cell functions. For example, miRNA-21 is overexpressed in GBM tumors and blocking its
function induces apoptotic cell death [164]. The roles of miRNA in GSCs have been
demonstrated in two recent reports [165,166]. Levels of miR-124, miR-137 and miR-451 are
significantly reduced in malignant gliomas (both grade III and grade IV) relative to normal
brain and in GSCs relative to non-stem tumor cells. Overexpression of these miRNAs in GSCs
inhibits proliferation and induces differentiation of GSCs, suggesting that these miRNAs have
an important role in maintaining GSCs. Furthermore, external expression of miR-451 disrupts
neurosphere formation and suppresses tumor growth of GSCs, indicating a tumor suppressor
role of miR-451 in gliomas. These studies suggest that some critical miRNAs can be potentially
used as therapeutic agents for targeting GSCs. However, how we deliver these miRNAs into
GSCs or non-stem tumor cells and how we make these miRNAs to be stable targeting agents
may face a great challenge in the future.

10. Conclusions
The identification of cancer stem cells and their roles in GBM progression and therapeutic
resistance has altered our understanding of glioma tumor biology and causing a reevaluation
of current therapies for malignant gliomas. Cancer cure requires elimination of all tumor cells,
even small fractions like GSCs. Novel therapies directed against GSCs may help improve the
currently dreadful record of clinical activity with conventional therapy. Although controversy
still exists as to the methods for isolating and characterizing GSCs and defining the role of
non-stem cancer population, GSCs represent a subpopulation of cancer cells with extraordinary
capacities to promote tumor repopulation, angiogenesis, invasion and therapeutic resistance
(summarized in Fig. 3), making them a critical cell population that should be targeted for anti-
glioma therapies. A recent report showed that a lentival vector-mediated suicide gene therapy
can eliminate invasive GSCs in xenograft models [167]. Since non-stem tumor cells (non-
GSCs) may be able to reprogram into GSCs under certain conditions [31,141], we believe that
eliminating both GSC and non-GSC cancer cell populations is essential to achieve therapeutic
success (Fig. 4). Recent research advances in this exciting area have allowed us to gain
remarkable insights into the signaling pathways that are differentially present or regulated in
GSCs or non-stem cancer cells. As GSCs share critical signaling pathways with normal neural
stem/progenitor cells but also significantly distinct from normal stem cells in many aspects,
identification of the unique signaling pathways or molecular regulators that differentially
control the phenotypes and tumorigenic potential of GSCs might offer new avenues for
developing novel therapeutics against GSCs to significantly improve GBM treatment. We have
discussed a number of signaling pathways or molecular targets that are potentially useful for
the future development of anti-GSC therapeutics, but most of them are still far away from the
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clinical application except the anti-vascular niche treatment that has shown promising results
in clinical trials leading to preliminary FDA approval for bevacizumab for the treatment of
recurrent or progressive GBM. Some molecular regulators such as L1CAM and HIF2α that
are preferentially expressed in GSCs are likely to be specific targets for GSCs, as targeting
other critical pathways such as Notch, Hedgehog-gli, Wnt or STAT3 signaling pathways that
are shared by normal stem cells may display significant side effect on normal cells. Additional
research is certainly needed to confirm the clinical relevance of these laboratory findings and
better apply these concepts to clinical practice. For example, biomarker development and the
application of personalized medical therapy may be accelerated with analysis of tumor
heterogeneity. However, great challenges lay ahead as GSC populations themselves are
heterogeneous [168] and the GSCs may evolve over time within a patient. As the genetics of
glioblastomas are becoming increasingly defined with clear subgroups of tumors evolving, our
understanding of GSC diversity will certainly become more nuanced. GSCs are also a product
of their environment and almost certainly not only interact with vascular niche but also with
non-stem tumor cells, stromal elements and immune cells. The emerging concepts and roles
of cancer stem cells are still rapidly evolving. The road forward will likely be bumpy but these
paradigms are exciting as they may bring new opportunities to a group of patients sadly lacking
in effective treatment options. Since the origin of cancer stem cells in GBM from different
patient may vary and they may display different genetic changes in complex tumor tissues,
future treatment for GBM may rely on a unique combination of several targeted therapies based
on the cellular, genetic and molecular information of the tumor in the individual patient.
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Fig. 1.
Glioma stem cells display multiple-lineage differentiation potential. Immunofluorescent
staining demonstrated that glioblastoma stem cells derived from a tumor specimen (T3359)
formed neurospheres and differentiated into cells expressing markers for astrocytes (GFAP+),
oligodentrocytes (Galc+) and neuron (Map2+) lineages upon induction of differentiation.
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Fig. 2.
Glioma stem cells are localized in vascular niches. The frozen section of GBM tumor was
immunostained with anti-L1CAM antibody for glioblastoma stem cells (shown in green) and
anti-CD31 antibody for endothelial cells (shown in red), and counterstained with DAPI for
DNA (blue). L1CAM-positive cells (green) are located near the blood vessels (CD31+, red).
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Fig. 3.
A summary of roles of glioma stem cells (GSCs) in glioblastoma tumor progression and
therapeutic resistance.
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Fig. 4.
Therapeutic targeting of glioma stem cells (GSCs) and non-stem cancer cells (Non-GSCs).
Targeting both populations of glioblastoma cancer cells is important to eliminate the tumor,
since non-stem cancer cells may be able to reprogram into GSCs under certain conditions.
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